Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Biomedical Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9434 Online ISSN: 2049-9442
Journal Cover
May-2024 Volume 20 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2024 Volume 20 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Viruses as a potential environmental trigger of type 1 diabetes mellitus (Review)

  • Authors:
    • Jayra Juliana Paiva Alves Abrantes
    • Jenner Chrystian Veríssimo de Azevedo
    • Fernando Liberalino Fernandes
    • Valéria Duarte Almeida
    • Laura Andrade Custódio de Oliveira
    • Maryana Thalyta Ferreira De Oliveira
    • Josélio Maria Galvão de Araújo
    • Daniel Carlos Ferreira Lanza
    • Fabiana Lima Bezerra
    • Vania Sousa Andrade
    • Thales Allyrio Araújo de Medeiros Fernandes
    • José Veríssimo Fernandes
  • View Affiliations / Copyright

    Affiliations: Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078‑970, Brazil, Department of Biomedical Sciences, Rio Grande do Norte State University, Mossoró, Rio Grande do Norte 59607‑360, Brazil, Laboratory of Applied Molecular Biology, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078‑970, Brazil
    Copyright: © Alves Abrantes et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 81
    |
    Published online on: March 26, 2024
       https://doi.org/10.3892/br.2024.1770
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The etiopathogenesis of type 1 diabetes mellitus (T1DM) is a complex multifactorial process that involves an intricate network of genetic, epigenetic, immunological, and environmental factors. Despite the advances in recent years, some aspects of the mechanisms involved in triggering the disease are still unclear. Infections with certain viruses have been suggested as possible environmental triggers for the autoimmune process that leads to selective and progressive destruction of pancreatic β‑cells and insufficiency of insulin production, which is its hallmark. In this review, advances in knowledge and evidence that suggest the participation of certain viruses in the mechanisms of disease initiation and progression are described. It has been accepted that environmental factors, including viruses, can initiate and possibly sustain, accelerate, or slow down the autoimmune process and consequently damage insulin‑producing pancreatic β‑cells. Although the role of these agents, especially human enteroviruses, has been exhaustively studied as the most likely triggers of the activation of autoimmunity that destroys pancreatic islets and leads to T1DM, certain doubts remain. Clinical epidemiological and experimental studies in humans and animals provide consistent and increasing evidence that persistent viral infections, especially with human enteroviruses and rotavirus infections, are associated with an increased risk of the disease in individuals genetically predisposed to autoimmunity.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Katsarou A, Gudbjörnsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, Jacobsen LM, Schatz DA and Lernmark Å: Type 1 diabetes mellitus. Nat Rev Dis Primers. 3(17016)2017.PubMed/NCBI View Article : Google Scholar

2 

Roep BO, Thomaidou S, van Tienhoven R and Zaldumbide A: Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nat Rev Endocrinol. 17:150–161. 2021.PubMed/NCBI View Article : Google Scholar

3 

Zorena K, Michalska M, Kurpas M, Jaskulak M, Murawska A and Rostami S: Environmental factors and the risk of developing type 1 diabetes-old disease and new data. Biology (Basel). 11(608)2022.PubMed/NCBI View Article : Google Scholar

4 

de Azevedo JCV, de Medeiros Fernandes TAA, Cavalcante GA, de Medeiros IACM, Lanza DCF, de Araújo JMG, Bezerra FL and Fernandes JV: Biology and natural history of type 1 diabetes mellitus. Curr Pediatr Rev. 19:253–275. 2023.PubMed/NCBI View Article : Google Scholar

5 

Cerna M: Epigenetic regulation in etiology of type 1 diabetes mellitus. Int J Mol Sci. 21(36)2019.PubMed/NCBI View Article : Google Scholar

6 

Lucier J, Weinstock RS and Doerr C: Diabetes mellitus type 1 (Nursing). StatPearls Publishing, Treasure Island, FL, 2023.

7 

Alamri ZZ: The role of liver in metabolism: An updated review with physiological emphasis. Int J Basic Clin Pharmacol. 7:2271–2276. 2018.

8 

Han HS, Kang G, Kim JS, Choi BH and Koo SH: Regulation of glucose metabolism from a liver-centric perspective. Exp Mol Med. 48(e218)2016.PubMed/NCBI View Article : Google Scholar

9 

Röder PV, Wu B, Liu Y and Han W: Pancreatic regulation of glucose homeostasis. Exp Mol Med. 48(e219)2016.PubMed/NCBI View Article : Google Scholar

10 

Chadt A and Al-Hasani H: Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflugers Arch. 472:1273–1298. 2020.PubMed/NCBI View Article : Google Scholar

11 

Zheng P, Li Z and Zhou Z: Gut microbiome in type 1 diabetes: A comprehensive review. Diabetes Metab Res Rev. 34(e3043)2018.PubMed/NCBI View Article : Google Scholar

