|
1
|
Katsarou A, Gudbjörnsdottir S, Rawshani A,
Dabelea D, Bonifacio E, Anderson BJ, Jacobsen LM, Schatz DA and
Lernmark Å: Type 1 diabetes mellitus. Nat Rev Dis Primers.
3(17016)2017.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Roep BO, Thomaidou S, van Tienhoven R and
Zaldumbide A: Type 1 diabetes mellitus as a disease of the β-cell
(do not blame the immune system?). Nat Rev Endocrinol. 17:150–161.
2021.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Zorena K, Michalska M, Kurpas M, Jaskulak
M, Murawska A and Rostami S: Environmental factors and the risk of
developing type 1 diabetes-old disease and new data. Biology
(Basel). 11(608)2022.PubMed/NCBI View Article : Google Scholar
|
|
4
|
de Azevedo JCV, de Medeiros Fernandes TAA,
Cavalcante GA, de Medeiros IACM, Lanza DCF, de Araújo JMG, Bezerra
FL and Fernandes JV: Biology and natural history of type 1 diabetes
mellitus. Curr Pediatr Rev. 19:253–275. 2023.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Cerna M: Epigenetic regulation in etiology
of type 1 diabetes mellitus. Int J Mol Sci. 21(36)2019.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Lucier J, Weinstock RS and Doerr C:
Diabetes mellitus type 1 (Nursing). StatPearls Publishing, Treasure
Island, FL, 2023.
|
|
7
|
Alamri ZZ: The role of liver in
metabolism: An updated review with physiological emphasis. Int J
Basic Clin Pharmacol. 7:2271–2276. 2018.
|
|
8
|
Han HS, Kang G, Kim JS, Choi BH and Koo
SH: Regulation of glucose metabolism from a liver-centric
perspective. Exp Mol Med. 48(e218)2016.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Röder PV, Wu B, Liu Y and Han W:
Pancreatic regulation of glucose homeostasis. Exp Mol Med.
48(e219)2016.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Chadt A and Al-Hasani H: Glucose
transporters in adipose tissue, liver, and skeletal muscle in
metabolic health and disease. Pflugers Arch. 472:1273–1298.
2020.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Zheng P, Li Z and Zhou Z: Gut microbiome
in type 1 diabetes: A comprehensive review. Diabetes Metab Res Rev.
34(e3043)2018.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Cohn A, Sofia AM and Kupfer SS: Type 1
diabetes and celiac disease: Clinical overlap and new insights into
disease pathogenesis. Curr Diab Rep. 14(517)2014.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Pociot F and Lernmark Å: Genetic risk
factors for type 1 diabetes. Lancet. 387:2331–2339. 2016.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Abela AG and Fava S: Why is the incidence
of type 1 diabetes increasing? Curr Diabetes Rev.
17(e030521193110)2021.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Zajec A, Trebušak Podkrajšek K, Tesovnik
T, Šket R, Čugalj Kern B, Jenko Bizjan B, Šmigoc Schweiger D,
Battelino T and Kovač J: Pathogenesis of type 1 diabetes:
Established facts and new insights. Genes (Basel).
13(706)2022.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Siljander H, Honkanen J and Knip M:
Microbiome and type 1 diabetes. EBioMedicine. 46:512–521.
2019.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Lloyd RE, Tamhankar M and Lernmark Å:
Enteroviruses and type 1 diabetes: Multiple mechanisms and factors?
Annu Rev Med. 73:483–499. 2022.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Hyöty H: Viruses in type 1 diabetes.
Pediatr Diabetes. 17 (Suppl 22):S56–S64. 2016.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Alhazmi A, Sane F, Lazrek M, Nekoua MP,
Badia-Boungou F, Engelmann I, Alidjinou EK and Hober D:
Enteroviruses and type 1 diabetes mellitus: An overlooked
relationship in some regions. Microorganisms.
