|
1
|
Lee BL, Bathija R and Weinreb RN: The
definition of normal-tension glaucoma. J Glaucoma. 7:366–371. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Cho HK and Kee C: Population-based
glaucoma prevalence studies in Asians. Surv Ophthalmol. 59:434–447.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Budak Y and Akdogan M: Retinal ganglion
cell death. Glaucoma-Basic and Clinical Concepts. Rumelt S: InTech;
Rijeka: pp. 33–56. 2011, https://www.intechopen.com/books/glaucoma-basic-and-clinical-concepts/retinal-ganglion-cell-death
|
|
4
|
Drance S, Anderson DR and Schulzer M:
Collaborative Normal-Tension Glaucoma Study Group: Risk factors for
progression of visual field abnormalities in normal-tension
glaucoma. Am J Ophthalmol. 131:699–708. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Flammer J, Orgül S, Costa VP, Orzalesi N,
Krieglstein GK, Serra LM, Renard JP and Stefánsson E: The impact of
ocular blood flow in glaucoma. Prog Retin Eye Res. 21:359–393.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Grunwald JE, Piltz J, Hariprasad SM and
DuPont J: Optic nerve and choroidal circulation in glaucoma. Invest
Ophthalmol Vis Sci. 39:2329–2336. 1998.PubMed/NCBI
|
|
7
|
Quaranta L and Floriani I: The rate of
progression and ocular perfusion pressure in the Low-pressure
Glaucoma Treatment Study. Am J Ophthalmol. 152:880–881; author
reply 880-881. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Sung KR, Cho JW, Lee S, Yun SC, Choi J, Na
JH, Lee Y and Kook MS: Characteristics of visual field progression
in medically treated normal-tension glaucoma patients with unstable
ocular perfusion pressure. Invest Ophthalmol Vis Sci. 52:737–743.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Choi J, Kim KH, Jeong J, Cho HS, Lee CH
and Kook MS: Circadian fluctuation of mean ocular perfusion
pressure is a consistent risk factor for normal-tension glaucoma.
Invest Ophthalmol Vis Sci. 48:104–111. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Okumura Y, Yuki K and Tsubota K: Low
diastolic blood pressure is associated with the progression of
normal-tension glaucoma. Ophthalmologica. 228:36–41. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Gasser P and Flammer J: Blood-cell
velocity in the nailfold capillaries of patients with
normal-tension and high-tension glaucoma. Am J Ophthalmol.
111:585–588. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Flammer J: The vascular concept of
glaucoma. Surv Ophthalmol. 38 Suppl:S3–S6. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Flammer J and Mozaffarieh M:
Autoregulation, a balancing act between supply and demand. Can J
Ophthalmol. 43:317–321. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Abegão Pinto L, Vandewalle E and Stalmans
I: Disturbed correlation between arterial resistance and
pulsatility in glaucoma patients. Acta Ophthalmol. 90:e214–e220.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Galassi F, Sodi A, Ucci F, Renieri G,
Pieri B and Baccini M: Ocular hemodynamics and glaucoma prognosis:
A color Doppler imaging study. Arch Ophthalmol. 121:1711–1715.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Emre M, Orgül S, Gugleta K and Flammer J:
Ocular blood flow alteration in glaucoma is related to systemic
vascular dysregulation. Br J Ophthalmol. 88:662–666. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Pache M, Kaiser HJ, Akhalbedashvili N,
Lienert C, Dubler B, Kappos L and Flammer J: Extraocular blood flow
and endothelin-1 plasma levels in patients with multiple sclerosis.
Eur Neurol. 49:164–168. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Chauhan BC, LeVatte TL, Jollimore CA, Yu
PK, Reitsamer HA, Kelly ME, Yu DY, Tremblay F and Archibald ML:
Model of endothelin-1-induced chronic optic neuropathy in rat.