12 

Cohn A, Sofia AM and Kupfer SS: Type 1 diabetes and celiac disease: Clinical overlap and new insights into disease pathogenesis. Curr Diab Rep. 14(517)2014.PubMed/NCBI View Article : Google Scholar

13 

Pociot F and Lernmark Å: Genetic risk factors for type 1 diabetes. Lancet. 387:2331–2339. 2016.PubMed/NCBI View Article : Google Scholar

14 

Abela AG and Fava S: Why is the incidence of type 1 diabetes increasing? Curr Diabetes Rev. 17(e030521193110)2021.PubMed/NCBI View Article : Google Scholar

15 

Zajec A, Trebušak Podkrajšek K, Tesovnik T, Šket R, Čugalj Kern B, Jenko Bizjan B, Šmigoc Schweiger D, Battelino T and Kovač J: Pathogenesis of type 1 diabetes: Established facts and new insights. Genes (Basel). 13(706)2022.PubMed/NCBI View Article : Google Scholar

16 

Siljander H, Honkanen J and Knip M: Microbiome and type 1 diabetes. EBioMedicine. 46:512–521. 2019.PubMed/NCBI View Article : Google Scholar

17 

Lloyd RE, Tamhankar M and Lernmark Å: Enteroviruses and type 1 diabetes: Multiple mechanisms and factors? Annu Rev Med. 73:483–499. 2022.PubMed/NCBI View Article : Google Scholar

18 

Hyöty H: Viruses in type 1 diabetes. Pediatr Diabetes. 17 (Suppl 22):S56–S64. 2016.PubMed/NCBI View Article : Google Scholar

19 

Alhazmi A, Sane F, Lazrek M, Nekoua MP, Badia-Boungou F, Engelmann I, Alidjinou EK and Hober D: Enteroviruses and type 1 diabetes mellitus: An overlooked relationship in some regions. Microorganisms. 8(1458)2020.PubMed/NCBI View Article : Google Scholar

20 

Isaacs SR, Foskett DB, Maxwell AJ, Ward EJ, Faulkner CL, Luo JYX, Rawlinson WD, Craig ME and Kim KW: Viruses and type 1 diabetes: From enteroviruses to the Virome. Microorganisms. 9(1519)2021.PubMed/NCBI View Article : Google Scholar

21 

Geravandi S, Richardson S, Pugliese A and Maedler K: Localization of enteroviral RNA within the pancreas in donors with T1D and T1D-associated autoantibodies. Cell Rep Med. 2(100371)2021.PubMed/NCBI View Article : Google Scholar

22 

Isaacs SR, Roy A, Dance B, Ward EJ, Foskett DB, Maxwell AJ, Rawlinson WD, Kim KW and Craig ME: Enteroviruses and risk of islet autoimmunity or type 1 diabetes: Systematic review and meta-analysis of controlled observational studies detecting viral nucleic acids and proteins. Lancet Diabetes Endocrinol. 11:578–592. 2023.PubMed/NCBI View Article : Google Scholar

23 

Kondrashova A and Hyöty H: Role of viruses and other microbes in the pathogenesis of type 1 diabetes. Int Rev Immunol. 33:284–295. 2014.PubMed/NCBI View Article : Google Scholar

24 

Oikarinen S, Krogvold L, Edwin B, Buanes T, Korsgren O, Laiho JE, Oikarinen M, Ludvigsson J, Skog O, Anagandula M, et al: Characterisation of enterovirus RNA detected in the pancreas and other specimens of live patients with newly diagnosed type 1 diabetes in the DiViD study. Diabetologia. 64:2491–2501. 2021.PubMed/NCBI View Article : Google Scholar

25 

Geravandi S, Liu H and Maedler K: Enteroviruses and T1D: Is it the virus, the genes or both which cause T1D. Microorganisms. 8(1017)2020.PubMed/NCBI View Article : Google Scholar

26 

Nekoua MP, Alidjinou EK and Hober D: Persistent coxsackievirus B infection and pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol. 18:503–516. 2022.PubMed/NCBI View Article : Google Scholar

27 

Bluestone JA, Herold K and Eisenbarth G: Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 464:1293–1300. 2010.PubMed/NCBI View Article : Google Scholar

28 

Kahaly GJ and Hansen MP: Type 1 diabetes associated autoimmunity. Autoimmun Rev. 15:644–648. 2016.PubMed/NCBI View Article : Google Scholar

29 

Li M, Song LJ and Qin XY: Advances in the cellular immunological pathogenesis of type 1 diabetes. J Cell Mol Med. 18:749–758. 2014.PubMed/NCBI View Article : Google Scholar

30 

Knip M, Siljander H, Ilonen J, Simell O and Veijola R: Role of humoral beta-cell autoimmunity in type 1 diabetes. Pediatr Diabetes. 17 (Suppl 22):S17–S24. 2016.PubMed/NCBI View Article : Google Scholar