8(1458)2020.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Isaacs SR, Foskett DB, Maxwell AJ, Ward
EJ, Faulkner CL, Luo JYX, Rawlinson WD, Craig ME and Kim KW:
Viruses and type 1 diabetes: From enteroviruses to the Virome.
Microorganisms. 9(1519)2021.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Geravandi S, Richardson S, Pugliese A and
Maedler K: Localization of enteroviral RNA within the pancreas in
donors with T1D and T1D-associated autoantibodies. Cell Rep Med.
2(100371)2021.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Isaacs SR, Roy A, Dance B, Ward EJ,
Foskett DB, Maxwell AJ, Rawlinson WD, Kim KW and Craig ME:
Enteroviruses and risk of islet autoimmunity or type 1 diabetes:
Systematic review and meta-analysis of controlled observational
studies detecting viral nucleic acids and proteins. Lancet Diabetes
Endocrinol. 11:578–592. 2023.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Kondrashova A and Hyöty H: Role of viruses
and other microbes in the pathogenesis of type 1 diabetes. Int Rev
Immunol. 33:284–295. 2014.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Oikarinen S, Krogvold L, Edwin B, Buanes
T, Korsgren O, Laiho JE, Oikarinen M, Ludvigsson J, Skog O,
Anagandula M, et al: Characterisation of enterovirus RNA detected
in the pancreas and other specimens of live patients with newly
diagnosed type 1 diabetes in the DiViD study. Diabetologia.
64:2491–2501. 2021.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Geravandi S, Liu H and Maedler K:
Enteroviruses and T1D: Is it the virus, the genes or both which
cause T1D. Microorganisms. 8(1017)2020.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Nekoua MP, Alidjinou EK and Hober D:
Persistent coxsackievirus B infection and pathogenesis of type 1
diabetes mellitus. Nat Rev Endocrinol. 18:503–516. 2022.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Bluestone JA, Herold K and Eisenbarth G:
Genetics, pathogenesis and clinical interventions in type 1
diabetes. Nature. 464:1293–1300. 2010.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Kahaly GJ and Hansen MP: Type 1 diabetes
associated autoimmunity. Autoimmun Rev. 15:644–648. 2016.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Li M, Song LJ and Qin XY: Advances in the
cellular immunological pathogenesis of type 1 diabetes. J Cell Mol
Med. 18:749–758. 2014.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Knip M, Siljander H, Ilonen J, Simell O
and Veijola R: Role of humoral beta-cell autoimmunity in type 1
diabetes. Pediatr Diabetes. 17 (Suppl 22):S17–S24. 2016.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Winter WE, Harris N and Schatz D: Type 1
diabetes islet autoantibody markers. Diabetes Technol Ther.
4:817–839. 2002.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Winter WE and Schatz DA: Autoimmune
markers in diabetes. Clin Chem. 57:168–175. 2011.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Kwon BC, Anand V, Achenbach P, Dunne JL,
Hagopian W, Hu J, Koski E, Lernmark Å, Lundgren M, Ng K, et al:
Progression of type 1 diabetes from latency to symptomatic disease
is predicted by distinct autoimmune trajectories. Nat Commun.
13(1514)2022.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Insel RA, Dunne JL, Atkinson MA, Chiang
JL, Dabelea D, Gottlieb PA, Greenbaum CJ, Herold KC, Krischer JP,
Lernmark Å, et al: Staging presymptomatic type 1 diabetes: A
scientific statement of JDRF, the Endocrine Society, and the
American Diabetes Association. Diabetes Care. 38:1964–1974.
2015.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Du C, Whiddett RO, Buckle I, Chen C,
Forbes JM and Fotheringham AK: Advanced glycation end products and
inflammation in the development of type 1 diabetes. Cells.
