|
1
|
Sheikh YA, Marie MA, John J, Krishnappa LG
and Dabwab KH: Prevalence of 16S rRNA methylase genes among
β-lactamase-producing Enterobacteriaceae clinical isolates in Saudi
Arabia. Libyan J Med. 9:244322014. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Belbel Z, Chettibi H, Dekhil M, Ladjama A,
Nedjai S and Rolain JM: Outbreak of an armA
Methyltransferase-Producing ST39 Klebsiella pneumoniae clone in a
pediatric Algerian hospital. Microb Drug Resist. 20:310–315. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Liu Z, Ling B and Zhou L: Prevalence of
16S rRNA methylase, modifying enzyme, and extended-spectrum
beta-lactamase genes among Acinetobacter baumannii isolates. J
Chemother. 27:207–212. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Nemec A, Dolzani L, Brisse S, van den
Broek P and Dijkshoorn L: Diversity of aminoglycoside-resistance
genes and their association with class 1 integrons among strains of
pan-European Acinetobacter baumannii clones. J Med Microbiol.
53:1233–1240. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Labby KJ and Garneau-Tsodikova S:
Strategies to overcome the action of aminoglycoside-modifying
enzymes for treating resistant bacterial infections. Future Med
Chem. 5:1285–1309. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ramirez MS and Tolmasky ME: Aminoglycoside
modifying enzymes. Drug Resist Updat. 13:151–171. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Cho YJ, Moon DC, Jin JS, Choi CH, Lee YC
and Lee JC: Genetic basis of resistance to aminoglycosides in
Acinetobacter spp. and spread of armA in Acinetobacter baumannii
sequence group 1 in Korean hospitals. Diagn Microbiol Infect Dis.
64:185–190. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Bueno MF, Francisco GR, O'Hara JA, de
Oliveira Garcia D and Doi Y: Coproduction of 16S rRNA
methyltransferase RmtD or RmtG with KPC-2 and CTX-M group
extended-spectrum β-lactamases in Klebsiella pneumoniae. Antimicrob
Agents Chemother. 57:2397–2400. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Galimand M, Courvalin P and Lambert T:
RmtF, a new member of the aminoglycoside resistance 16S rRNA N7
G1405 methyltransferase family. Antimicrob Agents Chemother.
56:3960–3962. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Huang J, Ye M, Jia X, Yu F and Wang M:
Coexistence of armA and genes encoding aminoglycoside-modifying
enzymes in Acinetobacter baumannii. Afr J Microbiol Res.
6:5325–5330. 2012.
|
|
11
|
O'Hara JA, McGann P, Snesrud EC, Clifford
RJ, Waterman PE, Lesho EP and Doi Y: Novel 16S rRNA
methyltransferase RmtH produced by Klebsiella pneumoniae associated
with war-related trauma. Antimicrob Agents Chemother. 57:2413–2416.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wachino J and Arakawa Y: Exogenously
acquired 16S rRNA methyltransferases found in
aminoglycoside-resistant pathogenic Gram-negative bacteria: An
update. Drug Resist Updat. 15:133–148. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wachino J, Shibayama K, Kurokawa H, Kimura
K, Yamane K, Suzuki S, Shibata N, Ike Y and Arakawa Y: Novel
plasmid-mediated 16S rRNA m1A1408 methyltransferase, NpmA, found in
a clinically isolated Escherichia coli strain resistantto
structurally diverse aminoglycosides. Antimicrob Agents Chemother.
51:4401–4409. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Nagasawa M, Kaku M, Kamachi K, Shibayama
K, Arakawa Y, Yamaguchi K and Ishii Y: Loop-mediated isothermal
amplification assay for 16S rRNA methylase genes in Gram-negative
bacteria. J Infect Chemother. 20:635–638. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Marques MB, Brookings ES, Moser SA, Sonke
PB and Waites KB: Comparative in vitro antimicrobial
susceptibilities of nosocomial isolates of Acinetobacter baumannii
and synergistic activities of nine antimicrobial combinations.
Antimicrob Agents Chemother. 41:881–885. 1997.PubMed/NCBI
|
|
16
|
Wen JT, Zhou Y, Yang L and Xu Y:
Multidrug-resistantgenes of aminoglycoside-modifying enzymes and
16S rRNA methylases in Acinetobacter baumannii strains. Genet Mol
Res. 13:3842–3849. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Chang Y, Luan G, Xu Y, Wang Y, Shen M,
Zhang C, Zheng W, Huang J, Yang J, Jia X and Ling B:
Characterization of carbapenem-resistant Acinetobacter baumannii
isolates in a Chinese teaching hospital. Front Microbiol.