31 

Winter WE, Harris N and Schatz D: Type 1 diabetes islet autoantibody markers. Diabetes Technol Ther. 4:817–839. 2002.PubMed/NCBI View Article : Google Scholar

32 

Winter WE and Schatz DA: Autoimmune markers in diabetes. Clin Chem. 57:168–175. 2011.PubMed/NCBI View Article : Google Scholar

33 

Kwon BC, Anand V, Achenbach P, Dunne JL, Hagopian W, Hu J, Koski E, Lernmark Å, Lundgren M, Ng K, et al: Progression of type 1 diabetes from latency to symptomatic disease is predicted by distinct autoimmune trajectories. Nat Commun. 13(1514)2022.PubMed/NCBI View Article : Google Scholar

34 

Insel RA, Dunne JL, Atkinson MA, Chiang JL, Dabelea D, Gottlieb PA, Greenbaum CJ, Herold KC, Krischer JP, Lernmark Å, et al: Staging presymptomatic type 1 diabetes: A scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care. 38:1964–1974. 2015.PubMed/NCBI View Article : Google Scholar

35 

Du C, Whiddett RO, Buckle I, Chen C, Forbes JM and Fotheringham AK: Advanced glycation end products and inflammation in the development of type 1 diabetes. Cells. 11(3503)2022.PubMed/NCBI View Article : Google Scholar

36 

Bravis V, Kaur A, Walkey HC, Godsland IF, Misra S, Bingley PJ, Williams AJK, Dunger DB, Dayan CM, Peakman M, et al: Relationship between islet autoantibody status and the clinical characteristics of children and adults with incident type 1 diabetes in a UK cohort. BMJ Open. 8(e020904)2018.PubMed/NCBI View Article : Google Scholar

37 

Dayan CM, Korah M, Tatovic D, Bundy BN and Herold KC: Changing the landscape for type 1 diabetes: The first step to prevention. Lancet. 394:1286–1296. 2019.PubMed/NCBI View Article : Google Scholar

38 

Beik P, Ciesielska M, Kucza M, Kurczewska A, Kuźmińska J, Maćkowiak B and Niechciał E: Prevention of type 1 diabetes: Past experiences and future opportunities. J Clin Med. 9(2805)2020.PubMed/NCBI View Article : Google Scholar

39 

American Diabetes Association Professional Practice Committee. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2022. Diabetes Care. 45 (Suppl 1):S17–S38. 2022.PubMed/NCBI View Article : Google Scholar

40 

Maruyama K, Chujo D, Watanabe K, Kawabe A, Sugiyama T, Ohsugi M, Tanabe A, Ueki K and Kajio H: Evaluation of cellular and humoral autoimmunity before the development of type 1 diabetes in a patient with idiopathic CD4 lymphocytopenia. J Diabetes Investig. 10:1108–1111. 2019.PubMed/NCBI View Article : Google Scholar

41 

Gu Y, Merriman C, Guo Z, Jia X, Wenzlau J, Li H, Li H, Rewers M, Yu L and Fu D: Novel autoantibodies to the β-cell surface epitopes of ZnT8 in patients progressing to type-1 diabetes. J Autoimmun. 122(102677)2021.PubMed/NCBI View Article : Google Scholar

42 

Bjørnsen LP, Hadera MG, Zhou Y, Danbolt NC and Sonnewald U: The GLT-1 (EAAT2; slc1a2) glutamate transporter is essential for glutamate homeostasis in the neocortex of the mouse. J Neurochem. 128:641–649. 2014.PubMed/NCBI View Article : Google Scholar

43 

Di Cairano ES, Davalli AM, Perego L, Sala S, Sacchi VF, La Rosa S, Finzi G, Placidi C, Capella C, Conti P, et al: The glial glutamate transporter 1 (GLT1) is expressed by pancreatic beta-cells and prevents glutamate-induced beta-cell death. J Biol Chem. 286:14007–14018. 2011.PubMed/NCBI View Article : Google Scholar

44 

Zhou Y, Waanders LF, Holmseth S, Guo C, Berger UV, Li Y, Lehre AC, Lehre KP and Danbolt NC: Proteome analysis and conditional deletion of the EAAT2 glutamate transporter provide evidence against a role of EAAT2 in pancreatic insulin secretion in mice. J Biol Chem. 289:1329–1344. 2014.PubMed/NCBI View Article : Google Scholar

45 

Perego C, Di Cairano ES, Galli A, Moretti S, Bazzigaluppi E, Centonze VF, Gastaldelli A, Assi E, Fiorina P, Federici M, et al: Autoantibodies against the glial glutamate transporter GLT1/EAAT2 in Type 1 diabetes mellitus-Clues to novel immunological and non-immunological therapies. Pharmacol Res. 177(106130)2022.PubMed/NCBI View Article : Google Scholar