11(3503)2022.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Bravis V, Kaur A, Walkey HC, Godsland IF,
Misra S, Bingley PJ, Williams AJK, Dunger DB, Dayan CM, Peakman M,
et al: Relationship between islet autoantibody status and the
clinical characteristics of children and adults with incident type
1 diabetes in a UK cohort. BMJ Open. 8(e020904)2018.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Dayan CM, Korah M, Tatovic D, Bundy BN and
Herold KC: Changing the landscape for type 1 diabetes: The first
step to prevention. Lancet. 394:1286–1296. 2019.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Beik P, Ciesielska M, Kucza M, Kurczewska
A, Kuźmińska J, Maćkowiak B and Niechciał E: Prevention of type 1
diabetes: Past experiences and future opportunities. J Clin Med.
9(2805)2020.PubMed/NCBI View Article : Google Scholar
|
|
39
|
American Diabetes Association Professional
Practice Committee. 2. Classification and diagnosis of diabetes:
Standards of medical care in diabetes-2022. Diabetes Care. 45
(Suppl 1):S17–S38. 2022.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Maruyama K, Chujo D, Watanabe K, Kawabe A,
Sugiyama T, Ohsugi M, Tanabe A, Ueki K and Kajio H: Evaluation of
cellular and humoral autoimmunity before the development of type 1
diabetes in a patient with idiopathic CD4 lymphocytopenia. J
Diabetes Investig. 10:1108–1111. 2019.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Gu Y, Merriman C, Guo Z, Jia X, Wenzlau J,
Li H, Li H, Rewers M, Yu L and Fu D: Novel autoantibodies to the
β-cell surface epitopes of ZnT8 in patients progressing to type-1
diabetes. J Autoimmun. 122(102677)2021.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Bjørnsen LP, Hadera MG, Zhou Y, Danbolt NC
and Sonnewald U: The GLT-1 (EAAT2; slc1a2) glutamate transporter is
essential for glutamate homeostasis in the neocortex of the mouse.
J Neurochem. 128:641–649. 2014.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Di Cairano ES, Davalli AM, Perego L, Sala
S, Sacchi VF, La Rosa S, Finzi G, Placidi C, Capella C, Conti P, et
al: The glial glutamate transporter 1 (GLT1) is expressed by
pancreatic beta-cells and prevents glutamate-induced beta-cell
death. J Biol Chem. 286:14007–14018. 2011.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Zhou Y, Waanders LF, Holmseth S, Guo C,
Berger UV, Li Y, Lehre AC, Lehre KP and Danbolt NC: Proteome
analysis and conditional deletion of the EAAT2 glutamate
transporter provide evidence against a role of EAAT2 in pancreatic
insulin secretion in mice. J Biol Chem. 289:1329–1344.
2014.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Perego C, Di Cairano ES, Galli A, Moretti
S, Bazzigaluppi E, Centonze VF, Gastaldelli A, Assi E, Fiorina P,
Federici M, et al: Autoantibodies against the glial glutamate
transporter GLT1/EAAT2 in Type 1 diabetes mellitus-Clues to novel
immunological and non-immunological therapies. Pharmacol Res.
177(106130)2022.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Juusola M, Parkkola A, Härkönen T,
Siljander H, Ilonen J, Åkerblom HK and Knip M: Childhood Diabetes
in Finland Study Group. Positivity for Zinc Transporter 8
Autoantibodies at diagnosis is subsequently associated with reduced
β-cell function and higher exogenous insulin requirement in
children and adolescents with type 1 diabetes. Diabetes Care.
39:118–121. 2016.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Yohena S, Penas-Steinhardt A, Muller C,
Faccinetti NI, Cerrone GE, Lovecchio S, Ridner E, Valdez S and
Frechtel G: Immunological and clinical characteristics of latent
autoimmune diabetes in the elderly. Diabetes Metab Res Rev.
35(e3137)2019.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Zhang M, Wang X, Wang R, Shu J, Zhi X, Gu
C, Pu L, Cai C, Yang W and Lv L: Clinical study of autoantibodies
in type 1 diabetes mellitus children with ketoacidosis or
microalbuminuria. J Clin Lab Anal. 36(e24164)2022.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Santos AS, Cunha-Neto E, Gonfinetti NV,
Bertonha FB, Brochet P, Bergon A, Moreira-Filho CA, Chevillard C
and da Silva MER: Prevalence of inflammatory pathways over
immuno-tolerance in peripheral blood mononuclear cells of
recent-onset type 1 diabetes. Front Immunol.
