|
1
|
Yue D, Ciccolini A, Avilla E and Waserman
S: Food allergy and anaphylaxis. J Asthma Allergy. 11:111–120.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Sicherer SH and Leung DY: Advances in
allergic skin disease, anaphylaxis, and hypersensitivity reactions
to foods, drugs, and insects in 2010. J Allergy Clin Immunol.
127:326–335. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Parrish CP and Kim H: Food-induced
anaphylaxis: An update. Curr Allergy Asthma Rep. 18:412018.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Hill DA, Grundmeier RW, Ram G and Spergel
JM: The epidemiologic characteristics of healthcare
provider-diagnosed eczema, asthma, allergic rhinitis, and food
allergy in children: A retrospective cohort study. BMC Pediatr.
16:1332016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Koplin JJ, Mills EN and Allen KJ:
Epidemiology of food allergy and food-induced anaphylaxis: Is there
really a western world epidemic? Curr Opin Allergy Clin Immunol.
15:409–416. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Yang Z, Zheng W, Yung E, Zhong N, Wong GW
and Li J: Frequency of food group consumption and risk of allergic
disease and sensitization in schoolchildren in urban and rural
china. Clin Exp Allergy. 45:1823–1832. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Mullins RJ, Dear KB and Tang ML: Time
trends in Australian hospital anaphylaxis admissions in 1998–1999
to 2011–2012. J Allergy Clin Immunol. 136:367–375. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Turner PJ, Gowland MH, Sharma V,
Ierodiakonou D, Harper N, Garcez T, Pumphrey R and Boyle RJ:
Increase in anaphylaxis-related hospitalizations but no increase in
fatalities: An analysis of United Kingdom national anaphylaxis
data, 1992–2012. J Allergy Clin Immunol. 135:956–963, e951. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Stone KD, Prussin C and Metcalfe DD: IgE,
mast cells, basophils, and eosinophils. J Allergy Clin Immunol. 125
Suppl 2:S73–S80. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Spergel JM: Nonimmunoglobulin e-mediated
immune reactions to foods. Allergy Asthma Clin Immunol. 2:78–85.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Castro-Sanchez P and Martin-Villa JM: Gut
immune system and oral tolerance. Br J Nutr. 109 Suppl 2:S3–S11.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Coombes JL, Siddiqui KR, Arancibia-Carcamo
CV, Hall J, Sun CM, Belkaid Y and Powrie F: A functionally
specialized population of mucosal CD103+ DCs induces Foxp3+
regulatory T cells via a TGF-beta and retinoic acid-dependent
mechanism. J Exp Med. 204:1757–1764. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Bakdash G, Vogelpoel LT, van Capel TM,
Kapsenberg ML and de Jong EC: Retinoic acid primes human dendritic
cells to induce gut-homing, IL-10-producing regulatory T cells.
Mucosal Immunol. 8:265–278. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Syed A, Garcia MA, Lyu SC, Bucayu R, Kohli
A, Ishida S, Berglund JP, Tsai M, Maecker H, O'Riordan G, et al:
Peanut oral immunotherapy results in increased antigen-induced
regulatory T-cell function and hypomethylation of forkhead box
protein 3 (FOXP3). J Allergy Clin Immunol. 133:500–510. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Wang YH: Developing food allergy: A
potential immunologic pathway linking skin barrier to gut.
F1000Res. 5:F10002016. View Article : Google Scholar
|
|
16
|
Rivas Noval M, Burton OT, Wise P,
Charbonnier LM, Georgiev P, Oettgen HC, Rachid R and Chatila TA:
Regulatory T cell reprogramming toward a Th2-cell-like lineage
impairs oral tolerance and promotes food allergy. Immunity.
42:512–523. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Turcanu V, Maleki SJ and Lack G:
Characterization of lymphocyte responses to peanuts in normal
children, peanut-allergic children, and allergic children who
acquired tolerance to peanuts. J Clin Invest. 111:1065–1072. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Nakajima-Adachi H, Ebihara A, Kikuchi A,
Ishida T, Sasaki K, Hirano K, Watanabe H, Asai K, Takahashi Y,
Kanamori Y, et al: Food antigen causes TH2-dependent enteropathy
followed by tissue repair in T-cell receptor transgenic mice. J
Allergy Clin Immunol. 117:1125–1132. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Friedenstein AJ, Petrakova KV, Kurolesova
AI and Frolova GP: Heterotopic of bone marrow. Analysis of
precursor cells for osteogenic and hematopoietic tissues.