46 

Juusola M, Parkkola A, Härkönen T, Siljander H, Ilonen J, Åkerblom HK and Knip M: Childhood Diabetes in Finland Study Group. Positivity for Zinc Transporter 8 Autoantibodies at diagnosis is subsequently associated with reduced β-cell function and higher exogenous insulin requirement in children and adolescents with type 1 diabetes. Diabetes Care. 39:118–121. 2016.PubMed/NCBI View Article : Google Scholar

47 

Yohena S, Penas-Steinhardt A, Muller C, Faccinetti NI, Cerrone GE, Lovecchio S, Ridner E, Valdez S and Frechtel G: Immunological and clinical characteristics of latent autoimmune diabetes in the elderly. Diabetes Metab Res Rev. 35(e3137)2019.PubMed/NCBI View Article : Google Scholar

48 

Zhang M, Wang X, Wang R, Shu J, Zhi X, Gu C, Pu L, Cai C, Yang W and Lv L: Clinical study of autoantibodies in type 1 diabetes mellitus children with ketoacidosis or microalbuminuria. J Clin Lab Anal. 36(e24164)2022.PubMed/NCBI View Article : Google Scholar

49 

Santos AS, Cunha-Neto E, Gonfinetti NV, Bertonha FB, Brochet P, Bergon A, Moreira-Filho CA, Chevillard C and da Silva MER: Prevalence of inflammatory pathways over immuno-tolerance in peripheral blood mononuclear cells of recent-onset type 1 diabetes. Front Immunol. 12(765264)2022.PubMed/NCBI View Article : Google Scholar

50 

Zirpel H and Roep BO: Islet-resident dendritic cells and macrophages in type 1 diabetes: In search of Bigfoot's print. Front Endocrinol (Lausanne). 12(666795)2021.PubMed/NCBI View Article : Google Scholar

51 

Wong FS and Wen L: A predictive CD8+ T cell phenotype for T1DM progression. Nat Rev Endocrinol. 16:198–199. 2020.PubMed/NCBI View Article : Google Scholar

52 

Wiedeman AE, Muir VS, Rosasco MG, DeBerg HA, Presnell S, Haas B, Dufort MJ, Speake C, Greenbaum CJ, Serti E, et al: Autoreactive CD8+ T cell exhaustion distinguishes subjects with slow type 1 diabetes progression. J Clin Invest. 130:480–490. 2020.PubMed/NCBI View Article : Google Scholar

53 

Schloss J, Ali R, Racine JJ, Chapman HD, Serreze DV and DiLorenzo TP: HLA-B*39:06 efficiently mediates type 1 diabetes in a mouse model incorporating reduced thymic insulin expression. J Immunol. 200:3353–3363. 2018.PubMed/NCBI View Article : Google Scholar

54 

Yeo L, Pujol-Autonell I, Baptista R, Eichmann M, Kronenberg-Versteeg D, Heck S, Dolton G, Sewell AK, Härkönen T, Mikk ML, et al: Circulating β cell-specific CD8+ T cells restricted by high-risk HLA class I molecules show antigen experience in children with and at risk of type 1 diabetes. Clin Exp Immunol. 199:263–277. 2020.PubMed/NCBI View Article : Google Scholar

55 

Abdelsamed HA, Zebley CC, Nguyen H, Rutishauser RL, Fan Y, Ghoneim HE, Crawford JC, Alfei F, Alli S, Ribeiro SP, et al: Beta cell-specific CD8+ T cells maintain stem cell memory-associated epigenetic programs during type 1 diabetes. Nat Immunol. 21:578–587. 2020.PubMed/NCBI View Article : Google Scholar

56 

Bediaga NG, Garnham AL, Naselli G, Bandala-Sanchez E, Stone NL, Cobb J, Harbison JE, Wentworth JM, Ziegler AG, Couper JJ, et al: Cytotoxicity-related gene expression and chromatin accessibility define a subset of CD4+ T cells that mark progression to type 1 diabetes. Diabetes. 71:566–577. 2022.PubMed/NCBI View Article : Google Scholar

57 

Ramos-Rodríguez M, Raurell-Vila H, Colli ML, Alvelos MI, Subirana-Granés M, Juan-Mateu J, Norris R, Turatsinze JV, Nakayasu ES, Webb-Robertson BM, et al: The impact of proinflammatory cytokines on the β-cell regulatory landscape provides insights into the genetics of type 1 diabetes. Nat Genet. 51:1588–1595. 2019.PubMed/NCBI View Article : Google Scholar

58 

Burrack AL, Martinov T and Fife BTT: T Cell-mediated beta cell destruction: Autoimmunity and Alloimmunity in the context of type 1 diabetes. Front Endocrinol (Lausanne). 8(343)2017.PubMed/NCBI View Article : Google Scholar

59 

Rathod S: Novel Insights into the immunotherapy-based treatment strategy for autoimmune type 1 diabetes. Diabetology. 3:79–96. 2022.

