|
1
|
Tomizawa M, Shinozaki F, Sugiyama T,
Yamamoto S, Sueishi M and Yoshida T: Activin A maintains
pluripotency markers and proliferative potential of human induced
pluripotent stem cells. Exp Ther Med. 2:405–408. 2011.PubMed/NCBI
|
|
2
|
Lach M, Trzeciak T, Richter M, Pawlicz J
and Suchorska WM: Directed differentiation of induced pluripotent
stem cells into chondrogenic lineages for articular cartilage
treatment. J Tissue Eng. 5:20417314145527012014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Fragma AM, de Araújo ÉSS, Vergani N,
Fonseca SAS and Pereira LV: Use of human embryonic stem cells in
therapy. Stem Cells and Cell Therapy. Al-Rubeai M and Naciri M:
(Dordrecht). Springer. 1–19. 2014. View Article : Google Scholar
|
|
4
|
Domínguez-Bendala J, Lanzoni G, Inverardi
L and Ricordi C: Concise review: Mesenchymal stem cells for
diabetes. Stem Cells Transl Med. 1:59–63. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Feng Z and Gao F: Stem cell challenges in
the treatment of neurodegenerative disease. CNS Neurosci Ther.
18:142–148. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Jin ZB, Okamoto S, Mandai M and Takahashi
M: Induced pluripotent stem cells for retinal degenerative
diseases: A new perspective on the challenges. J Genet. 88:417–424.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Bolli R, Chugh AR, D-Amario D, Loughran
JH, Stoddard MF, Ikram S, Beache GM, Wagner SG, Leri A, Hosoda T,
et al: Cardiac stem cells in patients with ischaemic cardiomyopathy
(SCIPIO): Initial results of a randomised phase 1 trial. Lancet.
378:1847–1857. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Abujarour R, Bennett M, Valamehr B, Lee
TT, Robinson M, Robbins D, Le T, Lai K and Flynn P: Myogenic
differentiation of muscular dystrophy-specific induced pluripotent
stem cells for use in drug discovery. Stem Cells Transl Med.
3:149–160. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Drummond RJ, Kunath T, Mee PJ and Ross JA:
Induced pluripotent stem cell technology and stem cell therapy for
diabetes. Exp Ther Med. 2:3–7. 2011.PubMed/NCBI
|
|
10
|
de Magalhães JP: How ageing processes
influence cancer. Nat Rev Cancer. 13:357–365. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zaman MH: The role of engineering
approaches in analysing cancer invasion and metastasis. Nat Rev
Cancer. 13:596–603. 2013. View
Article : Google Scholar : PubMed/NCBI
|
|
12
|
Baskar R, Lee KA, Yeo R and Yeoh KW:
Cancer and radiation therapy: Current advances and future
directions. Int J Med Sci. 9:193–199. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Sokolov MV and Neumann RD: Human embryonic
stem cells responses to ionizing radiation exposures: Current state
of knowledge and future challenges. Stem Cells Int.
2012:5791042012. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Nguyen HT, Geens M and Spits C: Genetic
and epigenetic instability in human pluripotent stem cells. Hum
Reprod Update. 19:187–205. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Lund RJ, Närvä E and Lahesmaa R: Genetic
and epigenetic stability of human pluripotent stem cells. Nat Rev
Genet. 13:732–744. 2012. View
Article : Google Scholar : PubMed/NCBI
|
|
16
|
Martins-Taylor K, Nishler SB, Taapken SM,
Compton T, Crandall L, Montgomery KD, Lalande M and Xu RH:
Recurrent copy number variations in human induced pluripotent stem
cells. Nat Biotechnol. 29:488–491. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Peterson SE and Loring JF: Genomic
instability in pluripotent stem cells: Implications for clinical
applications. J Biol Chem. 289:4578–4584. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Taapken SM, Nisler BS, Newton MA,
Sampsell-Barron TL, Leonhard KA, Mclntire EM and Montgomery KD:
Karyotypic abnormalities in human induced pluripotent stem cells
and embryonic stem cells. Nat Biotechnol. 29:313–314. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Inzunza J, Sahlén S, Holmberg K, Strömberg
AM, Teerijoki H, Blennow E, Hovatta O and Malmgren H: Comparative
genomic hybridization and karyotyping of human embryonic stem cells
reveals the occurrence of an isodicentric X chromosome after
long-term cultivation. Mol Hum Reprod. 10:461–466. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kenyon J and Gerson SL: The role of DNA
damage repair in aging of adult stem cells. Nucleic Acids Res.
