|
1
|
Lane NE: Epidemiology, etiology, and
diagnosis of osteoporosis. Am J Obstet Gynecol. 194 (Suppl
2):S3–S11. 2006.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Wang Y, Tao Y, Hyman ME, Li J and Chen Y:
Osteoporosis in China. Osteoporos Int. 20:1651–1662.
2009.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Johnston CB and Dagar M: Osteoporosis in
older adults. Med Clin North Am. 104:873–884. 2020.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Ji H, Cui X, Yang Y and Zhou X: CircRNA
hsa_circ_0006215 promotes osteogenic differentiation of BMSCs and
enhances osteogenesis-angiogenesis coupling by competitively
binding to miR-942-5p and regulating RUNX2 and VEGF. Aging (Albany
NY). 13:10275–10288. 2021.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Anthamatten A and Parish A: Clinical
update on osteoporosis. J Midwifery Womens Health. 64:265–275.
2019.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Yang Y, Yujiao W, Fang W, Linhui Y, Ziqi
G, Zhichen W, Zirui W and Shengwang W: The roles of miRNA, lncRNA
and circRNA in the development of osteoporosis. Biol Res.
53(40)2020.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Xiao L, Zhong M, Huang Y, Zhu J, Tang W,
Li D, Shi J, Lu A, Yang H, Geng D, et al: Puerarin alleviates
osteoporosis in the ovariectomy-induced mice by suppressing
osteoclastogenesis via inhibition of TRAF6/ROS-dependent MAPK/NF-κB
signaling pathways. Aging (Albany NY). 12:21706–21729.
2020.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Friedenstein AJ, Gorskaja JF and Kulagina
NN: . Fibroblast precursors in normal and irradiated mouse
hematopoietic organs. Exp Hematol. 4:267–274. 1976.PubMed/NCBI
|
|
9
|
Hu L, Yin C, Zhao F, Ali A, Ma J and Qian
A: Mesenchymal stem cells: cell fate decision to osteoblast or
adipocyte and application in osteoporosis treatment. Int J Mol Sci.
19(360)2018.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Wang C, Meng H, Wang X, Zhao C, Peng J and
Wang Y: Differentiation of bone marrow mesenchymal stem cells in
osteoblasts and adipocytes and its role in treatment of
osteoporosis. Med Sci Monit. 22:226–233. 2016.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Qadir A, Liang S, Wu Z, Chen Z, Hu L and
Qian A: Senile osteoporosis: The involvement of differentiation and
senescence of bone marrow stromal cells. Int J Mol Sci.
21(349)2020.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Infante A and Rodríguez CI: Osteogenesis
and aging: Lessons from mesenchymal stem cells. Stem Cell Res Ther.
9(244)2018.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Mattiucci D, Maurizi G, Leoni P and Poloni
A: Aging- and senescence-associated changes of mesenchymal stromal
cells in myelodysplastic syndromes. Cell Transplant. 27:754–764.
2018.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Fathi E, Charoudeh HN, Sanaat Z and
Farahzadi R: Telomere shortening as a hallmark of stem cell
senescence. Stem Cell Investig. 6(7)2019.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Guo Y, Jia X, Cui Y, Song Y, Wang S, Geng
Y, Li R, Gao W and Fu D: Sirt3-mediated mitophagy regulates
AGEs-induced BMSCs senescence and senile osteoporosis. Redox Biol.
41(101915)2021.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Zhang P, Zhang H, Lin J, Xiao T, Xu R, Fu
Y, Zhang Y, Du Y, Cheng J and Jiang H: Insulin impedes osteogenesis
of BMSCs by inhibiting autophagy and promoting premature senescence
via the TGF-β1 pathway. Aging (Albany NY). 12:2084–2100.
2020.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Chen L, Wang C, Sun H, Wang J, Liang Y,
Wang Y and Wong G: The bioinformatics toolbox for circRNA discovery
and analysis. Brief Bioinform. 22:1706–1728. 2021.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Li R, Jiang J, Shi H, Qian H, Zhang X and
Xu W: CircRNA: A rising star in gastric cancer. Cell Mol Life Sci.
77:1661–1680. 2020.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Shafabakhsh R, Mirhosseini N, Chaichian S,
Moazzami B, Mahdizadeh Z and Asemi Z: Could circRNA be a new
biomarker for pre-eclampsia? Mol Reprod Dev. 86:1773–1780.
2019.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Zang J, Lu D and Xu A: The interaction of
circRNAs and RNA binding proteins: An important part of circRNA
maintenance and function. J Neurosci Res. 98:87–97. 2020.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Gao M, Zhang Z, Sun J, Li B and Li Y: The
roles of circRNA-miRNA-mRNA networks in the development and
treatment of osteoporosis. Front Endocrinol (Lausanne).
13(945310)2022.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Liu N, Lu W, Qu X and Zhu C: LLLI promotes
BMSC proliferation through circRNA_0001052/miR-124-3p. Lasers Med
Sci. 37:849–856. 2022.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Qiao L, Li CG and Liu D: CircRNA_0048211
protects postmenopausal osteoporosis through targeting miRNA-93-5p
to regulate BMP2. Eur Rev Med Pharmacol Sci. 24:3459–3466.
2020.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Yao X, Liu M, Jin F and Zhu Z:
Comprehensive analysis of differentially expressed circular RNAs in
patients with senile osteoporotic vertebral compression fracture.