60 

Gearty SV, Dündar F, Zumbo P, Espinosa-Carrasco G, Shakiba M, Sanchez-Rivera FJ, Socci ND, Trivedi P, Lowe SW, Lauer P, et al: An autoimmune stem-like CD8 T cell population drives type 1 diabetes. Nature. 602:156–161. 2022.PubMed/NCBI View Article : Google Scholar

61 

Forsberg LA, Gisselsson D and Dumanski JP: Mosaicism in health and disease-clones picking up speed. Nat Rev Genet. 18:128–142. 2017.PubMed/NCBI View Article : Google Scholar

62 

Foda BM, Ciecko AE, Serreze DV, Ridgway WM, Geurts AM and Chen YG: The CD137 ligand is important for type 1 diabetes development but dispensable for the homeostasis of disease-suppressive CD137+ FOXP3+ regulatory CD4 T cells. J Immunol. 204:2887–2899. 2020.PubMed/NCBI View Article : Google Scholar

63 

Mitchell AM and Michels AW: Self-Antigens targeted by regulatory T cells in type 1 diabetes. Int J Mol Sci. 23(3155)2022.PubMed/NCBI View Article : Google Scholar

64 

Jacobsen LM, Newby BN, Perry DJ, Posgai AL, Haller MJ and Brusko TM: Immune mechanisms and pathways targeted in type 1 diabetes. Curr Diab Rep. 18(90)2018.PubMed/NCBI View Article : Google Scholar

65 

Bach JF: Revisiting the hygiene hypothesis in the context of autoimmunity. Front Immunol. 11(615192)2021.PubMed/NCBI View Article : Google Scholar

66 

Rewers M and Ludvigsson J: Environmental risk factors for type 1 diabetes. Lancet. 387:2340–2348. 2016.PubMed/NCBI View Article : Google Scholar

67 

Richardson SJ and Morgan NG: Enteroviral infections in the pathogenesis of type 1 diabetes: New insights for therapeutic intervention. Curr Opin Pharmacol. 43:11–19. 2018.PubMed/NCBI View Article : Google Scholar

68 

Wang K, Ye F, Chen Y, Xu J, Zhao Y, Wang Y and Lan T: Association between enterovirus infection and type 1 diabetes risk: A meta-analysis of 38 case-control studies. Front Endocrinol (Lausanne). 12(706964)2021.PubMed/NCBI View Article : Google Scholar

69 

Vehik K, Lynch KF, Wong MC, Tian X, Ross MC, Gibbs RA, Ajami NJ, Petrosino JF, Rewers M, Toppari J, et al: Prospective virome analyses in young children at increased genetic risk for type 1 diabetes. Nat Med. 25:1865–1872. 2019.PubMed/NCBI View Article : Google Scholar

70 

Pacheco Y, Acosta-Ampudia Y, Monsalve DM, Chang C, Gershwin ME and Anaya JM: Bystander activation and autoimmunity. J Autoimmun. 103(102301)2019.PubMed/NCBI View Article : Google Scholar

71 

Op de Beeck A and Eizirik DL: Viral infections in type 1 diabetes mellitus-why the β cells? Nat Rev Endocrinol. 12:263–273. 2016.PubMed/NCBI View Article : Google Scholar

72 

Begum S, Aiman S, Ahmad S, Samad A, Almehmadi M, Allahyani M, Aljuaid A, Afridi SG and Khan A: Molecular mimicry analyses unveiled the human herpes simplex and poxvirus epitopes as possible candidates to incite autoimmunity. Pathogens. 11(1362)2022.PubMed/NCBI View Article : Google Scholar

73 

Smatti MK, Cyprian FS, Nasrallah GK, Al Thani AA, Almishal RO and Yassine HM: Viruses and autoimmunity: A review on the potential interaction and molecular mechanisms. Viruses. 11(762)2019.PubMed/NCBI View Article : Google Scholar

74 

Dias Junior AG, Sampaio NG and Rehwinkel J: A Balancing Act: MDA5 in antiviral immunity and autoinflammation. Trends Microbiol. 27:75–85. 2019.PubMed/NCBI View Article : Google Scholar

75 

Dou Y, Yim HC, Kirkwood CD, Williams BR and Sadler AJ: The innate immune receptor MDA5 limits rotavirus infection but promotes cell death and pancreatic inflammation. EMBO J. 36:2742–2757. 2017.PubMed/NCBI View Article : Google Scholar

76 

Looney BM, Xia CQ, Concannon P, Ostrov DA and Clare-Salzler MJ: Effects of type 1 diabetes-associated IFIH1 polymorphisms on MDA5 function and expression. Curr Diab Rep. 15(96)2015.PubMed/NCBI View Article : Google Scholar