Transplantation. 6:230–247. 1968. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Bernardo ME, Locatelli F and Fibbe WE:
Mesenchymal stromal cells. Ann N Y Acad Sci. 1176:101–117. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Cho KS, Park MK, Kang SA, Park HY, Hong
SL, Park HK, Yu HS and Roh HJ: Adipose-derived stem cells
ameliorate allergic airway inflammation by inducing regulatory T
cells in a mouse model of asthma. Mediators Inflamm.
2014:4364762014. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
de Aguiar CF, Castoldi A, Andrade-Oliveira
V, Ignacio A, da Cunha FF, Felizardo RJF, Bassi ÊJ, Câmara NOS and
de Almeida DC: Mesenchymal stromal cells modulate gut inflammation
in experimental colitis. Inflammopharmacology. 26:251–260. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ryan JM, Barry FP, Murphy JM and Mahon BP:
Mesenchymal stem cells avoid allogeneic rejection. J Inflamm
(Lond). 2:82005. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Fujii S, Miura Y, Fujishiro A, Shindo T,
Shimazu Y, Hirai H, Tahara H, Takaori-Kondo A, Ichinohe T and
Maekawa T: Graft-versus-host disease amelioration by human bone
marrow mesenchymal stromal/stem cell-derived extracellular vesicles
is associated with peripheral preservation of naive t cell
populations. Stem Cells. 36:434–445. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Uccelli A, Moretta L and Pistoia V:
Mesenchymal stem cells in health and disease. Nat Rev Immunol.
8:726–736. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ren G, Zhang L, Zhao X, Xu G, Zhang Y,
Roberts AI, Zhao RC and Shi Y: Mesenchymal stem cell-mediated
immunosuppression occurs via concerted action of chemokines and
nitric oxide. Cell Stem Cell. 2:141–150. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ghannam S, Pene J, Moquet-Torcy G,
Jorgensen C and Yssel H: Mesenchymal stem cells inhibit human Th17
cell differentiation and function and induce a T regulatory cell
phenotype. J Immunol. 185:302–312. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Beyth S, Borovsky Z, Mevorach D,
Liebergall M, Gazit Z, Aslan H, Galun E and Rachmilewitz J: Human
mesenchymal stem cells alter antigen-presenting cell maturation and
induce T-cell unresponsiveness. Blood. 105:2214–2219. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Spaggiari GM, Abdelrazik H, Becchetti F
and Moretta L: MSCs inhibit monocyte-derived DC maturation and
function by selectively interfering with the generation of immature
DCs: Central role of MSC-derived prostaglandin E2. Blood.
113:6576–6583. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Li T, Xia M, Gao Y, Chen Y and Xu Y: Human
umbilical cord mesenchymal stem cells: An overview of their
potential in cell-based therapy. Expert Opin Biol Ther.
15:1293–1306. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Li T, Yan Y, Wang B, Qian H, Zhang X, Shen
L, Wang M, Zhou Y, Zhu W, Li W and Xu W: Exosomes derived from
human umbilical cord mesenchymal stem cells alleviate liver
fibrosis. Stem Cells Dev. 22:845–854. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Weiss ML, Anderson C, Medicetty S,
Seshareddy KB, Weiss RJ, VanderWerff I, Troyer D and McIntosh KR:
Immune properties of human umbilical cord Wharton's jelly-derived
cells. Stem Cells. 26:2865–2874. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Xie Z, Hao H, Tong C, Cheng Y, Liu J, Pang
Y, Si Y, Guo Y, Zang L, Mu Y and Han W: Human umbilical
cord-derived mesenchymal stem cells elicit macrophages into an
anti-inflammatory phenotype to alleviate insulin resistance in type
2 diabetic rats. Stem Cells. 34:627–639. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Kim HS, Shin TH, Lee BC, Yu KR, Seo Y, Lee
S, Seo MS, Hong IS, Choi SW, Seo KW, et al: Human umbilical cord
blood mesenchymal stem cells reduce colitis in mice by activating
NOD2 signaling to COX2. Gastroenterology. 145(1392–1403):
e1391–e1398. 2013.