35:7557–7565. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Giglia-Mari G, Zotter A and Vermeulen W:
DNA damage response. Cold Spring Harb Perspect Biol. 3:a0007452011.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Jackson SP and Bartek J: The DNA-damage
response in human biology and disease. Nature. 461:1071–1078. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Blanpain C, Mohrin M, Sotiropoulou PA and
Passegué E: DNA- damage response in tissue-specific and cancer stem
cells. Cell Stem Cell. 8:16–29. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
von Stechow L, Ruiz-Aracama A, van de
Water B, Peijnenburg A, Danen E and Lommen A: Identification of
cisplatin-regulated metabolic pathways in pluripotent stem cells.
PLoS One. 8:e764762013. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Pines A, Kelstrup CD, Vrouwe MG, Puigvert
JC, Typas D, Misovic B, de Groot A, von Stechow L, van de Water B,
Danen EH, et al: Global phopshoproteome profiling reveals
unanticipated networks responsive to cisplatin treatment of
embryonic stem cells. Mol Cell Biol. 31:4964–4977. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Banáth JP, Bañuelos CA, Klokov D, MacPhail
SM, Lansdorp PM and Olive PL: Explanation for excessive DNA
single-strand breaks and endogenous repair foci in pluripotent
mouse embryonic stem cells. Exp Cell Res. 315:1505–1520. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Han J, Hendzel MJ and Allalunis-Turner J:
Quantitative analysis reveals asynchronous and more than
DSB-associated histone H2AX phosphorylation after exposure to
ionizing radiation. Radiat Res. 165:283–292. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Middel V and Blattner C: DNA repair in
embryonic stem cells. DNA Repair - On the Pathways to Fixing DNA
Damage and Errors. Storici F: (Rijeka, Croatia). InTech. 357–380.
2011.
|
|
29
|
Prendergast ÁM, Cruet-Hennequart S, Shaw
G, Barry FP and Carty MP: Activation of DNA damage response
pathways in human mesenchymal stem cells exposed to cisplatin or
γ-irradiation. Cell Cycle. 10:3768–3777. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Luo LZ, Gopalakrishna-Pillai S, Nay SL,
Park SW, Bates SE, Zeng X, Iverson LE and O-Connor TR: DNA repair
in human pluripotent stem cells is distinct from that in
non-pluripotent human cells. PLoS One. 7:e305412012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Tichy ED and Stambrook PJ: DNA repair in
murine embryonic stem cells and differentiated cells. Exp Cell Res.
314:1929–1936. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Fan J, Robert C, Jang YY, Liu H, Sharkis
S, Byalin SB and Rassool FV: Human induced pluripotent cells
resemble embryonic stem cells demonstrating enhanced levels of DNA
repair and efficacy of nonhomologous end-joining. Mutat Res.
713:8–17. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Rocha CRR, Lerner LK, Okamoto OK,
Marchetto MC and Menck CFM: The role of DNA repair in the
pluripotency and differentiation of human stem cells. Mutat Res.
752:25–35. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Harfouche G and Martin MT: Response of
normal stem cells to ionizing radiation: A balance between
homeostasis and genomic stability. Muat Res. 704:167–174. 2010.
View Article : Google Scholar
|
|
35
|
Zhao T and Xu Y: p53 and stem cells: New
developments and new concerns. Trends Cell Biol. 20:170–175. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Desmarais JA, Hoffmann MJ, Bingham G,
Gagou ME, Meuth M and Andrews PW: Human embryonic stem cells fail
to activate CHK1 and commit to apoptosis in response to DNA
replication stress. Stem Cells. 30:1385–1393. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Maynard S, Swistowska AM, Lee JW, Liu Y,
Liu ST, Da Cruz AB, Rao M, de Souza-Pinto NC, Zeng X and Bohr VA:
Human embryonic stem cells have enhanced repair of multiple forms
of DNA damage. Stem Cells. 26:2266–2274. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Christensen DM, Iddins CJ and Sugarman SL:
Ionizing radiation injuries and illnesses. Emerg Med Clin North Am.