6:9102015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Walther-Rasmussen J and Høiby N: OXA-type
carbapenemases. J Antimicrob Chemother. 57:373–383. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Doi Y, Adams JM, Yamane K and Paterson DL:
Identification of 16S rRNA methylase-producing Acinetobacter
baumannii clinical strains in North America. Antimicrob Agents
Chemother. 51:4209–4210. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kim JW, Heo ST, Jin JS, Choi CH, Lee YC,
Jeong YG, Kim SJ and Lee JC: Characterization of Acinetobacter
baumannii carrying bla(OXA-23), bla(PER-1) and armA in a Korean
hospital. Clin Microbiol Infect. 14:716–718. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Zhou H, Du XX, Yang Q, Zhou JY, Yu YS and
Li LJ: Study on carbapenemase and 16S rRNA methylase of
imipenem-resistant Acinetobacter baumannii. Zhonghua Liu Xing Bing
Xue Za Zhi. 30:269–272. 2009.(In Chinese). PubMed/NCBI
|
|
22
|
Adams-Haduch JM, Paterson DL, Sidjabat HE,
Pasculle AW, Potoski BA, Muto CA, Harrison LH and Doi Y: Genetic
basis of multidrug resistance in Acinetobacter baumannii clinical
isolates at a tertiary medical center in Pennsylvania. Antimicrob
Agents Chemother. 52:3837–3843. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Sung JY, Kwon KC, Cho HH and Koo SH:
Antimicrobial resistance determinants in imipenem-nonsusceptible
Acinetobacter calcoaceticus-baumannii complex isolated in Daejeon,
Korea. Korean J Lab Med. 31:265–270. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Karthikeyan K, Thirunarayan MA and
Krishnan P: Coexistence of blaOXA-23 with blaNDM-1 and armA in
clinical isolates of Acinetobacter baumannii from India. J
Antimicrob Chemother. 65:2253–2254. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Bonnin RA, Potron A, Poirel L, Lecuyer H,
Neri R and Nordmann P: PER-7, an extended-spectrum beta-lactamase
with increased activity toward broad-spectrum cephalosporins in
Acinetobacter baumannii. Antimicrob Agents Chemother. 55:2424–2427.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Strateva T, Markova B, Marteva-Proevska Y,
Ivanova D and Mitov I: Widespread dissemination of
multidrug-resistant Acinetobacter baumannii producing OXA-23
carbapenemase and ArmA 16S ribosomal RNA methylase in a Bulgarian
university hospital. Braz J Infect Dis. 16:307–310. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Brigante G, Migliavacca R, Bramati S,
Motta E, Nucleo E, Manenti M, Migliorino G, Pagani L, Luzzaro F and
Viganò FE: Emergence and spread of a multidrug-resistant
Acinetobacter baumannii clone producing both the carbapenemase
OXA-23 and the 16S rRNA methylase ArmA. J Med Microbiol.
61:653–661. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Saule M, Samuelsen Ø, Dumpis U, Sundsfjord
A, Karlsone A, Balode A, Miklasevics E and Karah N: Dissemination
of a carbapenem-resistant Acinetobacter baumannii strain belonging
to international clone II/sequence type 2 and harboring a novel
AbaR4-like resistance island in Latvia. Antimicrob Agents
Chemother. 57:1069–1072. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Revathi G, Siu LK, Lu PL and Huang LY:
First report of NDM-1-producing Acinetobacter baumannii in East
Africa. Int J Infect Dis. 17:e1255–e1258. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Bakour S, Alsharapy SA, Touati A and
Rolain JM: Characterization of Acinetobacter baumannii clinical
isolates carrying bla(OXA-23) carbapenemase and 16S rRNA methylase
armA genes in Yemen. Microb Drug Resist. 20:604–609. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Tada T, Miyoshi-Akiyama T, Shimada K,
Shimojima M and Kirikae T: Dissemination of 16S rRNA methylase
ArmA-producing Acinetobacter baumannii and emergence of OXA-72
carbapenemase coproducers in Japan. Antimicrob Agents Chemother.
58:2916–2920. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Tojo M, Mawatari M, Hayakawa K, Nagamatsu
M, Shimada K, Mezaki K, Sugiki Y, Kuroda E, Takeshita N, Kutsuna S,
et al: Multidrug-resistant Acinetobacter baumannii isolated from a
traveler returned from Brunei. J Infect Chemothe. 21:212–214. 2015.
