|
1
|
Philippe J and Raccah D: Treating type 2
diabetes: How safe are current therapeutic agents? Int J Clin
Pract. 63:321–332. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Akkati S, Sam KG and Tungha G: Emergence
of promising therapies in diabetes mellitus. J Clin Pharmacol.
51:796–804. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
King H, Aubert RE and Herman WH: Global
burden of diabetes, 1995–2025: Prevalence, numerical estimates and
projections. Diabetes Care. 21:1414–1431. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
American Diabetes Association, : Diagnosis
and classification of diabetes mellitus. Diabetes Care. 31 Suppl
1:S55–S60. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Patterson CC, Gyurus E, Rosenbauer J,
Cinek O, Neu A, Schober E, Parslow RC, Joner G, Svensson J, Castell
C, et al: Trends in childhood type 1 diabetes incidence in Europe
during 1989–2008: Evidence of non-uniformity over time in rates of
increase. Diabetologia. 55:2142–2147. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Patterson CC, Dahlquist GG, Gyurus E,
Green A and Soltész G; EURODIAB Study Group, : Incidence trends for
childhood type 1 diabetes in Europe during 1989–2003 and predicted
new cases 2005–20: a multicentre prospective registration study.
Lancet. 373:2027–2033. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Redondo MJ, Jeffrey J, Fain PR, Eisenbarth
GS and Orban T: Concordance for islet autoimmunity among
monozygotic twins. N Engl J Med. 359:2849–2850. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Davidson MH: Cardiovascular risk factors
in a patient with diabetes mellitus and coronary artery disease:
Therapeutic approaches to improve outcomes: Perspectives of a
preventive cardiologist. Am J Cardiol. 110 9 Suppl:43B–49B. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Robertson RP: Islet transplantation a
decade later and strategies for filling a half-full glass.
Diabetes. 59:1285–1291. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Ehses JA, Perren A, Eppler E, Ribaux P,
Pospisilik JA, Maor-Cahn R, Gueripel X, Ellingsgaard H, Schneider
MK, Biollaz G, et al: Increased number of islet-associated
macrophages in type 2 diabetes. Diabetes. 56:2356–2370. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Eizirik DL, Sammeth M, Bouckenooghe T,
Bottu G, Sisino G, Igoillo-Esteve M, Ortis F, Santin I, Colli ML,
Barthson J, et al: The human pancreatic islet transcriptome:
expression of candidate genes for type 1 diabetes and the impact of
pro-inflammatory cytokines. PLoS Genet. 8:e10025522012. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wellen KE and Hotamisligil GS:
Inflammation, stress and diabetes. J Clin Invest. 115:1111–1119.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Arif S, Moore F, Marks K, Bouckenooghe T,
Dayan CM, Planas R, Vives-Pi M, Powrie J, Tree T, Marchetti P, et
al: Peripheral and islet interleukin-17 pathway activation
characterizes human autoimmune diabetes and promotes
cytokine-mediated beta-cell death. Diabetes. 60:2112–2119. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Atkinson MA, Eisenbarth GS and Michels AW:
Type 1 diabetes. Lancet. 383:69–82. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Baldwin AC, Green CD, Olson LK, Moxley MA
and Corbett JA: A role for aberrant protein palmitoylation in
FFA-induced ER stress and beta-cell death. Am J Physiol Endocrinol
Metab. 302:E1390–E1398. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Imai Y, Dobrian AD, Weaver JR, Butcher MJ,
Cole BK, Galkina EV, Morris MA, Taylor-Fishwick DA and Nadler JL:
Interaction between cytokines and inflammatory cells in islet
dysfunction, insulin resistance and vascular disease. Diabetes Obes
Metab. 15 Suppl 3:S117–S129. 2013. View Article : Google Scholar
|
|
17
|
Cnop M, Welsh N, Jonas JC, Jörns A, Lenzen
S and Eizirik DL: Mechanisms of pancreatic beta-cell death in type
1 and type 2 diabetes: many differences, few similarities.