32:245–265. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wilson KD, Sun H, Huang M, Zhang WY, Lee
AS, Li Z, Wang SX and Wu JC: Effects of ionizing radiation on
self-renewal and pluripotency of human embryonic stem cells. Cancer
Res. 70:5539–5548. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Sokolov MV and Neumann RD:
Radiation-induced bystander effects in cultured human stem cells.
PLoS One. 5:e141952010. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Park Y and Gerson SL: DNA repair defects
in stem cell function and aging. Annu Rev Med. 56:495–508. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Maugeri-Saccà M, Bartucci M and De Maria
R: DNA damage repair pathways in cancer stem cells. Mol Cancer
Ther. 11:1627–1636. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Bernstein C, Bernstein H, Payne CM and
Garewal H: DNA repair/pro-apoptotic dual-role proteins in five
major DNA repair pathways: Fail-safe protection against
carcinogenesis. Mutat Res. 511:145–178. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lundin C, Erixon K, Arnaudeau C, Schultz
N, Jenssen D, Meuth M and Helleday T: Different roles for
nonhomologous end joining and homologous recombination following
replication arrest in mammalian cells. Mol Cell Biol. 22:5869–5878.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Mao Z, Bozzella M, Seluanov A and
Gorbunova V: DNA repair by nonhomologous end joining and homologous
recombination during cell cycle in human cells. Cell Cycle.
7:2902–2906. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Lund PK: Fixing the breaks in intestinal
stem cells after radiation: A matter of DNA damage and death or DNA
repair and regeneration. Gastroenterology. 143:1144–1147. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Serrano L, Liang L, Chang Y, Deng L,
Maulion C, Nguyen S and Tischfield JA: Homologous recombination
conserves DNA sequence integrity throughout the cell cycle in
embryonic stem cells. Stem Cells Dev. 20:363–374. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Krejci L, Altmannova V, Spirek M and Zhao
X: Homologous recombination and its regulation. Nucleic Acids Res.
40:5795–5818. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Fung H and Weinstock DM: Repair at single
targeted DNA double-strand breaks in pluripotent and differentiated
human cells. PLoS One. 6:e205142011. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Oliver L, Hue E, Séry Q, Lafargue A,
Pecqueur C, Paris F and Vallette FM: Differentiation-related
response to DNA breaks in human mesenchymal stem cells. Stem Cells.
31:800–807. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Downs JA and Jackson SP: A means to a DNA
end: The many roles of Ku. Nat Rev Mol Cell Biol. 5:367–378. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Lieber MR: The mechanism of double-strand
DNA break repair by the nonhomologous DNA end joining pathway. Annu
Rev Biochem. 79:181–211. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wood RD, Mitchell M and Lindahl T: Human
DNA repair genes 2005. Mutat Res. 577:275–283. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zou Y, Zhang N, Ellerby LM, Davalos AR,
Zeng X, Campisi J and Desprez DY: Responses of human embryonic stem
cells and their differentiated progeny to ionizing radiation.
Biochem Biophys Res Commun. 426:100–105. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Sokolov M and Neumann R: Effects of low
doses of ionizing radiation exposures on stress-responsive gene
expression in human embryonic stem cells. Int J Mol Sci.
15:588–604. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Momcilović O, Choi S, Varum S, Bakkenist
C, Schatten G and Navara C: Ionizing radiation induces ataxia
telangiectasia mutated-dependent checkpoint signaling and G (2) but
not G (1) cell cycle arrest in pluripotent human embryonic stem
cells. Stem Cells. 27:1822–1835. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Kunkel TA and Erie DA: DNA mismatch
repair. Annu Rev Biochem. 74:681–710. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Tichy ED, Liang L, Deng L, Tischfield J,
Schwemberger S, Babcock G and Stambrook PJ: Mismatch and base
excision repair proficiency in murine embryonic stem cells. DNA
Repair (Amst). 10:445–451. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Robertson AB, Klungland A, Rognes T and
Leiros I: DNA repair in mammalian cells: Base excision repair: The
long and short of it. Cell Mol Life Sci. 66:981–993. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Shuck SC, Short EA and Turchi JJ:
Eukaryotic nucleotide excision repair: From understanding
mechanisms to influencing biology. Cell Res. 18:64–72. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Dexheimer TS: DNA repair pathways and
mechanisms. DNA Repair of Cancer Stem Cells. Mathews LA, Carbarcas
SM and Hurt E: (Dordrecht). Springer International Publishing.
