Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
May-2016 Volume 11 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2016 Volume 11 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Neurolytic celiac plexus block enhances skeletal muscle insulin signaling and attenuates insulin resistance in GK rats

  • Authors:
    • Jun Li
    • Tao Chen
    • Kun Li
    • Hongtao Yan
    • Xiaowei Li
    • Yun Yang
    • Yulan Zhang
    • Bingyin Su
    • Fuxiang Li
  • View Affiliations / Copyright

    Affiliations: Department of Anesthesiology, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China, General Surgery Center, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China, Medical Laboratory Center, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China, Department of Urology, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China, Development and Regeneration Key Laboratory of Sichuan, Chengdu Medical College, Chengdu, Sichuan 610083, P.R. China, Department of ICU, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China
  • Pages: 2033-2041
    |
    Published online on: February 19, 2016
       https://doi.org/10.3892/etm.2016.3087
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Non‑insulin‑dependent diabetes mellitus (NIDDM) is associated with chronic inflammatory activity and disrupted insulin signaling, leading to insulin resistance (IR). The present study investigated the benefits of neurolytic celiac plexus block (NCPB) on IR in a rat NIDDM model. Goto‑Kakizaki rats fed a high‑fat, high‑glucose diet to induce signs of NIDDM were randomly divided into NCPB and control groups; these received daily bilateral 0.5% lidocaine or 0.9% saline injections into the celiac plexus, respectively. Following 14 and 28 daily injections, rats were subject to oral glucose tolerance tests (OGTTs) or sacrificed for the analysis of serum free fatty acids (FFAs), serum inflammatory cytokines and skeletal muscle insulin signaling. Compared with controls, rats in the NCPB group demonstrated significantly (P<0.05) lower baseline, 60‑min and 120‑min OGTT values, lower 120‑min serum insulin, lower IR [higher insulin sensitivity index (ISI1) and lower ISI2) and lower serum FFAs, tumor necrosis factor‑α, interleukin (IL)‑1β and IL‑6. Conversely, NCPB rats exhibited higher basal and insulin‑stimulated skeletal muscle glucose uptake and higher skeletal muscle insulin receptor substrate‑1 (IRS‑1) and glucose transporter type 4 expression. There were no differences between the groups in insulin receptor β (Rβ) or Akt expression; however Rβ‑Y1162/Y1163 and Akt‑S473 phosphorylation levels were higher and IRS‑1‑S307 phosphorylation were lower in NCPB rats than in the controls. These results indicate that NCPB improved insulin signaling and reduced IR, possibly by inhibiting inflammatory cytokine release.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Chen L, Magliano DJ and Zimmet PZ: The worldwide epidemiology of type 2 diabetes mellitus - present and future perspectives. Nat Rev Endocrinol. 8:228–236. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Brunetti A, Chiefari E and Foti D: Recent advances in the molecular genetics of type 2 diabetes mellitus. World J Diabetes. 5:128–140. 2014.PubMed/NCBI

3 

Montane J, Cadavez L and Novials A: Stress and the inflammatory process: A major cause of pancreatic cell death in type 2 diabetes. Diabetes Metab Syndr Obes. 7:25–34. 2014.PubMed/NCBI

4 

Mandrup-Poulsen T: Type 2 diabetes mellitus: A metabolic autoinflammatory disease. Dermatol Clin. 31:495–506. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Eguchi K and Manabe I: Macrophages and islet inflammation in type 2 diabetes. Diabetes Obes Metab. 15(Suppl 3): 152–158. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Richardson VR, Smith KA and Carter AM: Adipose tissue inflammation: Feeding the development of type 2 diabetes mellitus. Immunobiology. 218:1497–1504. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Mackenzie RW and Elliott BT: Akt/PKB activation and insulin signaling: A novel insulin signaling pathway in the treatment of type 2 diabetes. Diabetes Metab Syndr Obes. 7:55–64. 2014. View Article : Google Scholar : PubMed/NCBI

8 

McPhee JB and Schertzer JD: Immunometabolism of obesity and diabetes: Microbiota link compartmentalized immunity in the gut tometabolic tissue inflammation. Clin Sci (Lond). 129:1083–1096. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Tanti JF, Ceppo F, Jager J and Berthou F: Implication of inflammatory signaling pathways in obesity-induced insulin resistance. Front Endocrinol (Lausanne). 8:1812013.