12(765264)2022.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Zirpel H and Roep BO: Islet-resident
dendritic cells and macrophages in type 1 diabetes: In search of
Bigfoot's print. Front Endocrinol (Lausanne).
12(666795)2021.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Wong FS and Wen L: A predictive
CD8+ T cell phenotype for T1DM progression. Nat Rev
Endocrinol. 16:198–199. 2020.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Wiedeman AE, Muir VS, Rosasco MG, DeBerg
HA, Presnell S, Haas B, Dufort MJ, Speake C, Greenbaum CJ, Serti E,
et al: Autoreactive CD8+ T cell exhaustion distinguishes subjects
with slow type 1 diabetes progression. J Clin Invest. 130:480–490.
2020.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Schloss J, Ali R, Racine JJ, Chapman HD,
Serreze DV and DiLorenzo TP: HLA-B*39:06 efficiently mediates type
1 diabetes in a mouse model incorporating reduced thymic insulin
expression. J Immunol. 200:3353–3363. 2018.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Yeo L, Pujol-Autonell I, Baptista R,
Eichmann M, Kronenberg-Versteeg D, Heck S, Dolton G, Sewell AK,
Härkönen T, Mikk ML, et al: Circulating β cell-specific
CD8+ T cells restricted by high-risk HLA class I
molecules show antigen experience in children with and at risk of
type 1 diabetes. Clin Exp Immunol. 199:263–277. 2020.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Abdelsamed HA, Zebley CC, Nguyen H,
Rutishauser RL, Fan Y, Ghoneim HE, Crawford JC, Alfei F, Alli S,
Ribeiro SP, et al: Beta cell-specific CD8+ T cells
maintain stem cell memory-associated epigenetic programs during
type 1 diabetes. Nat Immunol. 21:578–587. 2020.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Bediaga NG, Garnham AL, Naselli G,
Bandala-Sanchez E, Stone NL, Cobb J, Harbison JE, Wentworth JM,
Ziegler AG, Couper JJ, et al: Cytotoxicity-related gene expression
and chromatin accessibility define a subset of CD4+ T cells that
mark progression to type 1 diabetes. Diabetes. 71:566–577.
2022.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Ramos-Rodríguez M, Raurell-Vila H, Colli
ML, Alvelos MI, Subirana-Granés M, Juan-Mateu J, Norris R,
Turatsinze JV, Nakayasu ES, Webb-Robertson BM, et al: The impact of
proinflammatory cytokines on the β-cell regulatory landscape
provides insights into the genetics of type 1 diabetes. Nat Genet.
51:1588–1595. 2019.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Burrack AL, Martinov T and Fife BTT: T
Cell-mediated beta cell destruction: Autoimmunity and Alloimmunity
in the context of type 1 diabetes. Front Endocrinol (Lausanne).
8(343)2017.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Rathod S: Novel Insights into the
immunotherapy-based treatment strategy for autoimmune type 1
diabetes. Diabetology. 3:79–96. 2022.
|
|
60
|
Gearty SV, Dündar F, Zumbo P,
Espinosa-Carrasco G, Shakiba M, Sanchez-Rivera FJ, Socci ND,
Trivedi P, Lowe SW, Lauer P, et al: An autoimmune stem-like CD8 T
cell population drives type 1 diabetes. Nature. 602:156–161.
2022.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Forsberg LA, Gisselsson D and Dumanski JP:
Mosaicism in health and disease-clones picking up speed. Nat Rev
Genet. 18:128–142. 2017.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Foda BM, Ciecko AE, Serreze DV, Ridgway
WM, Geurts AM and Chen YG: The CD137 ligand is important for type 1
diabetes development but dispensable for the homeostasis of
disease-suppressive CD137+ FOXP3+ regulatory
CD4 T cells. J Immunol. 204:2887–2899. 2020.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Mitchell AM and Michels AW: Self-Antigens
targeted by regulatory T cells in type 1 diabetes. Int J Mol Sci.