Invest Ophthalmol Vis Sci. 45:144–152. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Flammer J and Mozaffarieh M: What is the
present pathogenetic concept of glaucomatous optic neuropathy? Surv
Ophthalmol. 52 (Suppl 2):S162–S173. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Furlanetto RL, De Moraes CG, Teng CC,
Liebmann JM, Greenfield DS, Gardiner SK, Ritch R and Krupin T:
Low-Pressure Glaucoma Treatment Study Group: Risk factors for optic
disc hemorrhage in the Low-Pressure Glaucoma Treatment Study. Am J
Ophthalmol. 157:945–952. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Orgül S, Kaiser HJ, Flammer J and Gasser
P: Systemic blood pressure and capillary blood-cell velocity in
glaucoma patients: A preliminary study. Eur J Ophthalmol. 5:88–91.
1995. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Moore D, Harris A, Wudunn D, Kheradiya N
and Siesky B: Dysfunctional regulation of ocular blood flow: A risk
factor for glaucoma? Clin Ophthalmol. 2:849–861. 2008.PubMed/NCBI
|
|
23
|
Charlson ME, de Moraes CG, Link A, Wells
MT, Harmon G, Peterson JC, Ritch R and Liebmann JM: Nocturnal
systemic hypotension increases the risk of glaucoma progression.
Ophthalmology. 121:2004–2012. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Bowe A, Grünig M, Schubert J, Demir M,
Hoffmann V, Kütting F, Pelc A and Steffen HM: Circadian variation
in arterial blood pressure and glaucomatous optic neuropathy - a
systematic review and meta-analysis. Am J Hypertens. 28:1077–1082.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Lee J, Choi J, Jeong D, Kim S and Kook MS:
Relationship between daytime variability of blood pressure or
ocular perfusion pressure and glaucomatous visual field
progression. Am J Ophthalmol. 160:522–537.e1. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Flammer J, Konieczka K and Flammer AJ: The
primary vascular dysregulation syndrome: Implications for eye
diseases. EPMA J. 4:142013. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Konieczka K, Ritch R, Traverso CE, Kim DM,
Kook MS, Gallino A, Golubnitschaja O, Erb C, Reitsamer HA, Kida T,
et al: Flammer syndrome. EPMA J. 5:112014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Cursiefen C, Wisse M, Cursiefen S,
Jünemann A, Martus P and Korth M: Migraine and tension headache in
high-pressure and normal-pressure glaucoma. Am J Ophthalmol.
129:102–104. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Buckley C, Hadoke PW, Henry E and O'Brien
C: Systemic vascular endothelial cell dysfunction in normal
pressure glaucoma. Br J Ophthalmol. 86:227–232. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Teuchner B, Orgül S, Ulmer H, Haufschild T
and Flammer J: Reduced thirst in patients with a vasospastic
syndrome. Acta Ophthalmol Scand. 82:738–740. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Gherghel D, Orgül S, Gugleta K and Flammer
J: Retrobulbar blood flow in glaucoma patients with nocturnal
over-dipping in systemic blood pressure. Am J Ophthalmol.
132:641–647. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wunderlich K, Zimmerman C, Gutmann H,
Teuchner B, Flammer J and Drewe J: Vasospastic persons exhibit
differential expression of ABC-transport proteins. Mol Vis.
9:756–761. 2003.PubMed/NCBI
|
|
33
|
Pache M, Kräuchi K, Cajochen C,
Wirz-Justice A, Dubler B, Flammer J and Kaiser HJ: Cold feet and
prolonged sleep-onset latency in vasospastic syndrome. Lancet.