Diabetes. 54 Suppl 2:S97–S107. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Eizirik DL, Colli ML and Ortis F: The role
of inflammation in insulitis and beta-cell loss in type 1 diabetes.
Nat Rev Endocrinol. 5:219–226. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Corbett JA and McDaniel ML: Does nitric
oxide mediate autoimmune destruction of beta-cells? Possible
therapeutic interventions in IDDM. Diabetes. 41:897–903. 1992.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Chen Y, Huang JH, Ning Y and Shen ZY:
Icariin and its pharmaceutical efficacy: research progress of
molecular mechanism. Zhong Xi Yi Jie He Xue Bao. 9:1179–1184.
2011.(In Chinese). View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wu JF, Dong JC and Xu CQ: Effects of
icariin on inflammation model stimulated by lipopolysaccharide in
vitro and in vivo. Zhongguo Zhong Xi Yi Jie He Za Zhi. 29:330–334.
2009.(In Chinese). PubMed/NCBI
|
|
22
|
Liu MH, Sun JS, Tsai SW, Sheu SY and Chen
MH: Icariin protects murine chondrocytes from
lipopolysaccharide-induced inflammatory responses and extracellular
matrix degradation. Nutr Res. 30:57–65. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Xu CQ, Liu BJ, Wu JF, Xu YC, Duan XH, Cao
YX and Dong JC: Icariin attenuates LPS-induced acute inflammatory
responses: involvement of PI3K/Akt and NF-kappaB signaling pathway.
Eur J Pharmacol. 642:146–153. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Bae UJ, Lee da Y, Song MY, Lee SM, Park
JW, Ryu JH and Park BH: A prenylated flavan from Broussonetia
kazinoki prevents cytokine-induced beta-cell death through
suppression of nuclear factor-kB activity. Biol Pharm Bull.
34:1026–1031. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Saldeen J: Cytokines induce both necrosis
and apoptosis via a common Bcl-2-inhibitable pathway in rat
insulin-producing cells. Endocrinology. 141:2003–2010. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Tewari M, Quan LT, O'Rourke K, Desnoyers
S, Zeng Z, Beidler DR, Poirier GG, Salvesen GS and Dixit VM:
Yama/CPP32 beta, a mammalian homolog of CED-3, is a
CrmA-inhibitable protease that cleaves the death substrate poly
(ADP-ribose) polymerase. Cell. 81:801–809. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Heimberg H, Heremans Y, Jobin C, Leemans
R, Cardozo AK, Darville M and Eizirik DL: Inhibition of
cytokine-induced NF-kappaB activation by adenovirus-mediated
expression of a NF-kappaB super-repressor prevents beta-cell
apoptosis. Diabetes. 50:2219–2224. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Eldor R, Yeffet A, Baum K, Doviner V, Amar
D, Ben-Neriah Y, Christofori G, Peled A, Carel JC, Boitard C, et
al: Conditional and specific NF-kappaB blockade protects pancreatic
beta cells from diabetogenic agents. Proc Natl Acad Sci USA.
103:5072–5077. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Gong Y, Shi J, Xie GY, Liu HR and Qi MY:
Amelioration of icariin for the epididymis impairment induced by
streptozocin (STZ) in rats. Zhongguo Ying Yong Sheng Li Xue Za Zhi.
29:47–50. 2013.(In Chinese). PubMed/NCBI
|
|
30
|
Zhang WP, Bai XJ, Zheng XP, Xie XL and
Yuan ZY: Icariin attenuates the enhanced prothrombotic state in
atherosclerotic rabbits independently of its lipid-lowering
effects. Planta Med. 79:731–736. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Xin H, Zhou F, Liu T, Li GY, Liu J, Gao
ZZ, Bai GY, Lu H and Xin ZC: Icariin ameliorates
streptozotocin-induced diabetic retinopathy in vitro and in vivo.