10 

Jaiswal N, Gunaganti N, Maurya CK, Narender T and Tamrakar AK: Free fatty acid induced impairment of insulin signaling is prevented by the diastereomeric mixture of calophyllic acid and isocalophyllic acid in skeletal muscle cells. Eur J Pharmacol. 746:70–77. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Luo C, Yang H, Tang C, Yao G, Kong L, He H and Zhou Y: Kaempferol alleviates insulin resistance via hepatic IKK/NF-κB signal in type 2 diabetic rats. Int Immunopharmacol. 28:744–750. 2015. View Article : Google Scholar : PubMed/NCBI

12 

McCall KD, Holliday D, Dickerson E, Wallace B, Schwartz AL, Schwartz C, Lewis CJ, Kohn LD and Schwartz FL: Phenylmethimazole blocks palmitate-mediated induction of inflammatory cytokine pathways in 3T3L1 adipocytes and RAW 264.7 macrophages. J Endocrinol. 207:343–353. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Yang FR, Wu BS, Lai GH, Wang Q, Yang LQ, He MW and Ni JX: Assessment of consecutive neurolytic celiac plexus block (NCPB) technique outcomes in the management of refractory visceral cancer pain. Pain Med. 13:518–521. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Li J, Wei XH, Lin L, Che JX, Qiu QM, Zuo HT, An H, Liu YH, Bai SR and Tian FZ: Effect of neurolytic celiac plexus block on insulin resistance after partial hepatectomy in rats. Zhongguo Ji Jiu Yi Xue. 33:1124–1126. 2013.(In Chinese).

15 

Akash MS, Rehman K and Chen S: Goto-Kakizaki rats: Its suitability as non-obese diabetic animal model for spontaneous type 2 diabetes mellitus. Curr Diabetes Rev. 9:387–396. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Portha B, Giroix MH, Tourrel-Cuzin C, Le-Stunff H and Movassat J: The GK rat: A prototype for the study of non-overweight type 2 diabetes. Methods Mol Biol. 933:125–159. 2012.PubMed/NCBI

17 

Chen R, Wang L, Cao HW, Tang CW, Bai XZ and Ji QH: Expression of GLP-1 receptor mRNA in intestine and pancreas of diabetic rats. Di 4 Jun Yi Da Xue Xue Bao. 29:1235–1238. 2008.(In Chinese).

18 

Li J, Yan HT, Che JX, Bai SR, Qiu QM, Ren L, Pan F, Sun XQ, Tian FZ, Li DX and Tang LJ: Effects of neurolytic celiac plexus block on liver regeneration in rats with partial hepatectomy. PLoS One. 8:e731012013. View Article : Google Scholar : PubMed/NCBI

19 

Wincey C and Marks V: A micro-method for measuring glucose using the autoanalyzer and glucose-oxidase. J Clin Pathol. 14:558–559. 1961. View Article : Google Scholar : PubMed/NCBI

20 

Banerji MA, Chaiken RL, Gordon D, Kral JG and Lebovitz HE: Does intra-abdominal adipose tissue in black men determine whether NIDDM is insulin-resistant or insulin-sensitive? Diabetes. 44:141–146. 1995. View Article : Google Scholar : PubMed/NCBI

21 

Ellis L, Clauser E, Morgan DO, Edery M, Roth RA and Rutter WJ: Replacement of insulin receptor tyrosine residues 1162 and 1163 compromises insulin-stimulated kinase activity and uptake of 2-deoxyglucose. Cell. 45:721–732. 1986. View Article : Google Scholar : PubMed/NCBI

22 

Cherqui G, Reynet C, Caron M, Melin B, Wicek D, Clauser E, Capeau J and Picard J: Insulin receptor tyrosine residues 1162 and 1163 control insulin stimulation of myristoyl-diacylglycerol generation and subsequent activation of glucose transport. J Biol Chem. 265:21254–21261. 1990.PubMed/NCBI

23 

Virkamäki A, Ueki K and Kahn CR: Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest. 103:931–943. 1999. View Article : Google Scholar : PubMed/NCBI

24 

Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE and White MF: Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem. 277:1531–1537. 2002. View Article : Google Scholar : PubMed/NCBI

25 

Hsueh WA and Buchanan TA: Obesity and hypertension. Endocrinol Metab Clin North Am. 23:405–427. 1994.PubMed/NCBI

26 

Elmendorf JS, Damrau-Abney A, Smith TR, David TS and Turinsky J: Phosphatidylinositol 3-kinase and dynamics of insulin resistance in denervated slow and fast muscles in vivo. Am J Physiol. 272:E661–E670. 1997.PubMed/NCBI