358:125–126. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Mozaffarieh M, Osusky R, Schotzau A and
Flammer J: Relationship between optic nerve head and finger blood
flow. Eur J Ophthalmol. 20:136–141. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Mozaffarieh M and Flammer J: New insights
in the pathogenesis and treatment of normal tension glaucoma. Curr
Opin Pharmacol. 13:43–49. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Flammer J: Glaucomatous optic neuropathy:
A reperfusion injury. Klin Monbl Augenheilkd. 218:290–291. 2001.(In
German). View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Gugleta K, Zawinka C, Rickenbacher I,
Kochkorov A, Katamay R, Flammer J and Orgul S: Analysis of retinal
vasodilation after flicker light stimulation in relation to
vasospastic propensity. Invest Ophthalmol Vis Sci. 47:4034–4041.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Gugleta K, Orgül S, Hasler PW, Picornell
T, Gherghel D and Flammer J: Choroidal vascular reaction to
hand-grip stress in subjects with vasospasm and its relevance in
glaucoma. Invest Ophthalmol Vis Sci. 44:1573–1580. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Nitta K: Disc hemorrhage is a sign of
progression in normal-tension glaucoma. J Glaucoma.
21:2762012.PubMed/NCBI
|
|
40
|
Corbett JJ, Phelps CD, Eslinger P and
Montague PR: The neurologic evaluation of patients with low-tension
glaucoma. Invest Ophthalmol Vis Sci. 26:1101–1104. 1985.PubMed/NCBI
|
|
41
|
Kruit MC, Launer LJ, Ferrari MD and van
Buchem MA: Infarcts in the posterior circulation territory in
migraine. The population-based MRI CAMERA study. Brain.
128:2068–2077. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Haefliger IO, Flammer J, Bény JL and
Lüscher TF: Endothelium-dependent vasoactive modulation in the
ophthalmic circulation. Prog Retin Eye Res. 20:209–225. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Toda N and Nakanishi-Toda M: Nitric oxide:
Ocular blood flow, glaucoma, and diabetic retinopathy. Prog Retin
Eye Res. 26:205–238. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Sugiyama T, Moriya S, Oku H and Azuma I:
Association of endothelin-1 with normal tension glaucoma: Clinical
and fundamental studies. Surv Ophthalmol. 39 Suppl 1:S49–S56. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kaiser HJ, Flammer J, Wenk M and Lüscher
T: Endothelin-1 plasma levels in normal-tension glaucoma: Abnormal
response to postural changes. Graefes Arch Clin Exp Ophthalmol.
233:484–488. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Cellini M, Possati GL, Profazio V, Sbrocca
M, Caramazza N and Caramazza R: Color Doppler imaging and plasma
levels of endothelin-1 in low-tension glaucoma. Acta Ophthalmol
Scand Suppl. 224:S22411–13. 1997.
|
|
47
|
Galassi F, Giambene B and Varriale R:
Systemic vascular dysregulation and retrobulbar hemodynamics in
normal-tension glaucoma. Invest Ophthalmol Vis Sci. 52:4467–4471.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Nicolela MT, Ferrier SN, Morrison CA,
Archibald ML, LeVatte TL, Wallace K, Chauhan BC and LeBlanc RP:
Effects of cold-induced vasospasm in glaucoma: The role of
endothelin-1. Invest Ophthalmol Vis Sci. 44:2565–2572. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Su WW, Cheng ST, Hsu TS and Ho WJ:
Abnormal flow-mediated vasodilation in normal-tension glaucoma
using a noninvasive determination for peripheral endothelial
dysfunction. Invest Ophthalmol Vis Sci. 47:3390–3394. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Henry E, Newby DE, Webb DJ, Hadoke PWF and
O'Brien CJ: Altered endothelin-1 vasoreactivity in patients with
untreated normal-pressure glaucoma. Invest Ophthalmol Vis Sci.
47:2528–2532. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Hamed SA, Hamed EA, Ezz Eldin AM and
Mahmoud NM: Vascular risk factors, endothelial function, and
carotid thickness in patients with migraine: Relationship to
atherosclerosis. J Stroke Cerebrovasc Dis. 19:92–103. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Collaborative Normal-Tension Glaucoma
Study Group, . The effectiveness of intraocular pressure reduction
in the treatment of normal-tension glaucoma. Am J Ophthalmol.