Int J Mol Sci. 13:866–878. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Qi MY, Kai C, Liu HR, Su YH and Yu SQ:
Protective effect of Icariin on the early stage of experimental
diabetic nephropathy induced by streptozotocin via modulating
transforming growth factor beta1 and type IV collagen expression in
rats. J Ethnopharmacol. 138:731–736. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Lu YF, Xu YY, Jin F, Wu Q, Shi JS and Liu
J: Icariin is a PPARα activator inducing lipid metabolic gene
expression in mice. Molecules. 19:18179–18191. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Tran B, Oliver S, Rosa J and Galassetti P:
Aspects of inflammation and oxidative stress in pediatric obesity
and type 1 diabetes: An overview of ten years of studies. Exp
Diabetes Res. 2012:6836802012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Devaraj S, Dasu MR, Rockwood J, Winter W,
Griffen SC and Jialal I: Increased toll-like receptor (TLR) 2 and
TLR4 expression in monocytes from patients with type 1 diabetes:
Further evidence of a proinflammatory state. J Clin Endocrinol
Metab. 93:578–583. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Devaraj S, Glaser N, Griffen S,
Wang-Polagruto J, Miguelino E and Jialal I: Increased monocytic
activity and biomarkers of inflammation in patients with type 1
diabetes. Diabetes. 55:774–779. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yamagishi S: Advanced glycation end
products and receptor-oxidative stress system in diabetic vascular
complications. Ther Apher Dial. 13:534–539. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Maritim AC, Sanders RA and Watkins JB III:
Diabetes, oxidative stress and antioxidants: A review. J Biochem
Mol Toxicol. 17:24–38. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Chen Y, Sun T, Wu J, Kalionis B, Zhang C,
Yuan D, Huang J, Cai W, Fang H and Xia S: Icariin intervenes in
cardiac inflammaging through upregulation of SIRT6 enzyme activity
and inhibition of the NF-Kappa B pathway. Biomed Res Int.
2015:8959762015.PubMed/NCBI
|
|
40
|
Zhou H, Yuan Y, Liu Y, Ni J, Deng W, Bian
ZY, Dai J and Tang QZ: Icariin protects H9c2 cardiomyocytes from
lipopolysaccharide-induced injury via inhibition of the reactive
oxygen species-dependent c-Jun N-terminal kinases/nuclear factor-kB
pathway. Mol Med Rep. 11:4327–4332. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wei Y, Liu B, Sun J, Lv Y, Luo Q, Liu F
and Dong J: Regulation of Th17/Treg function contributes to the
attenuation of chronic airway inflammation by icariin in
ovalbumin-induced murine asthma model. Immunobiology. 220:789–797.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Shen R, Deng W, Li C and Zeng G: A natural
flavonoid glucoside icariin inhibits Th1 and Th17 cell
differentiation and ameliorates experimental autoimmune
encephalomyelitis. Int Immunopharmacol. 24:224–231. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Chi L, Gao W, Shu X and Lu X: A natural
flavonoid glucoside, icariin, regulates Th17 and alleviates
rheumatoid arthritis in a murine model. Mediators Inflamm.
2014:3920622014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Li L, Sun J, Xu C, Zhang H, Wu J, Liu B
and Dong J: Icariin ameliorates cigarette smoke induced
inflammatory responses via suppression of NF-kB and modulation of
GR in vivo and in vitro. PLoS One. 9:e1023452014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Cui J, Zhu M, Zhu S, Wang G, Xu Y and Geng
D: Inhibitory effect of icariin on Ti-induced inflammatory
osteoclastogenesis. J Surg Res. 192:447–453. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Tao F, Qian C, Guo W, Luo Q, Xu Q and Sun
Y: Inhibition of Th1/Th17 responses via suppression of STAT1 and
STAT3 activation contributes to the amelioration of murine
experimental colitis by a natural flavonoid glucoside icariin.
