1
|
Santoro MM, Samuel T, Mitchell T, Reed JC
and Stainier DY: Birc2 (cIap1) regulates endothelial cell integrity
and blood vessel homeostasis. Nat Genet. 39:1397–1402. 2007.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Mano T, Masuyama T, Yamamoto K, Naito J,
Kondo H, Nagano R, Tanouchi J, Hori M, Inoue M and Kamada T:
Endothelial dysfunction in the early stage of atherosclerosis
precedes appearance of intimal lesions assessable with
intravascular ultrasound. Am Heart J. 131:231–238. 1996. View Article : Google Scholar : PubMed/NCBI
|
3
|
Pober JS, Min W and Bradley JR: Mechanisms
of endothelial dysfunction, injury and death. Annu Rev Pathol.
4:71–95. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Triggle CR, Samuel SM, Ravishankar S,
Marei I, Arunachalam G and Ding H: The endothelium: Influencing
vascular smooth muscle in many ways. Can J Physiol Pharmacol.
90:713–738. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Otsuka F, Finn AV, Yazdani SK, Nakano M,
Kolodgie FD and Virmani R: The importance of the endothelium in
atherothrombosis and coronary stenting. Nat Rev Cardiol. 9:439–453.
2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sun C, Wu MH, Lee ES and Yuan SY: A
disintegrin and metalloproteinase 15 contributes to atherosclerosis
by mediating endothelial barrier dysfunction via Src family kinase
activity. Arterioscler Thromb Vasc Biol. 32:2444–2451. 2012.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhou Z, Subramanian P, Sevilmis G, Globke
B, Soehnlein O, Karshovska E, Megens R, Heyll K, Chun J,
Saulnier-Blache JS, et al: Lipoprotein-derived lysophosphatidic
acid promotes atherosclerosis by releasing CXCL1 from the
endothelium. Cell Metab. 13:592–600. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ishigaki Y, Katagiri H, Gao J, Yamada T,
Imai J, Uno K, Hasegawa Y, Kaneko K, Ogihara T, Ishihara H, et al:
Impact of plasma oxidized low-density lipoprotein removal on
atherosclerosis. Circulation. 118:75–83. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Galle J, Hansen-Hagge T, Wanner C and
Seibold S: Impact of oxidized low density lipoprotein on vascular
cells. Atherosclerosis. 185:219–226. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ambros V: The functions of animal
microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen
H, Dean DB and Zhang C: MicroRNA expression signature and
antisense-mediated depletion reveal an essential role of MicroRNA
in vascular neointimal lesion formation. Circ Res. 100:1579–1588.
2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Shan Z, Yao C, Li ZL, Teng Y, Li W, Wang
JS, Ye CS, Chang GQ, Huang XL, Li XX, et al: Differentially
expressed microRNAs at different stages of atherosclerosis in
ApoE-deficient mice. Chin Med J (Engl). 126:515–520.
2013.PubMed/NCBI
|
13
|
Wang M, Li W, Chang GQ, Ye CS, Ou JS, Li
XX, Liu Y, Cheang TY, Huang XL and Wang SM: MicroRNA-21 regulates
vascular smooth muscle cell function via targeting tropomyosin 1 in
arteriosclerosis obliterans of lower extremities. Arterioscler
Thromb Vasc Biol. 31:2044–2053. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Li Y, Ouyang M, Shan Z, Ma J, Li J, Yao C,
Zhu Z, Zhang L, Chen L, Chang G, et al: Involvement of
microRNA-133a in the development of arteriosclerosis obliterans of
the lower extremities via RhoA targeting. J Atheroscler Thromb.
22:424–432. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang Y and Lee CG: MicroRNA and
cancer-focus on apoptosis. J Cell Mol Med. 13:12–23. 2009.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhou DH, Wang X and Feng Q: EGCG enhances
the efficacy of cisplatin by downregulating hsa-miR-98-5p in NSCLC
A549 cells. Nutr Cancer. 66:636–644. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Xu S, Ogura S, Chen J, Little PJ, Moss J
and Liu P: LOX-1 in atherosclerosis: Biological functions and
pharmacological modifiers. Cell Mol Life Sci. 70:2859–2872. 2013.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Sawamura T, Wakabayashi I and Okamura T:
LOX-1 in atherosclerotic disease. Clin Chim Acta. 440:157–163.
2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Mehta JL, Chen J, Hermonat PL, Romeo F and
Novelli G: Lectin-like, oxidized low-density lipoprotein receptor-1
(LOX-1): A critical player in the development of atherosclerosis
and related disorders. Cardiovasc Res. 69:36–45. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Li H, Li XX, Ma Q and Cui J: The
variability of oxLDL-induced cytotoxicity on different types of
cell lines. Cell Biochem Biophys. 67:635–644. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Gimbrone MA Jr, Topper JN, Nagel T,
Anderson KR and Garcia-Cardeña G: Endothelial dysfunction,
hemodynamic forces and atherogenesis. Ann N Y Acad Sci.