19–32. 2013. View Article : Google Scholar
|
|
62
|
de Waard H, Sonneveld E, de Wit J, van
Esvaldt Lange R, Hoeijmakers JH, Vrieling H and van der Horst GT:
Cell-type-specific consequences of nucleotide excision repair
deficiencies: Embryonic stem cells versus fibroblasts. DNA Repair
(Amst). 7:1659–1669. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ryoo HD and Bergmann A: The role of
apoptosis-induced proliferation for regeneration and cancer. Cold
Spring Harb Perspect Biol. 4:a0087972012. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Li F, Huang Q, Chen J, Peng Y, Roop DR,
Bedford JS and Li CY: Apoptotic cells activate the ‘phoenix rising’
pathway to promote wound healing and tissue regeneration. Sci
Signal. 3:ra132010. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ferdousi Vahidi L, Rocheteau P, Chayot R,
Montagne B, Chaker Z, Flament P, Tajbakhsh S and Ricchetti M: More
efficient repair of DNA double-strand breaks in skeletal muscle
stem cells compared to their committed progeny. Stem Cell Res.
13:492–507. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Hong Y and Stambrook PJ: Restoration of an
absent G1 arrest and protection from apoptosis in embryonic stem
cells after ionizing radiation. Proc Natl Acad Sci USA.
101:14443–14448. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Rich T, Allen RL and Wyllie AH: Defying
death after DNA damage. Nature. 407:777–783. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
He YC, Zhou FL, Shen Y, Liao DF and Cao D:
Apoptotic death of cancer stem cells for cancer therapy. Int J Mol
Sci. 15:8335–8351. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Fuchs Y and Steller H: Programmed cell
death in animal development and disease. Cell. 147:742–758. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Creagh EM and Martin SJ: Caspases:
Cellular demolition experts. Biochem Soc Trans. 29:696–702. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Xu X, Cowley S, Flaim CJ, James W, Seymour
L and Cui Z: The roles of apoptotic pathways in the low recovery
rate after cryopreservation of dissociated human embryonic stem
cells. Biotechnol Prog. 26:827–837. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yang JK: FLIP as an anti-cancer
therapeutic target. Yonsei Med J. 49:19–27. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Würstle ML, Laussmann MA and Rehm M: The
central role of initiator caspase-9 in apoptosis signal
transduction and the regulation of its activation and activity on
the apoptosome. Exp Cell Res. 318:1213–1220. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Mcllwain DR, Berger T and Mak TW: Caspase
functions in cell death and disease. Cold Spring Harb Perspect
Biol. 5:a0086562013.PubMed/NCBI
|
|
75
|
Elmore S: Apoptosis: A review of
programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Roos WP and Kaina B: DNA damage-induced
cell death: From specific DNA lesions to the DNA damage response
and apoptosis. Cancer Lett. 332:237–248. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Igney FH and Krammer PH: Death and
anti-death: Tumour resistance to apoptosis. Nat Rev Cancer.
2:277–288. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
78
|
Filion TM, Qiao M, Ghule PN, Mandeville M,
van Wijnen AJ, Stein JL, Lian JB, Altieri DC and Stein GS: Survival
responses of human embryonic stem cells to DNA damage. J Cell
Physiol. 220:586–592. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Qin H, Yu T, Qing T, Liu Y, Zhao Y, Cai J,
Li J, Song Z, Qu X, Zhou P, et al: Regulation of apoptosis and
differentiation by p53 in human embryonic stem cells. J Biol Chem.
282:5842–5852. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Neganova I, Vilella F, Atkinson SP, Lloret
M, Passos JF, von Zglinicki T, O-Connor JE, Burks D, Jones R,
Armstrong L and Lako M: An important role for CDK2 in G1 to S
checkpoint activation and DNA damage response in human embryonic
stem cells. Stem Cells. 29:651–659. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Mandal PK, Blanpain C and Rossi DJ: DNA
damage response in adult stem cells: Pathways and consequences. Nat
Rev Mol Cell Biol. 12:198–202. 2011. View Article : Google Scholar : PubMed/NCBI
|