126:498–505. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Agnifili L, Carpineto P, Fasanella V,
Mastropasqua R, Zappacosta A, Di Staso S, Costagliola C and
Mastropasqua L: Conjunctival findings in hyperbaric and low-tension
glaucoma: An in vivo confocal microscopy study. Acta Ophthalmol.
90:e132–e137. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Agnifili L, Mastropasqua R, Frezzotti P,
Fasanella V, Motolese I, Pedrotti E, Di Iorio A, Mattei PA,
Motolese E and Mastropasqua L: Circadian intraocular pressure
patterns in healthy subjects, primary open angle and normal tension
glaucoma patients with a contact lens sensor. Acta Ophthalmol.
93:e14–e21. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
De Moraes CG, Jasien JV, Simon-Zoula S,
Liebmann JM and Ritch R: Visual field change and 24-hour
IOP-related profile with a contact lens sensor in treated glaucoma
patients. Ophthalmology. 123:744–753. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Choi J and Kook MS: Systemic and ocular
hemodynamic risk factors in glaucoma. Biomed Res Int.
2015:1419052015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Sakata R, Aihara M, Murata H, Saito H,
Iwase A, Yasuda N and Araie M: Intraocular pressure change over a
habitual 24-hour period after changing posture or drinking water
and related factors in normal tension glaucoma. Invest Ophthalmol
Vis Sci. 54:5313–5320. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Adlina AR, Alisa-Victoria K, Shatriah I,
Liza-Sharmini AT and Ahmad MS: Optic disc topography in Malay
patients with normal-tension glaucoma and primary open-angle
glaucoma. Clin Ophthalmol. 8:2533–2539. 2014.PubMed/NCBI
|
|
59
|
Copt RP, Thomas R and Mermoud A: Corneal
thickness in ocular hypertension, primary open-angle glaucoma, and
normal tension glaucoma. Arch Ophthalmol. 117:14–16. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Lee JW, Wong RL, Chan JC, Wong IY and Lai
JS: Differences in corneal parameters between normal tension
glaucoma and primary open-angle glaucoma. Int Ophthalmol. 35:67–72.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Cao KY, Kapasi M, Betchkal JA and Birt CM:
Relationship between central corneal thickness and progression of
visual field loss in patients with open-angle glaucoma. Can J
Ophthalmol. 47:155–158. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Jonas JB, Wang N and Yang D: Translamina
cribrosa pressure difference as potential element in the
pathogenesis of glaucomatous optic neuropathy. Asia Pac J
Ophthalmol (Phila). 5:5–10. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Burgoyne CF: A biomechanical paradigm for
axonal insult within the optic nerve head in aging and glaucoma.
Exp Eye Res. 93:120–132. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wostyn P, De Groot V, Van Dam D, Audenaert
K and De Deyn PP: Senescent changes in cerebrospinal fluid
circulatory physiology and their role in the pathogenesis of
normal-tension glaucoma. Am J Ophthalmol. 156:5–14.e2. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ren R, Jonas JB, Tian G, Zhen Y, Ma K, Li
S, Wang H, Li B, Zhang X and Wang N: Cerebrospinal fluid pressure
in glaucoma: A prospective study. Ophthalmology. 117:259–266. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Siaudvytyte L, Januleviciene I, Daveckaite
A, Ragauskas A, Bartusis L, Kucinoviene J, Siesky B and Harris A:
Literature review and meta-analysis of translaminar pressure
difference in open-angle glaucoma. Eye (Lond). 29:1242–1250. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Pircher A, Remonda L, Weinreb RN and
Killer HE: Translaminar pressure in Caucasian normal tension
glaucoma patients. Acta Ophthalmol. 95:e524–e531. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Lindén C, Qvarlander S, Jóhannesson G,
Johansson E, Östlund F, Malm J and Eklund A: Normal-tension
glaucoma has normal intracranial pressure: A prospective study
ofintracranial pressure and intraocular pressure in different body
positions. Ophthalmology. 125:361–368. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Jonas JB, Gusek GC and Naumann GO: Optic
disk morphometry in high myopia. Graefes Arch Clin Exp Ophthalmol.