902:230–239. 2000. View Article : Google Scholar : PubMed/NCBI
|
23
|
Grover-Páez F and Zavalza-Gómez AB:
Endothelial dysfunction and cardiovascular risk factors. Diabetes
Res Clin Pract. 84:1–10. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chen CH, Jiang W, Via DP, Luo S, Li TR,
Lee YT and Henry PD: Oxidized low-density lipoproteins inhibit
endothelial cell proliferation by suppressing basic fibroblast
growth factor expression. Circulation. 101:171–177. 2000.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Yin G, Yang X, Li B, Yang M and Ren M:
Connexin43 siRNA promotes HUVEC proliferation and inhibits
apoptosis induced by ox-LDL: An involvement of ERK signaling
pathway. Mol Cell Biochem. 394:101–107. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Dong Q, Xiang R, Zhang DY and Qin S:
Ox-LDL increases OX40L in endothelial cells through a
LOX-1-dependent mechanism. Braz J Med Biol Res. 46:765–770. 2013.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Schober A, Nazari-Jahantigh M, Wei Y,
Bidzhekov K, Gremse F, Grommes J, Megens RT, Heyll K, Noels H,
Hristov M, et al: MicroRNA-126-5p promotes endothelial
proliferation and limits atherosclerosis by suppressing Dlk1. Nat
Med. 20:368–376. 2014. View
Article : Google Scholar : PubMed/NCBI
|
28
|
Pirillo A and Catapano AL: Soluble
lectin-like oxidized low density lipoprotein receptor-1 as a
biochemical marker for atherosclerosis-related diseases. Dis
Markers. 35:413–418. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Shaw DJ, Seese R, Ponnambalam S and Ajjan
R: The role of lectin-like oxidised low-density lipoprotein
receptor-1 in vascular pathology. Diab Vasc Dis Res. 11:410–418.
2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Sawamura T, Kume N, Aoyama T, Moriwaki H,
Hoshikawa H, Aiba Y, Tanaka T, Miwa S, Katsura Y, Kita T and Masaki
T: An endothelial receptor for oxidized low-density lipoprotein.
Nature. 386:73–77. 1997. View
Article : Google Scholar : PubMed/NCBI
|
31
|
Akhmedov A, Rozenberg I, Paneni F, Camici
GG, Shi Y, Doerries C, Sledzinska A, Mocharla P, Breitenstein A,
Lohmann C, et al: Endothelial overexpression of LOX-1 increases
plaque formation and promotes atherosclerosis in vivo. Eur Heart J.
35:2839–2848. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Mehta JL and Li DY: Identification and
autoregulation of receptor for OX-LDL in cultured human coronary
artery endothelial cells. Biochem Biophys Res Commun. 248:511–514.
1998. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hermonat PL, Zhu H, Cao M and Mehta JL:
LOX-1 transcription. Cardiovasc Drugs Ther. 25:393–400. 2011.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Lu J, Yang JH, Burns AR, Chen HH, Tang D,
Walterscheid JP, Suzuki S, Yang CY, Sawamura T and Chen CH:
Mediation of electronegative low-density lipoprotein signaling by
LOX-1: a possible mechanism of endothelial apoptosis. Circ Res.
104:619–627. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Mollace V, Gliozzi M, Musolino V, Carresi
C, Muscoli S, Mollace R, Tavernese A, Gratteri S, Palma E, Morabito
C, et al: Oxidized LDL attenuates protective autophagy and induces
apoptotic cell death of endothelial cells: Role of oxidative stress
and LOX-1 receptor expression. Int J Cardiol. 184:152–158. 2015.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Imanishi T, Hano T, Sawamura T, Takarada S
and Nishio I: Oxidized low density lipoprotein potentiation of
Fas-induced apoptosis through lectin-like oxidized-low density
lipoprotein receptor-1 in human umbilical vascular endothelial
cells. Circ J. 66:1060–1064. 2002. View Article : Google Scholar : PubMed/NCBI
|
37
|
Chen J, Mehta JL, Haider N, Zhang X,
Narula J and Li D: Role of caspases in Ox-LDL-induced apoptotic
cascade in human coronary artery endothelial cells. Circ Res.
94:370–376. 2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Hong D, Bai YP, Gao HC, Wang X, Li LF,
Zhang GG and Hu CP: Ox-LDL induces endothelial cell apoptosis via
the LOX-1-dependent endoplasmic reticulum stress pathway.
Atherosclerosis. 235:310–317. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Sugawara T, Fujimura M, Noshita N, Kim GW,
Saito A, Hayashi T, Narasimhan P, Maier CM and Chan PH: Neuronal
death/survival signaling pathways in cerebral ischemia. NeuroRx.
1:17–25. 2004. View Article : Google Scholar : PubMed/NCBI
|
40
|
Han Z, Hendrickson EA, Bremner TA and
Wyche JH: A sequential two-step mechanism for the production of the
mature p17:p12 form of caspase-3 in vitro. J Biol Chem.
272:13–432, 13,436. 1997. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kluck RM, Bossy-Wetzel E, Green DR and
Newmeyer DD: The release of cytochrome c from mitochondria: A
primary site for Bcl-2 regulation of apoptosis. Science.
275:1132–1136. 1997. View Article : Google Scholar : PubMed/NCBI
|
42
|
Xiang H, Hochman DW, Saya H, Fujiwara T,
Schwartzkroin PA and Morrison RS: Evidence for p53-mediated
modulation of neuronal viability. J Neurosci. 16:6753–6765.
1996.PubMed/NCBI
|
43
|
Kataoka H, Kume N, Miyamoto S, Minami M,
Morimoto M, Hayashida K, Hashimoto N and Kita T: Oxidized LDL
modulates Bax/Bcl-2 through the lectinlike Ox-LDL receptor-1 in
vascular smooth muscle cells. Arterioscler Thromb Vasc Biol.
21:955–960. 2001. View Article : Google Scholar : PubMed/NCBI
|
44
|
Li DY, Chen HJ and Mehta JL: Statins
inhibit oxidized-LDL-mediated LOX-1 expression, uptake of
oxidized-LDL and reduction in PKB phosphorylation. Cardiovasc Res.
52:130–135. 2001. View Article : Google Scholar : PubMed/NCBI
|