View Article : Google Scholar
|
|
33
|
El-Sayed-Ahmed MA, Amin MA, Tawakol WM,
Loucif L, Bakour S and Rolain JM: High prevalence of bla(NDM-1)
carbapenemase-encoding gene and 16S rRNA armA methyltransferase
among Acinetobacter baumannii clinical isolates, Egypt. Antimicrob
Agents Chemother. 59:3602–3605. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhao WS, Liu GY, Mi ZH and Zhang F:
Coexistence of blaOXA-23 with armA and novel gyrA mutation in a
pandrug-resistant Acinetobacter baumannii isolate from the blood of
a patient with haematological disease in China. J Hosp Infect.
77:278–279. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhou H, Zhang T, Yu D, Pi B, Yang Q, Zhou
J, Hu S and Yu Y: Genomic analysis of the multidrug-resistant
Acinetobacter baumannii strain MDR-ZJ06 widely spread in China.
Antimicrob Agents Chemother. 55:4506–4512. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Liu Z, Ling B and Zhou L: Prevalence of
16S rRNA methylase, modifying enzyme, and extended-spectrum
beta-lactamase genes among Acinetobacter baumannii isolates. J
Chemother. 27:207–212. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Chen TL, Siu LK, Wu RC, Shaio MF, Huang
LY, Fung CP, Lee CM and Cho WL: Comparison of one-tube multiplex
PCR, automated ribotyping and intergenic spacer (ITS) sequencing
for rapid identification of Acinetobacter baumannii. Clin Microbiol
Infect. 13:801–806. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Li Y, Guo Q, Wang P, Zhu D, Ye X, Wu S and
Wang M: Clonal dissemination of extensively drug-resistant
Acinetobacter baumannii producing an OXA-23 β-lactamase at a
teaching hospital in Shanghai, China. J Microbiol Immunol Infect.
48:101–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Clinical and Laboratory Standards
Institute, . Performance Standards for Antimicrobial Susceptibility
Testing. 24th Informational Supplement. CLSI; Wayne, PA, USA: M100,
2014
|
|
40
|
Li Y, Guo Q, Wang P, Zhu D, Ye X, Wu S and
Wang M: Clonal dissemination of extensively drug-resistant
Acinetobacter baumannii producing an OXA-23 β-lactamase at a
teaching hospital in Shanghai, China. J Microbiol Immunol Infect.
48:101–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Valenzuela JK, Thomas L, Partridge SR, van
der Reijden T, Dijkshoorn L and Iredell J: Horizontal gene transfer
in a polyclonal outbreak of carbapenem-resistant Acinetobacter
baumannii. J Clin Microbiol. 45:453–460. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Tsakris A, Pournaras S, Woodford N,
Palepou MF, Babini GS, Douboyas J and Livermore DM: Outbreak of
infections caused by Pseudomonas aeruginosa producing VIM-1
carbapenemase in Greece. J Clin Microbiol. 38:1290–1292.
2000.PubMed/NCBI
|
|
43
|
Ellington MJ, Kistler J, Livermore DM and
Woodford N: Multiplex PCR for rapid detection of genes encoding
acquired metallo-beta-lactamases. J Antimicrob Chemother.
59:321–322. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yong D, Toleman MA, Giske CG, Cho HS,
Sundman K, Lee K and Walsh TR: Characterization of a new
metallo-beta-lactamase gene, bla(NDM-1) and a novel erythromycin
esterase gene carried on a unique genetic structure in Klebsiella
pneumoniae sequence type 14 from India. Antimicrob Agents
Chemother. 53:5046–5054. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Woodford N, Ellington MJ, Coelho JM,
Turton JF, Ward ME, Brown S, Amyes SG and Livermore DM: Multiplex
PCR for genes encoding prevalent OXA carbapenemases in
Acinetobacter spp. Int J Antimicrob Agents. 27:351–353. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Fu Y, Zhou J, Zhou H, Yang Q, Wei Z, Yu Y
and Li L: Wide dissemination of OXA-23-producing
carbapenem-resistant Acinetobacter baumannii clonal complex 22 in
multiple cities of China. J Antimicrob Chemother. 65:644–650. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Netsvyetayeva I, Sikora M, Golas M,
Swoboda-Kopec E, de Walthoffen SW, Dembicka O, Fraczek M,
Mlynarczyk A, Pacholczyk M, Chmura A and Mlynarczyk G:
Acinetobacter baumannii multidrug-resistant strain occurrence in
liver recipients with reference to other high-risk groups.
Transplant Proc. 43:3116–3120. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Diancourt L, Passet V, Nemec A, Dijkshoorn
L and Brisse S: The population structure of Acinetobacter
baumannii: Expanding multiresistant clones from an ancestral
susceptible genetic pool. PLoS One. 5:e100342010. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Bartual SG, Seifert H, Hippler C, Luzon
MA, Wisplinghoff H and Rodríguez-Valera F: Development of a
multilocus sequence typing scheme for characterization of clinical
isolates of Acinetobacter baumannii. J Clin Microbiol.