226:587–590. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Rao VR, Krishnamoorthy RR and Yorio T:
Endothelin-1, endothelin A and B receptor expression and their
pharmacological properties in GFAP negative human lamina cribrosa
cells. Exp Eye Res. 84:1115–1124. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Rao VR, Krishnamoorthy RR and Yorio T:
Endothelin-1 mediated regulation of extracellular matrix collagens
in cells of human lamina cribrosa. Exp Eye Res. 86:886–894. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Pérez-Rico C, Gutiérrez-Díaz E,
Mencía-Gutiérrez E, Díaz-de-Atauri MJ and Blanco R: Obstructive
sleep apnea-hypopnea syndrome (OSAHS) and glaucomatous optic
neuropathy. Graefes Arch Clin Exp Ophthalmol. 252:1345–1357. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Lin PW, Friedman M, Lin HC, Chang HW,
Wilson M and Lin MC: Normal tension glaucoma in patients with
obstructive sleep apnea/hypopnea syndrome. J Glaucoma. 20:553–558.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Karakucuk S, Goktas S, Aksu M, Erdogan N,
Demirci S, Oner A, Arda H and Gumus K: Ocular blood flow in
patients with obstructive sleep apnea syndrome (OSAS). Graefes Arch
Clin Exp Ophthalmol. 246:129–134. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Nadeem R, Molnar J, Madbouly EM, Nida M,
Aggarwal S, Sajid H, Naseem J and Loomba R: Serum inflammatory
markers in obstructive sleep apnea: A meta-analysis. J Clin Sleep
Med. 9:1003–1012. 2013.PubMed/NCBI
|
|
76
|
Thurtell MJ, Bruce BB, Newman NJ and
Biousse V: An update on idiopathic intracranial hypertension. Rev
Neurol Dis. 7:e56–e68. 2010.PubMed/NCBI
|
|
77
|
Hara T, Hara T and Tsuru T: Increase of
peak intraocular pressure during sleep in reproduced diurnal
changes by posture. Arch Ophthalmol. 124:165–168. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Carvey PM, Hendey B and Monahan AJ: The
blood-brain barrier in neurodegenerative disease: A rhetorical
perspective. J Neurochem. 111:291–314. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Pournaras CJ, Rungger-Brändle E, Riva CE,
Hardarson SH and Stefansson E: Regulation of retinal blood flow in
health and disease. Prog Retin Eye Res. 27:284–330. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Iadecola C and Nedergaard M: Glial
regulation of the cerebral microvasculature. Nat Neurosci.
10:1369–1376. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
81
|
Cioffi GA and Sullivan P: The effect of
chronic ischemia on the primate optic nerve. Eur J Ophthalmol. 9
Suppl 1:S34–S36. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Harris A, Siesky B and Wirostko B:
Cerebral blood flow in glaucoma patients. J Glaucoma. 22 Suppl
5:S46–S48. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Mozaffarieh M, Grieshaber MC and Flammer
J: Oxygen and blood flow: Players in the pathogenesis of glaucoma.