27 

Lee J and Pilch PF: The insulin receptor: Structure, function and signaling. Am J Physiol. 266:C319–C334. 1994.PubMed/NCBI

28 

Kobayashi M, Iwanishi M, Egawa K and Shigeta Y: Pioglitazone increases insulin sensitivity by activating insulin receptor kinase. Diabetes. 41:476–483. 1992. View Article : Google Scholar : PubMed/NCBI

29 

Ola MS: Effect of hyperglycemia on insulin receptor signaling in the cultured retinal Müller glial cells. Biochem Biophys Res Commun. 444:264–269. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Fasshauer M, Klein J, Kriauciunas KM, Ueki K, Benito M and Kahn CR: Essential role of insulin receptor substrate 1 in differentiation of brown adipocytes. Mol Cell Biol. 21:319–329. 2001. View Article : Google Scholar : PubMed/NCBI

31 

Lehr S, Kotzka J, Herkner A, Sikmann A, Meyer HE, Krone W and Müller-Wieland D: Identification of major tyrosine phosphorylation sites in the human insulin receptor substrate Gab-1 by insulin receptor kinase in vitro. Biochemistry. 39:10898–10907. 2000. View Article : Google Scholar : PubMed/NCBI

32 

Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF and Spiegelman BM: IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science. 271:665–668. 1996. View Article : Google Scholar : PubMed/NCBI

33 

Aguirre V, Uchida T, Yenush L, Davis R and White MF: The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser (307). J Biol Chem. 275:9047–9054. 2000. View Article : Google Scholar : PubMed/NCBI

34 

Anderson KE, Coadwell J, Stephens LR and Hawkins PT: Translocation of PDK-1 to the plasma membrane is important in allowing PDK-1 to activate protein kinase B. Curr Biol. 8:684–691. 1998. View Article : Google Scholar : PubMed/NCBI

35 

Cao S, Li B, Yi X, Chang B, Zhu B, Lian Z, Zhang Z, Zhao G, Liu H and Zhang H: Effects of exercise on AMPK signaling and downstream components to PI3K in rat with type 2 diabetes. PLoS One. 7:e517092012. View Article : Google Scholar : PubMed/NCBI

36 

He L, Simmen FA, Mehendale HM, Ronis MJ and Badger TM: Chronic ethanol intake impairs insulin signaling in rats by disrupting Akt association with the cell membrane. Role of TRB3 in inhibition of Akt/protein kinase B activation. J Biol Chem. 281:11126–11134. 2006. View Article : Google Scholar : PubMed/NCBI

37 

Rea S and James DE: Moving GLUT4: The biogenesis and trafficking of GLUT4 storage vesicles. Diabetes. 46:1667–1677. 1997. View Article : Google Scholar : PubMed/NCBI

38 

Mueckler M: Facilitative glucose transporters. Eur J Biochem. 219:713–725. 1994. View Article : Google Scholar : PubMed/NCBI

39 

Mueckler M, Caruso C, Baldwin SA, Panico M, Blench I, Morris HR, Allard WJ, Lienhard GE and Lodish HF: Sequence and structure of a human glucose transporter. Science. 229:941–945. 1985. View Article : Google Scholar : PubMed/NCBI

40 

Kahn BB: Facilitative glucose transporters: Regulatory mechanisms and dysregulation in diabetes. J Clin Invest. 89:1367–1374. 1992. View Article : Google Scholar : PubMed/NCBI

41 

Garvey WT, Maianu L, Huecksteadt TP, Birnbaum MJ, Molina JM and Ciaraldi TP: Pretranslational suppression of a glucose transporter protein causes insulin resistance in adipocytes from patients with non-insulin-dependent diabetes mellitus and obesity. J Clin Invest. 87:1072–1081. 1991. View Article : Google Scholar : PubMed/NCBI

42 

Kelley DE, Mintun MA, Watkins SC, Simoneau JA, Jadali F, Fredrickson A, Beattie J and Thériault R: The effect of non-insulin-dependent diabetes mellitus and obesity on glucose transport and phosphorylation in skeletal muscle. J Clin Invest. 97:2705–2713. 1996. View Article : Google Scholar : PubMed/NCBI

43 

Calle MC and Fernandez ML: Inflammation and type 2 diabetes. Diabetes Metab. 38:183–191. 2012. View Article : Google Scholar : PubMed/NCBI

44 

Donath MY: Inflammation as a sensor of metabolic stress in obesity and type 2 diabetes. Endocrinology. 152:4005–4006. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Borst SE: The role of TNF-alpha in insulin resistance. Endocrine. 23:177–182. 2004. View Article : Google Scholar : PubMed/NCBI