Biomed Res Int. 2020(4951251)2020.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Wu Y, Xia L, Zhou Y, Xu Y and Jiang X:
Icariin induces osteogenic differentiation of bone mesenchymal stem
cells in a MAPK-dependent manner. Cell Prolif. 48:375–384.
2015.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Livak KJ and Schmittgen TD: . Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Yu L and Liu Y: circRNA_0016624 could
sponge miR-98 to regulate BMP2 expression in postmenopausal
osteoporosis. Biochem Biophys Res Commun. 516:546–550.
2019.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Chia W, Liu J, Huang YG and Zhang C: A
circular RNA derived from DAB1 promotes cell proliferation and
osteogenic differentiation of BMSCs via RBPJ/DAB1 axis. Cell Death
Dis. 11(372)2020.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Gao Y, Shang S, Guo S, Li X, Zhou H, Liu
H, Sun Y, Wang J, Wang P, Zhi H, et al: Lnc2Cancer 3.0: An updated
resource for experimentally supported lncRNA/circRNA cancer
associations and web tools based on RNA-seq and scRNA-seq data.
Nucleic Acids Res. 49:D1251–D1258. 2021.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Ye Y, Zhang L, Hu T, Yin J, Xu L, Pang Z
and Chen W: CircRNA_103765 acts as a proinflammatory factor via
sponging miR-30 family in Crohn's disease. Sci Rep.
11(565)2021.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Ju J, Song YN, Chen XZ, Wang T, Liu CY and
Wang K: circRNA is a potential target for cardiovascular diseases
treatment. Mol Cell Biochem. 477:417–430. 2022.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Jin J, Sun H, Shi C, Yang H, Wu Y, Li W,
Dong YH, Cai L and Meng XM: Circular RNA in renal diseases. J Cell
Mol Med. 24:6523–6533. 2020.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Giordano L, Porta GD, Peretti GM and
Maffulli N: Therapeutic potential of microRNA in tendon injuries.
Br Med Bull. 133:79–94. 2020.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Huang DH, Wang GY, Zhang JW, Li Y, Zeng XC
and Jiang N: MiR-501-5p regulates CYLD expression and promotes cell
proliferation in human hepatocellular carcinoma. Jpn J Clin Oncol.
45:738–744. 2015.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Liu D, Kang H, Gao M, Jin L, Zhang F, Chen
D, Li M and Xiao L: Exosome-transmitted circ_MMP2 promotes
hepatocellular carcinoma metastasis by upregulating MMP2. Mol
Oncol. 14:1365–1380. 2020.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Ou R, Lv J, Zhang Q, Lin F, Zhu L, Huang
F, Li X, Li T, Zhao L, Ren Y and Xu Y: circAMOTL1 motivates AMOTL1
expression to facilitate cervical cancer growth. Mol Ther Nucleic
Acids. 19:50–60. 2020.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Zhou J, Zhang S, Chen Z, He Z, Xu Y and Li
Z: CircRNA-ENO1 promoted glycolysis and tumor progression in lung
adenocarcinoma through upregulating its host gene ENO1. Cell Death
Dis. 10(885)2019.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Ebbesen KK, Hansen TB and Kjems J:
Insights into circular RNA biology. RNA Biol. 14:1035–1045.
2017.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Siede D, Rapti K, Gorska AA, Katus HA,
Altmüller J, Boeckel JN, Meder B, Maack C, Völkers M, Müller OJ, et
al: Identification of circular RNAs with host gene-independent
expression in human model systems for cardiac differentiation and
disease. J Mol Cell Cardiol. 109:48–56. 2017.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Li J, Yu T, Yan M, Zhang X, Liao L, Zhu M,
Lin H, Pan H and Yao M: DCUN1D1 facilitates tumor metastasis by
activating FAK signaling and up-regulates PD-L1 in non-small-cell
lung cancer. Exp Cell Res. 374:304–314. 2019.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Huang S, Liu Z, Jiang F, He H and Zhong W:
DCUN1D1 promotes tumour progress in prostate cancer and its effect
on DU145 in vitro. J Pak Med Assoc. 71:473–478. 2021.PubMed/NCBI View Article : Google Scholar
|
|
42
|
O-charoenrat P, Sarkaria I, Talbot SG,
Reddy P, Dao S, Ngai I, Shaha A, Kraus D, Shah J, Rusch V, et al:
SCCRO (DCUN1D1) induces extracellular matrix invasion by activating
matrix metalloproteinase 2. Clin Cancer Res. 14:6780–6789.
2008.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Zhao Y, Hu Y, Shen Q, Xiong R, Song X and
Guan C: DCUN1D1, a new molecule involved in depigmentation via
upregulating CXCL10. Exp Dermatol. 32:457–468. 2023.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Shao JL, Li H, Zhang XR, Zhang X, Li ZZ,
Jiao GL and Sun GD: Identification of serum exosomal MicroRNA
expression profiling in menopausal females with osteoporosis by
high-throughput sequencing. Curr Med Sci. 40:1161–1169.
2020.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Chen SC, Jiang T, Liu QY, Liu ZT, Su YF
and Su HT: Hsa_circ_0001485 promoted osteogenic differentiation by
targeting BMPR2 to activate the TGFβ-BMP pathway. Stem Cell Res
Ther. 13(453)2022.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Fan L, Yang K, Yu R, Hui H and Wu W:
circ-Iqsec1 induces bone marrow-derived mesenchymal stem cell
(BMSC) osteogenic differentiation through the miR-187-3p/Satb2
signaling pathway. Arthritis Res Ther. 24(273)2022.PubMed/NCBI View Article : Google Scholar
|