|
1
|
Baldini E, Odorisio T, Sorrenti S, Catania
A, Tartaglia F, Carbotta G, Pironi D, Rendina R, D'Armiento E,
Persechino S, et al: Vitiligo and autoimmune thyroid disorders.
Front Endocrinol (Lausanne). 8:2902017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ezzedine K and Eleftheriadou V: Vitiligo
and quality of life: The dark face of whiteness. Br J Dermatol.
178:28–29. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Dwivedi M, Laddha NC, Shah K, Shah BJ and
Begum R: Involvement of interferon-gamma genetic variants and
intercellular adhesion molecule-1 in onset and progression of
generalized vitiligo. J Interferon Cytokine Res. 33:646–659. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Wu XG, Hong WS and Xu A: GM-CSF: a
possible prognostic serum biomarker of vitiligo patients'
considered for transplantation treatment with cultured autologous
melanocytes: A pilot study. J Eur Acad Dermatol Venereol.
30:1409–1411. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Mitra S, De Sarkar S, Pradhan A, Pati AK,
Pradhan R, Mondal D, Sen S, Ghosh A, Chatterjee S and Chatterjee M:
Levels of oxidative damage and proinflammatory cytokines are
enhanced in patients with active vitiligo. Free Radic Res.
51:986–994. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Abdellatif AA, Zaki AM, Abdo HM, Aly DG,
Emara TA, El-Toukhy S, Emam HM and Abdelwahab MS: Assessment of
serum levels of granulocyte-macrophage colony-stimulating factor
(GM-CSF) among non-segmental vitiligo patients: A pilot study. Acta
Dermatovenerol Alp Pannonica Adriat. 24:43–45. 2015.PubMed/NCBI
|
|
7
|
Laddha NC, Dwivedi M, Gani AR, Mansuri MS
and Begum R: Tumor necrosis factor B (TNFB) genetic variants and
its increased expression are associated with vitiligo
susceptibility. PLoS One. 8:e817362013. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Kemp EH: Tumour necrosis factor-α
antagonists as therapies for vitiligo. Br J Dermatol. 173:6352015.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Webb KC, Tung R, Winterfield LS, Gottlieb
AB, Eby JM, Henning SW and Le Poole IC: Tumour necrosis factor-α
inhibition can stabilize disease in progressive vitiligo. Br J
Dermatol. 173:641–650. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Aydıngöz IE, Kanmaz-Özer M, Gedikbaşi A,
Vural P, Doğru-Abbasoğlu S and Uysal M: The combination of tumour
necrosis factor-α −308A and interleukin-10 −1082G gene
polymorphisms and increased serum levels of related cytokines:
Susceptibility to vitiligo. Clin Exp Dermatol. 40:71–77. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Camara-Lemarroy CR and Salas-Alanis JC:
The role of tumor necrosis factor-α in the pathogenesis of
vitiligo. Am J Clin Dermatol. 14:343–350. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Farhan J, Al-Shobaili HA, Zafar U, Al
Salloom A, Meki AR and Rasheed Z: Interleukin-6: A possible
inflammatory link between vitiligo and type 1 diabetes. Br J Biomed
Sci. 71:151–157. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Manga P, Elbuluk N and Orlow SJ: Recent
advances in understanding vitiligo. F1000Res. 5:22342016.
View Article : Google Scholar
|
|
14
|
Bhardwaj S, Rani S, Srivastava N, Kumar R
and Parsad D: Increased systemic and epidermal levels of IL-17A and
IL-1β promotes progression of non-segmental vitiligo. Cytokine.
91:153–161. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zhou L, Shi YL, Li K, Hamzavi I, Gao TW,
Huggins RH, Lim HW and Mi QS: Increased circulating Th17 cells and
elevated serum levels of TGF-beta and IL-21 are correlated with
human non-segmental vitiligo development. Pigment Cell Melanoma
Res. 28:324–329. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Speeckaert R, Lambert J, Grine L, Van Gele
M, De Schepper S and van Geel N: The many faces of interleukin-17
in inflammatory skin diseases. Br J Dermatol. 175:892–901. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Miniati A, Weng Z, Zhang B, Therianou A,
Vasiadi M, Nicolaidou E, Stratigos AJ, Antoniou C and Theoharides
TC: Stimulated human melanocytes express and release interleukin-8,
which is inhibited by luteolin: Relevance to early vitiligo. Clin
Exp Dermatol. 39:54–57. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Elela MA, Hegazy RA, Fawzy MM, Rashed LA
and Rasheed H: Interleukin 17, interleukin 22 and FoxP3 expression
in tissue and serum of non-segmental vitiligo: A case- controlled
study on eighty-four patients. Eur J Dermatol. 23:350–355.
2013.PubMed/NCBI
|
|
19
|
Toussirot É and Aubin F: Paradoxical
reactions under TNF-α blocking agents and other biological agents
given for chronic immune-mediated diseases: An analytical and
comprehensive overview. RMD Open. 2:e0002392016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Meurer M and Ceric-Dehdari P: Systemic
treatment of vitiligo: Balance and current developments. Hautarzt.
68:876–884. 2017.(In German). View Article : Google Scholar : PubMed/NCBI
|