77 

Nigi L, Brusco N, Grieco GE, Fignani D, Licata G, Formichi C, Aiello E, Marselli L, Marchetti P, Krogvold L, et al: Increased expression of viral sensor MDA5 in pancreatic islets and in hormone-negative endocrine cells in recent onset type 1 diabetic donors. Front Immunol. 13(833141)2022.PubMed/NCBI View Article : Google Scholar

78 

Mishto M, Mansurkhodzhaev A, Rodriguez-Calvo T and Liepe J: Potential mimicry of viral and pancreatic β cell antigens through non-spliced and cis-Spliced Zwitter Epitope candidates in type 1 diabetes. Front Immunol. 12(656451)2021.PubMed/NCBI View Article : Google Scholar

79 

Jadeja SD and Tobin DJ: Autoantigen discovery in the hair loss disorder, alopecia Areata: Implication of post-translational modifications. Front Immunol. 13(890027)2022.PubMed/NCBI View Article : Google Scholar

80 

Cusick MF, Libbey JE and Fujinami RS: Molecular mimicry as a mechanism of autoimmune disease. Clin Rev Allergy Immunol. 42:102–111. 2012.PubMed/NCBI View Article : Google Scholar

81 

Fujinami RS, von Herrath MG, Christen U and Whitton JL: Molecular mimicry, bystander activation, or viral persistence: Infections and autoimmune disease. Clin Microbiol Rev. 19:80–94. 2006.PubMed/NCBI View Article : Google Scholar

82 

Theil DJ, Tsunoda I, Rodriguez F, Whitton JL and Fujinami RS: Viruses can silently prime for and trigger central nervous system autoimmune disease. J Neurovirol. 7:220–227. 2001.PubMed/NCBI View Article : Google Scholar

83 

Tsunoda I, Terry EJ, Marble BJ, Lazarides E, Woods C and Fujinami RS: Modulation of experimental autoimmune encephalomyelitis by VLA-2 blockade. Brain Pathol. 17:45–55. 2007.PubMed/NCBI View Article : Google Scholar

84 

Kim TS and Shin EC: The activation of bystander CD8+ T cells and their roles in viral infection. Exp Mol Med. 51:1–9. 2019.PubMed/NCBI View Article : Google Scholar

85 

Björkström NK, Strunz B and Ljunggren HG: Natural killer cells in antiviral immunity. Nat Rev Immunol. 22:112–123. 2022.PubMed/NCBI View Article : Google Scholar

86 

Lee HG, Cho MZ and Choi JM: Bystander CD4+ T cells: Crossroads between innate and adaptive immunity. Exp Mol Med. 52:1255–1263. 2020.PubMed/NCBI View Article : Google Scholar

87 

Shim CH, Cho S, Shin YM and Choi JM: Emerging role of bystander T cell activation in autoimmune diseases. BMB Rep. 55:57–64. 2022.PubMed/NCBI View Article : Google Scholar

88 

Tapparel C, Siegrist F, Petty TJ and Kaiser L: Picornavirus and enterovirus diversity with associated human diseases. Infect Genet Evol. 14:282–293. 2013.PubMed/NCBI View Article : Google Scholar

89 

Zell R: Picornaviridae-the ever-growing virus family. Arch Virol. 163:299–317. 2018.PubMed/NCBI View Article : Google Scholar

90 

Alidjinou EK, Sané F, Engelmann I, Geenen V and Hober D: Enterovirus persistence as a mechanism in the pathogenesis of type 1 diabetes. Discov Med. 18:273–282. 2014.PubMed/NCBI

91 

Christoffersson G and Flodström-Tullberg M: Mouse models of virus-induced type 1 diabetes. Methods Mol Biol. 2128:93–105. 2020.PubMed/NCBI View Article : Google Scholar

92 

Rodriguez-Calvo T: Enterovirus infection and type 1 diabetes: Unraveling the crime scene. Clin Exp Immunol. 195:15–24. 2019.PubMed/NCBI View Article : Google Scholar

93 

Geenen V, Bodart G, Henry S, Michaux H, Dardenne O, Charlet-Renard C, Martens H and Hober D: Programming of neuroendocrine self in the thymus and its defect in the development of neuroendocrine autoimmunity. Front Neurosci. 7(187)2013.PubMed/NCBI View Article : Google Scholar

94 

Jaïdane H, Sané F, Hiar R, Goffard A, Gharbi J, Geenen V and Hober D: Immunology in the clinic review series; focus on type 1 diabetes and viruses: Enterovirus, thymus and type 1 diabetes pathogenesis. Clin Exp Immunol. 168:39–46. 2012.PubMed/NCBI View Article : Google Scholar