|
|
35
|
Sun L, Wang D, Liang J, Zhang H, Feng X,
Wang H, Hua B, Liu B, Ye S, Hu X, et al: Umbilical cord mesenchymal
stem cell transplantation in severe and refractory systemic lupus
erythematosus. Arthritis Rheum. 62:2467–2475. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Qiao C, Xu W, Zhu W, Hu J, Qian H, Yin Q,
Jiang R, Yan Y, Mao F, Yang H, et al: Human mesenchymal stem cells
isolated from the umbilical cord. Cell Biol Int. 32:8–15. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yen BL, Huang HI, Chien CC, Jui HY, Ko BS,
Yao M, Shun CT, Yen ML, Lee MC and Chen YC: Isolation of
multipotent cells from human term placenta. Stem Cells. 23:3–9.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Paula-Silva J, Santiago AF, Oliveira RP,
Rosa ML, Carvalho CR, Amaral JF and Faria AM: Effect of a
protein-free diet in the development of food allergy and oral
tolerance in BALB/c mice. Br J Nutr. 113:935–943. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kay AG, Long G, Tyler G, Stefan A,
Broadfoot SJ, Piccinini AM, Middleton J and Kehoe O: Mesenchymal
stem cell-conditioned medium reduces disease severity and immune
responses in inflammatory arthritis. Sci Rep. 7:180192017.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Pouya S, Heidari M, Baghaei K, Aghdaei
Asadzadeh H, Moradi A, Namaki S, Zali MR and Hashemi SM: Study the
effects of mesenchymal stem cell conditioned medium injection in
mouse model of acute colitis. Int Immunopharmacol. 54:86–94. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Nagata Y, Yamamoto T, Hayashi M, Hayashi S
and Kadowaki M: Improvement of therapeutic efficacy of oral
immunotherapy in combination with regulatory T cell-inducer
kakkonto in a murine food allergy model. PLoS One. 12:e01705772017.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Cheng L, Jin H, Qiang Y, Wu S, Yan C, Han
M, Xiao T, Yan N, An H, Zhou X, et al: High fat diet exacerbates
dextran sulfate sodium induced colitis through disturbing mucosal
dendritic cell homeostasis. Int Immunopharmacol. 40:1–10. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Parada AE, Needham DM and Fuhrman JA:
Every base matters: Assessing small subunit rRNA primers for marine
microbiomes with mock communities, time series and global field
samples. Environ Microbiol. 18:1403–1414. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Metcalf JL, Xu ZZ, Weiss S, Lax S, Van
Treuren W, Hyde ER, Song SJ, Amir A, Larsen P, Sangwan N, et al:
Microbial community assembly and metabolic function during
mammalian corpse decomposition. Science. 351:158–162. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ravussin Y, Koren O, Spor A, LeDuc C,
Gutman R, Stombaugh J, Knight R, Ley RE and Leibel RL: Responses of
gut microbiota to diet composition and weight loss in lean and
obese mice. Obesity (Silver Spring). 20:738–747. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Lindner U, Kramer J, Rohwedel J and
Schlenke P: Mesenchymal stem or stromal cells: Toward a better
understanding of their biology? Transfus Med Hemother. 37:75–83.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Dominici M, Le Blanc K, Mueller I,
Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A,
Prockop Dj and Horwitz E: Minimal criteria for defining multipotent
mesenchymal stromal cells. The international society for cellular
therapy position statement. Cytotherapy. 8:315–317. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Gazit Z, Pelled G, Sheyn D, Kimelman N and
Gazit D: Mesenchymal Stem CellsEssentials of Stem Cell Biology
(third Edition). Lanza R and Atala A: Academic Press; Boston: pp.
255–266. 2014, View Article : Google Scholar
|
|
50
|
van Halteren AG, van der Cammen MJ,
Biewenga J, Savelkoul HF and Kraal G: IgE and mast cell response on
intestinal allergen exposure: A murine model to study the onset of
food allergy. J Allergy Clin Immunol. 99:94–99. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Sjodin Simonyte K, Vidman L, Ryden P and
West CE: Emerging evidence of the role of gut microbiota in the
development of allergic diseases. Curr Opin Allergy Clin Immunol.
16:390–395. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Vital M, Howe AC and Tiedje JM: Revealing
the bacterial butyrate synthesis pathways by analyzing
(meta)genomic data. MBio. 5:e008892014. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Nemeth K, Keane-Myers A, Brown JM,
Metcalfe DD, Gorham JD, Bundoc VG, Hodges MG, Jelinek I, Madala S,
Karpati S and Mezey E: Bone marrow stromal cells use TGF-beta to
suppress allergic responses in a mouse model of ragweed-induced
asthma. Proc Natl Acad Sci USA. 107:5652–5657. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Majore I, Moretti P, Stahl F, Hass R and
Kasper C: Growth and differentiation properties of mesenchymal
stromal cell populations derived from whole human umbilical cord.