23(3155)2022.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Jacobsen LM, Newby BN, Perry DJ, Posgai
AL, Haller MJ and Brusko TM: Immune mechanisms and pathways
targeted in type 1 diabetes. Curr Diab Rep. 18(90)2018.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Bach JF: Revisiting the hygiene hypothesis
in the context of autoimmunity. Front Immunol.
11(615192)2021.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Rewers M and Ludvigsson J: Environmental
risk factors for type 1 diabetes. Lancet. 387:2340–2348.
2016.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Richardson SJ and Morgan NG: Enteroviral
infections in the pathogenesis of type 1 diabetes: New insights for
therapeutic intervention. Curr Opin Pharmacol. 43:11–19.
2018.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Wang K, Ye F, Chen Y, Xu J, Zhao Y, Wang Y
and Lan T: Association between enterovirus infection and type 1
diabetes risk: A meta-analysis of 38 case-control studies. Front
Endocrinol (Lausanne). 12(706964)2021.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Vehik K, Lynch KF, Wong MC, Tian X, Ross
MC, Gibbs RA, Ajami NJ, Petrosino JF, Rewers M, Toppari J, et al:
Prospective virome analyses in young children at increased genetic
risk for type 1 diabetes. Nat Med. 25:1865–1872. 2019.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Pacheco Y, Acosta-Ampudia Y, Monsalve DM,
Chang C, Gershwin ME and Anaya JM: Bystander activation and
autoimmunity. J Autoimmun. 103(102301)2019.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Op de Beeck A and Eizirik DL: Viral
infections in type 1 diabetes mellitus-why the β cells? Nat Rev
Endocrinol. 12:263–273. 2016.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Begum S, Aiman S, Ahmad S, Samad A,
Almehmadi M, Allahyani M, Aljuaid A, Afridi SG and Khan A:
Molecular mimicry analyses unveiled the human herpes simplex and
poxvirus epitopes as possible candidates to incite autoimmunity.
Pathogens. 11(1362)2022.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Smatti MK, Cyprian FS, Nasrallah GK, Al
Thani AA, Almishal RO and Yassine HM: Viruses and autoimmunity: A
review on the potential interaction and molecular mechanisms.
Viruses. 11(762)2019.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Dias Junior AG, Sampaio NG and Rehwinkel
J: A Balancing Act: MDA5 in antiviral immunity and
autoinflammation. Trends Microbiol. 27:75–85. 2019.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Dou Y, Yim HC, Kirkwood CD, Williams BR
and Sadler AJ: The innate immune receptor MDA5 limits rotavirus
infection but promotes cell death and pancreatic inflammation. EMBO
J. 36:2742–2757. 2017.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Looney BM, Xia CQ, Concannon P, Ostrov DA
and Clare-Salzler MJ: Effects of type 1 diabetes-associated IFIH1
polymorphisms on MDA5 function and expression. Curr Diab Rep.
15(96)2015.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Nigi L, Brusco N, Grieco GE, Fignani D,
Licata G, Formichi C, Aiello E, Marselli L, Marchetti P, Krogvold
L, et al: Increased expression of viral sensor MDA5 in pancreatic
islets and in hormone-negative endocrine cells in recent onset type
1 diabetic donors. Front Immunol. 13(833141)2022.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Mishto M, Mansurkhodzhaev A,
Rodriguez-Calvo T and Liepe J: Potential mimicry of viral and
pancreatic β cell antigens through non-spliced and cis-Spliced
Zwitter Epitope candidates in type 1 diabetes. Front Immunol.
12(656451)2021.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Jadeja SD and Tobin DJ: Autoantigen
discovery in the hair loss disorder, alopecia Areata: Implication
of post-translational modifications. Front Immunol.