95 

Alhazmi A, Nekoua MP, Michaux H, Sane F, Halouani A, Engelmann I, Alidjinou EK, Martens H, Jaidane H, Geenen V, et al: Effect of Coxsackievirus B4 infection on the thymus: Elucidating its role in the pathogenesis of type 1 diabetes. Microorganisms. 9(1177)2021.PubMed/NCBI View Article : Google Scholar

96 

Michaux H, Martens H, Jaïdane H, Halouani A, Hober D and Geenen V: How does thymus infection by coxsackievirus contribute to the pathogenesis of type 1 diabetes? Front Immunol. 6(338)2015.PubMed/NCBI View Article : Google Scholar

97 

Luo M, Xu L, Qian Z and Sun X: Infection-associated thymic atrophy. Front Immunol. 12(652538)2021.PubMed/NCBI View Article : Google Scholar

98 

Dunne JL, Richardson SJ, Atkinson MA, Craig ME, Dahl-Jørgensen K, Flodström-Tullberg M, Hyöty H, Insel RA, Lernmark Å, Lloyd RE, et al: Rationale for enteroviral vaccination and antiviral therapies in human type 1 diabetes. Diabetologia. 62:744–753. 2019.PubMed/NCBI View Article : Google Scholar

99 

TEDDY Study Group. The environmental determinants of diabetes in the Young (TEDDY) Study. Ann N Y Acad Sci. 1150:1–13. 2008.PubMed/NCBI View Article : Google Scholar

100 

Karaoglan M and Eksi F: The coincidence of newly diagnosed type 1 diabetes mellitus with IgM antibody positivity to Enteroviruses and respiratory tract viruses. J Diabetes Res. 2018(8475341)2018.PubMed/NCBI View Article : Google Scholar

101 

Stone VM, Butrym M, Hankaniemi MM, Sioofy-Khojine AB, Hytönen VP, Hyöty H and Flodström-Tullberg M: Coxsackievirus B vaccines prevent infection-accelerated diabetes in NOD mice and have no disease-inducing effect. Diabetes. 70:2871–2878. 2021.PubMed/NCBI View Article : Google Scholar

102 

Alidjinou EK, Engelmann I, Bossu J, Villenet C, Figeac M, Romond MB, Sané F and Hober D: Persistence of Coxsackievirus B4 in pancreatic ductal-like cells results in cellular and viral changes. Virulence. 8:1229–1244. 2017.PubMed/NCBI View Article : Google Scholar

103 

Buchacher T, Honkimaa A, Välikangas T, Lietzén N, Hirvonen MK, Laiho JE, Sioofy-Khojine AB, Eskelinen EL, Hyöty H, Elo LL, et al: Persistent coxsackievirus B1 infection triggers extensive changes in the transcriptome of human pancreatic ductal cells. iScience. 25(103653)2021.PubMed/NCBI View Article : Google Scholar

104 

Shih WL, Tung YC, Chang LY, Fang CT and Tsai WY: Increased incidence of pediatric type 1 diabetes with novel association with coxsackievirus a species in young children but declined incidence in adolescents in Taiwan. Diabetes Care. 44:1579–1585. 2021.PubMed/NCBI View Article : Google Scholar

105 

Benner SE, Walter DL, Thuma JR, Courreges M, James CBL, Schwartz FL and McCall KD: Toll-like receptor 3 is critical to the pancreatic islet milieu that is required for Coxsackievirus B4-induced type 1 diabetes in female nonobese diabetic mice. Pancreas. 51:48–55. 2022.PubMed/NCBI View Article : Google Scholar

106 

Honeyman MC, Brusic V, Stone NL and Harrison LC: Neural network-based prediction of candidate T-cell epitopes. Nat Biotechnol. 16:966–969. 1998.PubMed/NCBI View Article : Google Scholar

107 

Pane JA, Fleming FE, Graham KL, Thomas HE, Kay TW and Coulson BS: Rotavirus acceleration of type 1 diabetes in non-obese diabetic mice depends on type I interferon signalling. Sci Rep. 6(29697)2016.PubMed/NCBI View Article : Google Scholar

108 

Gómez-Rial J, Rivero-Calle I, Salas A and Martinón-Torres F: Rotavirus and autoimmunity. J Infect. 81:183–189. 2020.PubMed/NCBI View Article : Google Scholar

109 

Honeyman MC, Stone NL, Falk BA, Nepom G and Harrison LC: Evidence for molecular mimicry between human T cell epitopes in rotavirus and pancreatic islet autoantigens. J Immunol. 184:2204–2210. 2010.PubMed/NCBI View Article : Google Scholar

110 

Burke RM, Tate JE, Jiang B and Parashar UD: Rotavirus and type 1 diabetes-is there a connection? A synthesis of the evidence. J Infect Dis. 222:1076–1083. 2020.PubMed/NCBI View Article : Google Scholar