46 

Qi C and Pekala PH: Tumor necrosis factor-alpha-induced insulin resistance in adipocytes. Proc Soc Exp Biol Med. 223:128–135. 2000. View Article : Google Scholar : PubMed/NCBI

47 

Kanety H, Feinstein R, Papa MZ, Hemi R and Karasik A: Tumor necrosis factor alpha-induced phosphorylation of insulin receptor substrate-1 (IRS-1). Possible mechanism for suppression of insulin-stimulated tyrosine phosphorylation of IRS-1. J Biol Chem. 270:23780–23784. 1995. View Article : Google Scholar : PubMed/NCBI

48 

Paz K, Hemi R, LeRoith D, Karasik A, Elhanany E, Kanety H and Zick Y: A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem. 272:29911–29918. 1997. View Article : Google Scholar : PubMed/NCBI

49 

Heydrick SJ, Jullien D, Gautier N, Tanti JF, Giorgetti S, Van Obberghen E and Le Marchand-Brustel Y: Defect in skeletal muscle phosphatidylinositol-3-kinase in obese insulin-resistant mice. J Clin Invest. 91:1358–1366. 1993. View Article : Google Scholar : PubMed/NCBI

50 

Stephens JM, Lee J and Pilch PF: Tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. J Biol Chem. 272:971–976. 1997. View Article : Google Scholar : PubMed/NCBI

51 

Wang CN, O'Brien L and Brindley DN: Effects of cell-permeable ceramides and tumor necrosis factor-alpha on insulin signaling and glucose uptake in 3T3-L1 adipocytes. Diabetes. 47:24–31. 1998. View Article : Google Scholar : PubMed/NCBI

52 

Hauner H, Petruschke T, Russ M, Röhrig K and Eckel J: Effects of tumour necrosis factor alpha (TNF alpha) on glucose transport and lipid metabolism of newly-differentiated human fat cells in cell culture. Diabetologia. 38:764–771. 1995. View Article : Google Scholar : PubMed/NCBI

53 

Miles PD, Romeo OM, Higo K, Cohen A, Rafaat K and Olefsky JM: TNF-alpha-induced insulin resistance in vivo and its prevention by troglitazone. Diabetes. 46:1678–1683. 1997. View Article : Google Scholar : PubMed/NCBI

54 

Lang CH, Dobrescu C and Bagby GJ: Tumor necrosis factor impairs insulin action on peripheral glucose disposal and hepatic glucose output. Endocrinology. 130:43–52. 1992. View Article : Google Scholar : PubMed/NCBI

55 

Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y, Bergeron R, Kim JK, Cushman SW, Cooney GJ, et al: Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem. 277:50230–50236. 2002. View Article : Google Scholar : PubMed/NCBI

56 

Hotamisligil GS and Spiegelman BM: Tumor necrosis factor alpha: A key component of the obesity-diabetes link. Diabetes. 43:1271–1278. 1994. View Article : Google Scholar : PubMed/NCBI

57 

Takaesu G, Ninomiya-Tsuji J, Kishida S, Li X, Stark GR and Matsumoto K: Interleukin-1 (IL-1) receptor-associated kinase leads to activation of TAK1 by inducing TAB2 translocation in the IL-1 signaling pathway. Mol Cell Biol. 21:2475–2484. 2001. View Article : Google Scholar : PubMed/NCBI

58 

Emanuelli B, Glondu M, Filloux C, Peraldi P and Van Obberghen E: The potential role of SOCS-3 in the interleukin-1beta-induced desensitization of insulin signaling in pancreatic beta-cells. Diabetes. 53(Suppl 3): S97–S103. 2004. View Article : Google Scholar : PubMed/NCBI

59 

Rui L, Yuan M, Frantz D, Shoelson S and White MF: SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem. 277:42394–42398. 2002. View Article : Google Scholar : PubMed/NCBI

60 

Fujishiro M, Gotoh Y, Katagiri H, Sakoda H, Ogihara T, Anai M, Onishi Y, Ono H, Funaki M, Inukai K, et al: MKK6/3 and p38 MAPK pathway activation is not necessary for insulin-induced glucose uptake but regulates glucose transporter expression. J Biol Chem. 276:19800–19806. 2001. View Article : Google Scholar : PubMed/NCBI

61 

Eguez L, Lee A, Chavez JA, Miinea CP, Kane S, Lienhard GE and McGraw TE: Full intracellular retention of GLUT4 requires AS160 Rab GTPase activating protein. Cell Metab. 2:263–272. 2005. View Article : Google Scholar : PubMed/NCBI