13(890027)2022.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Cusick MF, Libbey JE and Fujinami RS:
Molecular mimicry as a mechanism of autoimmune disease. Clin Rev
Allergy Immunol. 42:102–111. 2012.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Fujinami RS, von Herrath MG, Christen U
and Whitton JL: Molecular mimicry, bystander activation, or viral
persistence: Infections and autoimmune disease. Clin Microbiol Rev.
19:80–94. 2006.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Theil DJ, Tsunoda I, Rodriguez F, Whitton
JL and Fujinami RS: Viruses can silently prime for and trigger
central nervous system autoimmune disease. J Neurovirol. 7:220–227.
2001.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Tsunoda I, Terry EJ, Marble BJ, Lazarides
E, Woods C and Fujinami RS: Modulation of experimental autoimmune
encephalomyelitis by VLA-2 blockade. Brain Pathol. 17:45–55.
2007.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Kim TS and Shin EC: The activation of
bystander CD8+ T cells and their roles in viral
infection. Exp Mol Med. 51:1–9. 2019.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Björkström NK, Strunz B and Ljunggren HG:
Natural killer cells in antiviral immunity. Nat Rev Immunol.
22:112–123. 2022.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Lee HG, Cho MZ and Choi JM: Bystander
CD4+ T cells: Crossroads between innate and adaptive
immunity. Exp Mol Med. 52:1255–1263. 2020.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Shim CH, Cho S, Shin YM and Choi JM:
Emerging role of bystander T cell activation in autoimmune
diseases. BMB Rep. 55:57–64. 2022.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Tapparel C, Siegrist F, Petty TJ and
Kaiser L: Picornavirus and enterovirus diversity with associated
human diseases. Infect Genet Evol. 14:282–293. 2013.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Zell R: Picornaviridae-the ever-growing
virus family. Arch Virol. 163:299–317. 2018.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Alidjinou EK, Sané F, Engelmann I, Geenen
V and Hober D: Enterovirus persistence as a mechanism in the
pathogenesis of type 1 diabetes. Discov Med. 18:273–282.
2014.PubMed/NCBI
|
|
91
|
Christoffersson G and Flodström-Tullberg
M: Mouse models of virus-induced type 1 diabetes. Methods Mol Biol.
2128:93–105. 2020.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Rodriguez-Calvo T: Enterovirus infection
and type 1 diabetes: Unraveling the crime scene. Clin Exp Immunol.
195:15–24. 2019.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Geenen V, Bodart G, Henry S, Michaux H,
Dardenne O, Charlet-Renard C, Martens H and Hober D: Programming of
neuroendocrine self in the thymus and its defect in the development
of neuroendocrine autoimmunity. Front Neurosci.
7(187)2013.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Jaïdane H, Sané F, Hiar R, Goffard A,
Gharbi J, Geenen V and Hober D: Immunology in the clinic review
series; focus on type 1 diabetes and viruses: Enterovirus, thymus
and type 1 diabetes pathogenesis. Clin Exp Immunol. 168:39–46.
2012.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Alhazmi A, Nekoua MP, Michaux H, Sane F,
Halouani A, Engelmann I, Alidjinou EK, Martens H, Jaidane H, Geenen
V, et al: Effect of Coxsackievirus B4 infection on the thymus:
Elucidating its role in the pathogenesis of type 1 diabetes.
Microorganisms. 9(1177)2021.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Michaux H, Martens H, Jaïdane H, Halouani
A, Hober D and Geenen V: How does thymus infection by
coxsackievirus contribute to the pathogenesis of type 1 diabetes?
Front Immunol. 6(338)2015.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Luo M, Xu L, Qian Z and Sun X:
Infection-associated thymic atrophy. Front Immunol.
12(652538)2021.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Dunne JL, Richardson SJ, Atkinson MA,
Craig ME, Dahl-Jørgensen K, Flodström-Tullberg M, Hyöty H, Insel
RA, Lernmark Å, Lloyd RE, et al: Rationale for enteroviral
vaccination and antiviral therapies in human type 1 diabetes.