111 

Harrison LC, Perrett KP, Jachno K, Nolan TM and Honeyman MC: Does rotavirus turn on type 1 diabetes? PLoS Pathog. 15(e1007965)2019.PubMed/NCBI View Article : Google Scholar

112 

Perrett KP, Jachno K and Nolan TM: Role of rotavirus vaccination in decline in incidence of type 1 diabetes-reply. JAMA Pediatr. 173(895)2019.PubMed/NCBI View Article : Google Scholar

113 

Rogers MAM, Basu T and Kim C: Lower incidence rate of type 1 diabetes after receipt of the rotavirus vaccine in the United States, 2001-2017. Sci Rep. 9(7727)2019.PubMed/NCBI View Article : Google Scholar

114 

Inns T, Fleming KM, Iturriza-Gomara M and Hungerford D: Paediatric rotavirus vaccination, coeliac disease and type 1 diabetes in children: A population-based cohort study. BMC Med. 19(147)2021.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Alves Abrantes JJ, Veríssimo de Azevedo JC, Fernandes FL, Almeida VD, Custódio de Oliveira LA, Ferreira De Oliveira MT, Galvão de Araújo JM, Lanza DC, Bezerra FL, Andrade VS, Andrade VS, et al: Viruses as a potential environmental trigger of type 1 diabetes mellitus (Review). Biomed Rep 20: 81, 2024.
APA
Alves Abrantes, J.J., Veríssimo de Azevedo, J.C., Fernandes, F.L., Almeida, V.D., Custódio de Oliveira, L.A., Ferreira De Oliveira, M.T. ... Fernandes, J.V. (2024). Viruses as a potential environmental trigger of type 1 diabetes mellitus (Review). Biomedical Reports, 20, 81. https://doi.org/10.3892/br.2024.1770
MLA
Alves Abrantes, J. J., Veríssimo de Azevedo, J. C., Fernandes, F. L., Almeida, V. D., Custódio de Oliveira, L. A., Ferreira De Oliveira, M. T., Galvão de Araújo, J. M., Lanza, D. C., Bezerra, F. L., Andrade, V. S., Araújo de Medeiros Fernandes, T. A., Fernandes, J. V."Viruses as a potential environmental trigger of type 1 diabetes mellitus (Review)". Biomedical Reports 20.5 (2024): 81.
Chicago
Alves Abrantes, J. J., Veríssimo de Azevedo, J. C., Fernandes, F. L., Almeida, V. D., Custódio de Oliveira, L. A., Ferreira De Oliveira, M. T., Galvão de Araújo, J. M., Lanza, D. C., Bezerra, F. L., Andrade, V. S., Araújo de Medeiros Fernandes, T. A., Fernandes, J. V."Viruses as a potential environmental trigger of type 1 diabetes mellitus (Review)". Biomedical Reports 20, no. 5 (2024): 81. https://doi.org/10.3892/br.2024.1770
Copy and paste a formatted citation
x
Spandidos Publications style
Alves Abrantes JJ, Veríssimo de Azevedo JC, Fernandes FL, Almeida VD, Custódio de Oliveira LA, Ferreira De Oliveira MT, Galvão de Araújo JM, Lanza DC, Bezerra FL, Andrade VS, Andrade VS, et al: Viruses as a potential environmental trigger of type 1 diabetes mellitus (Review). Biomed Rep 20: 81, 2024.
APA
Alves Abrantes, J.J., Veríssimo de Azevedo, J.C., Fernandes, F.L., Almeida, V.D., Custódio de Oliveira, L.A., Ferreira De Oliveira, M.T. ... Fernandes, J.V. (2024). Viruses as a potential environmental trigger of type 1 diabetes mellitus (Review). Biomedical Reports, 20, 81. https://doi.org/10.3892/br.2024.1770
MLA
Alves Abrantes, J. J., Veríssimo de Azevedo, J. C., Fernandes, F. L., Almeida, V. D., Custódio de Oliveira, L. A., Ferreira De Oliveira, M. T., Galvão de Araújo, J. M., Lanza, D. C., Bezerra, F. L., Andrade, V. S., Araújo de Medeiros Fernandes, T. A., Fernandes, J. V."Viruses as a potential environmental trigger of type 1 diabetes mellitus (Review)". Biomedical Reports 20.5 (2024): 81.
Chicago
Alves Abrantes, J. J., Veríssimo de Azevedo, J. C., Fernandes, F. L., Almeida, V. D., Custódio de Oliveira, L. A., Ferreira De Oliveira, M. T., Galvão de Araújo, J. M., Lanza, D. C., Bezerra, F. L., Andrade, V. S., Araújo de Medeiros Fernandes, T. A., Fernandes, J. V."Viruses as a potential environmental trigger of type 1 diabetes mellitus (Review)". Biomedical Reports 20, no. 5 (2024): 81. https://doi.org/10.3892/br.2024.1770
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team