Biochem Pharmacol. 85:798–807. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhou J, Wu J, Chen X, Fortenbery N,
Eksioglu E, Kodumudi KN, Pk EB, Dong J, Djeu JY and Wei S: Icariin
and its derivative, ICT, exert anti-inflammatory, anti-tumor
effects and modulate myeloid derived suppressive cells (MDSCs)
functions. Int Immunopharmacol. 11:890–898. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Chen SR, Xu XZ, Wang YH, Chen JW, Xu SW,
Gu LQ and Liu PQ: Icariin derivative inhibits inflammation through
suppression of p38 mitogen-activated protein kinase and nuclear
factor-kappaB pathways. Biol Pharm Bull. 33:1307–1313. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Hsieh TP, Sheu SY, Sun JS and Chen MH:
Icariin inhibits osteoclast differentiation and bone resorption by
suppression of MAPKs/NF-kB regulated HIF-1α and PGE (2) synthesis.
Phytomedicine. 18:176–185. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Guo J, Li F, Wu Q, Lu Y and Shi J:
Protective effects of icariin on brain dysfunction induced by
lipopolysaccharide in rats. Phytomedicine. 17:950–955. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Grey ST, Longo C, Shukri T, Patel VI,
Csizmadia E, Daniel S, Arvelo MB, Tchipashvili V and Ferran C:
Genetic engineering of a suboptimal islet graft with A20 preserves
beta cell mass and function. J Immunol. 170:6250–6256. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Xu HB and Huang ZQ: Icariin enhances
endothelial nitric-oxide synthase expression on human endothelial
cells in vitro. Vascul Pharmacol. 47:18–24. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wo Y, Zhu D, Yu Y and Lou Y: Involvement
of NF-kappaB and AP-1 activation in icariin promoted cardiac
differentiation of mouse embryonic stem cells. Eur J Pharmacol.
586:59–66. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zeng KW, Fu H, Liu GX and Wang XM: Icariin
attenuates lipopolysaccharide-induced microglial activation and
resultant death of neurons by inhibiting TAK1/IKK/NF-kappaB and
JNK/p38 MAPK pathways. Int Immunopharmacol. 10:668–678. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wu W, Pan C, Yu H, Gong H and Wang Y:
Heparanase expression in gallbladder carcinoma and its correlation
to prognosis. J Gastroenterol Hepatol. 23:491–497. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Yang L, Wang Y, Guo H and Guo M:
Synergistic anti-cancer effects of icariin and temozolomide in
glioblastoma. Cell Biochem Biophys. 71:1379–1385. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Han H, Xu B, Hou P, Jiang C, Liu L, Tang
M, Yang X, Zhang Y and Liu Y: Icaritin sensitizes human
glioblastoma cells to TRAIL-induced apoptosis. Cell Biochem
Biophys. 72:533–542. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhang Y, Wei Y, Zhu Z, Gong W, Liu X, Hou
Q, Sun Y, Chai J, Zou L and Zhou T: Icariin enhances
radiosensitivity of colorectal cancer cells by suppressing NF-kB
activity. Cell Biochem Biophys. 69:303–310. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Shi DB, Li XX, Zheng HT, Li DW, Cai GX,
Peng JJ, Gu WL, Guan ZQ, Xu Y and Cai SJ: Icariin-mediated
inhibition of NF-kB activity enhances the in vitro and in vivo
antitumour effect of 5-fluorouracil in colorectal cancer. Cell
Biochem Biophys. 69:523–530. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Gazdar AF, Chick WL, Oie HK, Sims HL, King
DL, Weir GC and Lauris V: Continuous, clonal, insulin- and
somatostatin-secreting cell lines established from a transplantable
rat islet cell tumor. Proc Natl Acad Sci USA. 77:3519–3523. 1980.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Praz GA, Halban PA, Wollheim CB, Blondel
B, Strauss AJ and Renold AE: Regulation of immunoreactive-insulin
release from a rat cell line (RINm5F). Biochem J;. 210:345–352.
1983. View Article : Google Scholar : PubMed/NCBI
|