62 

Jager J, Grémeaux T, Cormont M, Le Marchand-Brustel Y and Tanti JF: Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology. 148:241–251. 2007. View Article : Google Scholar : PubMed/NCBI

63 

Kim JA, Yeh DC, Ver M, Li Y, Carranza A, Conrads TP, Veenstra TD, Harrington MA and Quon MJ: Phosphorylation of Ser24 in the pleckstrin homology domain of insulin receptor substrate-1 by Mouse Pelle-like kinase/interleukin-1 receptor-associated kinase: Cross-talk between inflammatory signaling and insulin signaling that may contribute to insulin resistance. J Biol Chem. 280:23173–23183. 2005. View Article : Google Scholar : PubMed/NCBI

64 

Lagathu C, Bastard JP, Auclair M, Maachi M, Capeau J and Caron M: Chronic interleukin-6 (IL-6) treatment increased IL-6 secretion and induced insulin resistance in adipocyte: Prevention by rosiglitazone. Biochem Biophys Res Commun. 311:372–379. 2003. View Article : Google Scholar : PubMed/NCBI

65 

Senn JJ, Klover PJ, Nowak IA and Mooney RA: Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes. 51:3391–3399. 2002. View Article : Google Scholar : PubMed/NCBI

66 

Sun Y, Liu S, Ferguson S, Wang L, Klepcyk P, Yun JS and Friedman JE: Phosphoenolpyruvate carboxykinase overexpression selectively attenuates insulin signaling and hepatic insulin sensitivity in transgenic mice. J Biol Chem. 277:23301–23307. 2002. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li J, Chen T, Li K, Yan H, Li X, Yang Y, Zhang Y, Su B and Li F: Neurolytic celiac plexus block enhances skeletal muscle insulin signaling and attenuates insulin resistance in GK rats. Exp Ther Med 11: 2033-2041, 2016.
APA
Li, J., Chen, T., Li, K., Yan, H., Li, X., Yang, Y. ... Li, F. (2016). Neurolytic celiac plexus block enhances skeletal muscle insulin signaling and attenuates insulin resistance in GK rats. Experimental and Therapeutic Medicine, 11, 2033-2041. https://doi.org/10.3892/etm.2016.3087
MLA
Li, J., Chen, T., Li, K., Yan, H., Li, X., Yang, Y., Zhang, Y., Su, B., Li, F."Neurolytic celiac plexus block enhances skeletal muscle insulin signaling and attenuates insulin resistance in GK rats". Experimental and Therapeutic Medicine 11.5 (2016): 2033-2041.
Chicago
Li, J., Chen, T., Li, K., Yan, H., Li, X., Yang, Y., Zhang, Y., Su, B., Li, F."Neurolytic celiac plexus block enhances skeletal muscle insulin signaling and attenuates insulin resistance in GK rats". Experimental and Therapeutic Medicine 11, no. 5 (2016): 2033-2041. https://doi.org/10.3892/etm.2016.3087
Copy and paste a formatted citation
x
Spandidos Publications style
Li J, Chen T, Li K, Yan H, Li X, Yang Y, Zhang Y, Su B and Li F: Neurolytic celiac plexus block enhances skeletal muscle insulin signaling and attenuates insulin resistance in GK rats. Exp Ther Med 11: 2033-2041, 2016.
APA
Li, J., Chen, T., Li, K., Yan, H., Li, X., Yang, Y. ... Li, F. (2016). Neurolytic celiac plexus block enhances skeletal muscle insulin signaling and attenuates insulin resistance in GK rats. Experimental and Therapeutic Medicine, 11, 2033-2041. https://doi.org/10.3892/etm.2016.3087
MLA
Li, J., Chen, T., Li, K., Yan, H., Li, X., Yang, Y., Zhang, Y., Su, B., Li, F."Neurolytic celiac plexus block enhances skeletal muscle insulin signaling and attenuates insulin resistance in GK rats". Experimental and Therapeutic Medicine 11.5 (2016): 2033-2041.
Chicago
Li, J., Chen, T., Li, K., Yan, H., Li, X., Yang, Y., Zhang, Y., Su, B., Li, F."Neurolytic celiac plexus block enhances skeletal muscle insulin signaling and attenuates insulin resistance in GK rats". Experimental and Therapeutic Medicine 11, no. 5 (2016): 2033-2041. https://doi.org/10.3892/etm.2016.3087
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team