Mol Vis. 14:224–233. 2008.PubMed/NCBI
|
|
84
|
Bunting H, Still R, Williams DR, Gravenor
M and Austin MW: Evaluation of plasma glutamate levels in normal
tension glaucoma. Ophthalmic Res. 43:197–200. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Chrysostomou V, Rezania F, Trounce IA and
Crowston JG: Oxidative stress and mitochondrial dysfunction in
glaucoma. Curr Opin Pharmacol. 13:12–15. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Mozaffarieh M, Schoetzau A, Sauter M,
Grieshaber M, Orgül S, Golubnitschaja O and Flammer J: Comet assay
analysis of single-stranded DNA breaks in circulating leukocytes of
glaucoma patients. Mol Vis. 14:1584–1588. 2008.PubMed/NCBI
|
|
87
|
Tezel G and Wax MB: Hypoxia-inducible
factor 1alpha in the glaucomatous retina and optic nerve head. Arch
Ophthalmol. 122:1348–1356. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
McElnea EM, Quill B, Docherty NG, Irnaten
M, Siah WF, Clark AF, O'Brien CJ and Wallace DM: Oxidative stress,
mitochondrial dysfunction and calcium overload in human lamina
cribrosa cells from glaucoma donors. Mol Vis. 17:1182–1191.
2011.PubMed/NCBI
|
|
89
|
Yuan L and Neufeld AH: Activated microglia
in the human glaucomatous optic nerve head. J Neurosci Res.
64:523–532. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Tezel G and Wax MB: The immune system and
glaucoma. Curr Opin Ophthalmol. 15:80–84. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Prasanna G, Krishnamoorthy R and Yorio T:
Endothelin, astrocytes and glaucoma. Exp Eye Res. 93:170–177. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Harada T, Harada C, Nakamura K, Quah HM,
Okumura A, Namekata K, Saeki T, Aihara M, Yoshida H, Mitani A, et
al: The potential role of glutamate transporters in the
pathogenesis of normal tension glaucoma. J Clin Invest.
117:1763–1770. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Munemasa Y and Kitaoka Y: Molecular
mechanisms of retinal ganglion cell degeneration in glaucoma and
future prospects for cell body and axonal protection. Front Cell
Neurosci. 6:602013. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Lebrun-Julien F, Duplan L, Pernet V,
Osswald I, Sapieha P, Bourgeois P, Dickson K, Bowie D, Barker PA
and Di Polo A: Excitotoxic death of retinal neurons in vivo occurs
via a non-cell-autonomous mechanism. J Neurosci. 29:5536–5545.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Oku H, Fukuhara M, Komori A, Okuno T,
Sugiyama T and Ikeda T: Endothelin-1 (ET-1) causes death of retinal
neurons through activation of nitric oxide synthase (NOS) and
production of superoxide anion. Exp Eye Res. 86:118–130. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Golubnitschaja O, Yeghiazaryan K, Liu R,
Mönkemann H, Leppert D, Schild H, Haefliger IO and Flammer J:
Increased expression of matrix metalloproteinases in mononuclear
blood cells of normal-tension glaucoma patients. J Glaucoma.
13:66–72. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Grieshaber MC and Flammer J: Does the
blood-brain barrier play a role in Glaucoma? Surv Ophthalmol. 52
Suppl 2:S115–S121. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Hofman P, Hoyng P, vanderWerf F, Vrensen
GF and Schlingemann RO: Lack of blood-brain barrier properties in
microvessels of the prelaminar optic nerve head. Invest Ophthalmol
Vis Sci. 42:895–901. 2001.PubMed/NCBI
|
|
99
|
Grieshaber MC, Terhorst T and Flammer J:
The pathogenesis of optic disc splinter haemorrhages: A new
hypothesis. Acta Ophthalmol Scand. 84:62–68. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Farrall AJ and Wardlaw JM: Blood-brain
barrier: Ageing and microvascular disease - systematic review and
meta-analysis. Neurobiol Aging. 30:337–352. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Tong L, Balazs R, Soiampornkul R,
Thangnipon W and Cotman CW: Interleukin-1 beta impairs brain
derived neurotrophic factor-induced signal transduction. Neurobiol
Aging. 29:1380–1393. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Allingham RR, Liu Y and Rhee DJ: The
genetics of primary open-angle glaucoma: A review. Exp Eye Res.
88:837–844. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Weisschuh N, Neumann D, Wolf C, Wissinger
B and Gramer E: Prevalence of myocilin and optineurin sequence
variants in German normal tension glaucoma patients. Mol Vis.