43:4382–4390. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
PubMLST, . Acinetobacter baumannii MLST
Databases. http://pubmlst.org/abaumannii/
|
|
51
|
Feil EJ, Li BC, Aanensen DM, Hanage WP and
Spratt BG: eBURST: Inferring patterns of evolutionary descent among
clusters of related bacterial genotypes from multilocus sequence
typing data. J Bacteriol. 186:1518–1530. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Agadzhanian VV, Semenikhin VA, Iu S
Fedorov, Krasulina GP, Gaǐfulina IM and Mironova LA: Experience of
health protection center on organization of medical care for coal
miners in Kuzbass. Med Tr Prom Ekol. 27–30. 2002.(In Russian).
PubMed/NCBI
|
|
53
|
Tada T, Miyoshi-Akiyama T, Kato Y,
Ohmagari N, Takeshita N, Hung NV, Phuong DM, Thu TA, Binh NG, Anh
NQ, et al: Emergence of 16S rRNA methylase-producing Acinetobacter
baumannii and Pseudomonas aeruginosa isolates in hospitals in
Vietnam. BMC Infect Dis. 13:2512013. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Nie L, Lv Y, Yuan M, Hu X, Nie T, Yang X,
Li G, Pang J, Zhang J, Li C, et al: Genetic basis of high level
aminoglycoside resistance in Acinetobacter baumannii from Beijing,
China. Acta Pharm Sin B. 4:295–300. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Xiao SZ, Han LZ, Chu HQ, Zhao L, Chen X
and Ni YX: Detection of aminoglycoside resistance related genes in
multidrug-resistant Acinetobacter baumannii isolated from a single
institute of Shanghai, China. Panminerva Med. 57:49–53.
2015.PubMed/NCBI
|
|
56
|
Bakour S, Touati A, Bachiri T, Sahli F,
Tiouit D, Naim M, Azouaou M and Rolain JM: First report of 16S rRNA
methylase ArmA-producing Acinetobacter baumannii and rapid spread
of metallo-β-lactamase NDM-1 in Algerian hospitals. J Infect
Chemother. 20:696–701. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Azimi L, Talebi M, Pourshafie MR, Owlia P
and Lari A Rastegar: Characterization of carbapenemases in
extensively drug resistance Acinetobacter baumannii in a burn care
center in Iran. Int J Mol Cell Med. 4:46–53. 2015.PubMed/NCBI
|
|
58
|
Jia X, Zhang J, Sun W, He W, Jiang H, Chen
D and Murchie AI: Riboswitch control of aminoglycoside antibiotic
resistance. Cell. 152:68–81. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Haldorsen BC, Simonsen GS, Sundsfjord A
and Samuelsen Ø; Norwegian Study Group on Aminoglycoside
Resistance, : Increased prevalence of aminoglycoside resistance in
clinical isolates of Escherichia coli and Klebsiella spp. in Norway
is associated with the acquisition of AAC(3)-II and AAC(6′)-Ib.
Diagn Microbiol Infect Dis. 78:66–69. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Soleimani N, Aganj M, Ali L, Shokoohizadeh
L and Sakinc T: Frequency distribution of genes encoding
aminoglycoside modifying enzymes in uropathogenic E. coli isolated
from Iranian hospital. BMC Res Notes. 7:8422014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Miro E, Grünbaum F, Gomez L, Rivera A,
Mirelis B, Coll P and Navarro F: Characterization of
aminoglycoside-modifying enzymes in enterobacteriaceae clinical
strains and characterization of the plasmids implicated in their
diffusion. Microb Drug Resist. 19:94–99. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Akers KS, Chaney C, Barsoumian A, Beckius
M, Zera W, Yu X, Guymon C, Keen EF III, Robinson BJ, Mende K and
Murray CK: Aminoglycoside resistance and susceptibility testing
errors in Acinetobacter baumannii-calcoaceticus complex. J Clin
Microbiol. 48:1132–1138. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Nowak P, Paluchowska PM and Budak A:
Co-occurrence of carbapenem and aminoglycoside resistance genes
among multidrug-resistant clinical isolates of Acinetobacter
baumannii from Cracow, Poland. Med Sci Monit Basic Res. 20:9–14.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Hamouda A, Evans BA, Towner KJ and Amyes
SG: Characterization of epidemiologically unrelated Acinetobacter
baumannii isolates from four continents by use of multilocus
sequence typing, pulsed-field gel electrophoresis and
sequence-based typing of bla(OXA-51-like) genes. J Clin Microbiol.
48:2476–2483. 2010. View Article : Google Scholar : PubMed/NCBI
|