Diabetologia. 62:744–753. 2019.PubMed/NCBI View Article : Google Scholar
|
|
99
|
TEDDY Study Group. The environmental
determinants of diabetes in the Young (TEDDY) Study. Ann N Y Acad
Sci. 1150:1–13. 2008.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Karaoglan M and Eksi F: The coincidence of
newly diagnosed type 1 diabetes mellitus with IgM antibody
positivity to Enteroviruses and respiratory tract viruses. J
Diabetes Res. 2018(8475341)2018.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Stone VM, Butrym M, Hankaniemi MM,
Sioofy-Khojine AB, Hytönen VP, Hyöty H and Flodström-Tullberg M:
Coxsackievirus B vaccines prevent infection-accelerated diabetes in
NOD mice and have no disease-inducing effect. Diabetes.
70:2871–2878. 2021.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Alidjinou EK, Engelmann I, Bossu J,
Villenet C, Figeac M, Romond MB, Sané F and Hober D: Persistence of
Coxsackievirus B4 in pancreatic ductal-like cells results in
cellular and viral changes. Virulence. 8:1229–1244. 2017.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Buchacher T, Honkimaa A, Välikangas T,
Lietzén N, Hirvonen MK, Laiho JE, Sioofy-Khojine AB, Eskelinen EL,
Hyöty H, Elo LL, et al: Persistent coxsackievirus B1 infection
triggers extensive changes in the transcriptome of human pancreatic
ductal cells. iScience. 25(103653)2021.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Shih WL, Tung YC, Chang LY, Fang CT and
Tsai WY: Increased incidence of pediatric type 1 diabetes with
novel association with coxsackievirus a species in young children
but declined incidence in adolescents in Taiwan. Diabetes Care.
44:1579–1585. 2021.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Benner SE, Walter DL, Thuma JR, Courreges
M, James CBL, Schwartz FL and McCall KD: Toll-like receptor 3 is
critical to the pancreatic islet milieu that is required for
Coxsackievirus B4-induced type 1 diabetes in female nonobese
diabetic mice. Pancreas. 51:48–55. 2022.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Honeyman MC, Brusic V, Stone NL and
Harrison LC: Neural network-based prediction of candidate T-cell
epitopes. Nat Biotechnol. 16:966–969. 1998.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Pane JA, Fleming FE, Graham KL, Thomas HE,
Kay TW and Coulson BS: Rotavirus acceleration of type 1 diabetes in
non-obese diabetic mice depends on type I interferon signalling.
Sci Rep. 6(29697)2016.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Gómez-Rial J, Rivero-Calle I, Salas A and
Martinón-Torres F: Rotavirus and autoimmunity. J Infect.
81:183–189. 2020.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Honeyman MC, Stone NL, Falk BA, Nepom G
and Harrison LC: Evidence for molecular mimicry between human T
cell epitopes in rotavirus and pancreatic islet autoantigens. J
Immunol. 184:2204–2210. 2010.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Burke RM, Tate JE, Jiang B and Parashar
UD: Rotavirus and type 1 diabetes-is there a connection? A
synthesis of the evidence. J Infect Dis. 222:1076–1083.
2020.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Harrison LC, Perrett KP, Jachno K, Nolan
TM and Honeyman MC: Does rotavirus turn on type 1 diabetes? PLoS
Pathog. 15(e1007965)2019.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Perrett KP, Jachno K and Nolan TM: Role of
rotavirus vaccination in decline in incidence of type 1
diabetes-reply. JAMA Pediatr. 173(895)2019.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Rogers MAM, Basu T and Kim C: Lower
incidence rate of type 1 diabetes after receipt of the rotavirus
vaccine in the United States, 2001-2017. Sci Rep.
9(7727)2019.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Inns T, Fleming KM, Iturriza-Gomara M and
Hungerford D: Paediatric rotavirus vaccination, coeliac disease and
type 1 diabetes in children: A population-based cohort study. BMC
Med. 19(147)2021.PubMed/NCBI View Article : Google Scholar
|