Stem Cell Rev. 7:17–31. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Phillips CD, Wongsaisri P, Htut T and
Grossman T: Purified umbilical cord derived mesenchymal stem cell
treatment in a case of systemic lupus erythematosus. Clin Transl
Med. 6:312017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Robinson AM, Sakkal S, Park A, Jovanovska
V, Payne N, Carbone SE, Miller S, Bornstein JC, Bernard C, Boyd R
and Nurgali K: Mesenchymal stem cells and conditioned medium avert
enteric neuropathy and colon dysfunction in guinea pig TNBS-induced
colitis. Am J Physiol Gastrointest Liver Physiol. 307:G1115–G1129.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Nowak-Wegrzyn A and Sampson HA: Future
therapies for food allergies. J Allergy Clin Immunol. 127:558–573;
quiz 574–555. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Miyagawa I, Nakayamada S, Nakano K,
Yamagata K, Sakata K, Yamaoka K and Tanaka Y: Induction of
regulatory T cells and its regulation with insulin-like growth
factor/insulin-like growth factor binding protein-4 by human
mesenchymal stem cells. J Immunol. 199:1616–1625. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Rubin BK: Secretion properties, clearance,
and therapy in airway disease. Transl Respir Med. 2:62014.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Lambrecht BN and Hammad H: The immunology
of asthma. Nat Immunol. 16:45–56. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Xia W, Bai J, Wu X, Wei Y, Feng S, Li L,
Zhang J, Xiong G, Fan Y, Shi J and Li H: Interleukin-17A promotes
MUC5AC expression and goblet cell hyperplasia in nasal polyps via
the Act1-mediated pathway. PLoS One. 9:e989152014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Kuperman DA and Schleimer RP:
Interleukin-4, interleukin-13, signal transducer and activator of
transcription factor 6, and allergic asthma. Curr Mol Med.
8:384–392. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Dock-Nascimento DB, Junqueira K and
Aguilar-Nascimento JE: Rapid restoration of colonic goblet cells
induced by a hydrolyzed diet containing probiotics in experimental
malnutrition. Acta Cir Bras. 1 Suppl 22:S72–S76. 2007. View Article : Google Scholar
|
|
64
|
McDole JR, Wheeler LW, McDonald KG, Wang
B, Konjufca V, Knoop KA, Newberry RD and Miller MJ: Goblet cells
deliver luminal antigen to CD103+ dendritic cells in the small
intestine. Nature. 483:345–349. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Yamaki K and Yoshino S: Remission of food
allergy by the Janus kinase inhibitor ruxolitinib in mice. Int
Immunopharmacol. 18:217–224. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Clooney AG, Fouhy F, Sleator RD,
O'Driscoll A, Stanton C, Cotter PD and Claesson MJ: Comparing
apples and oranges?: Next generation sequencing and its impact on
microbiome analysis. PLoS One. 11:e01480282016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Arrieta MC, Stiemsma LT, Dimitriu PA,
Thorson L, Russell S, Yurist-Doutsch S, Kuzeljevic B, Gold MJ,
Britton HM and Lefebvre DL: Early infancy microbial and metabolic
alterations affect risk of childhood asthma. Sci Transl Med.
7:307ra1522015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Yamashiro Y: Gut microbiota in health and
disease. Ann Nutr Metab. 71:242–246. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Furusawa Y, Obata Y, Fukuda S, Endo TA,
Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, et
al: Commensal microbe-derived butyrate induces the differentiation
of colonic regulatory T cells. Nature. 504:446–450. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Bibbo S, Ianiro G, Giorgio V, Scaldaferri
F, Masucci L, Gasbarrini A and Cammarota G: The role of diet on gut
microbiota composition. Eur Rev Med Pharmacol Sci. 20:4742–4749.
2016.PubMed/NCBI
|
|
71
|
Soontararak S, Chow L, Johnson V, Coy J,
Wheat W, Regan D and Dow S: Mesenchymal stem cells (MSC) derived
from induced pluripotent stem cells (iPSC) equivalent to
adipose-derived MSC in promoting intestinal healing and microbiome
normalization in mouse inflammatory bowel disease model. Stem Cells
Transl Med. 7:456–467. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Hurez V, Dao V, Liu A, Pandeswara S,
Gelfond J, Sun L, Bergman M, Orihuela CJ, Galvan V, Padrón Á, et
al: Chronic mTOR inhibition in mice with rapamycin alters T, B,
myeloid, and innate lymphoid cells and gut flora and prolongs life
of immune-deficient mice. Aging Cell. 14:945–956. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Henderson AL, Brand MW, Darling RJ, Maas
KJ, Detzel CJ, Hostetter J, Wannemuehler MJ and Weaver EM:
Attenuation of colitis by serum-derived bovine
immunoglobulin/protein isolate in a defined microbiota mouse model.
Dig Dis Sci. 60:3293–3303. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Carbonnel F, Soularue E, Coutzac C, Chaput
N, Mateus C, Lepage P and Robert C: Inflammatory bowel disease and
cancer response due to anti-CTLA-4: Is it in the flora? Semin
Immunopathol. 39:327–331. 2017. View Article : Google Scholar : PubMed/NCBI
|