11:284–287. 2005.PubMed/NCBI
|
|
104
|
Weisschuh N, Wolf C, Wissinger B and
Gramer E: Variations in the WDR36 gene in German patients with
normal tension glaucoma. Mol Vis. 13:724–729. 2007.PubMed/NCBI
|
|
105
|
Tang S, Toda Y, Kashiwagi K, Mabuchi F,
Iijima H, Tsukahara S and Yamagata Z: The association between
Japanese primary open-angle glaucoma and normal tension glaucoma
patients and the optineurin gene. Hum Genet. 113:276–279. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Liu YH and Tian T: Hypothesis of
optineurin as a new common risk factor in normal-tension glaucoma
and Alzheimer's disease. Med Hypotheses. 77:591–592. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Mi XS, Yuan TF and So KF: The current
research status of normal tension glaucoma. Clin Interv Aging.
9:1563–1571. 2014.PubMed/NCBI
|
|
108
|
Guo Y, Chen X, Zhang H, Li N, Yang X,
Cheng W and Zhao K: Association of OPA1 polymorphisms with NTG and
HTG: A meta-analysis. PLoS One. 7:e423872012. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Kawase K, Allingham RR, Meguro A, Mizuki
N, Roos B, Solivan-Timpe FM, Robin AL, Ritch R and Fingert JH:
Confirmation of TBK1 duplication in normal tension glaucoma. Exp
Eye Res. 96:178–180. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Kim SH, Kim JY, Kim DM, Ko HS, Kim SY, Yoo
T, Hwang SS and Park SS: Investigations on the association between
normal tension glaucoma and single nucleotide polymorphisms of the
endothelin-1 and endothelin receptor genes. Mol Vis. 12:1016–1021.
2006.PubMed/NCBI
|
|
111
|
Shibuya E, Meguro A, Ota M, Kashiwagi K,
Mabuchi F, Iijima H, Kawase K, Yamamoto T, Nakamura M, Negi A, et
al: Association of Toll-like receptor 4 gene polymorphisms with
normal tension glaucoma. Invest Ophthalmol Vis Sci. 49:4453–4457.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Fraenkl SA, Golubnitschaja O, Yeghiazaryan
K, Orgül S and Flammer J: Differences in gene expression in
lymphocytes of patients with high-tension, PEX, and normal-tension
glaucoma and in healthy subjects. Eur J Ophthalmol. 23:841–849.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Jeoung JW, Seong MW, Park SS, Kim DM, Kim
SH and Park KH: Mitochondrial DNA variant discovery in
normal-tension glaucoma patients by next-generation sequencing.
Invest Ophthalmol Vis Sci. 55:986–992. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Akiyama M, Yatsu K, Ota M, Katsuyama Y,
Kashiwagi K, Mabuchi F, Iijima H, Kawase K, Yamamoto T, Nakamura M,
et al: Microsatellite analysis of the GLC1B locus on chromosome 2
points to NCK2 as a new candidate gene for normal tension glaucoma.
Br J Ophthalmol. 92:1293–1296. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Murakami K, Meguro A, Ota M, Shiota T,
Nomura N, Kashiwagi K, Mabuchi F, Iijima H, Kawase K, Yamamoto T,
et al: Analysis of microsatellite polymorphisms within the GLC1F
locus in Japanese patients with normal tension glaucoma. Mol Vis.
16:462–466. 2010.PubMed/NCBI
|
|
116
|
Wolf C, Gramer E, Müller-Myhsok B, Pasutto
F, Reinthal E, Wissinger B and Weisschuh N: Evaluation of nine
candidate genes in patients with normal tension glaucoma: A case
control study. BMC Med Genet. 10:912009. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Writing Committee for the Normal Tension
Glaucoma Genetic Study Group of Japan Glaucoma Society, . Meguro A,
Inoko H, Ota M, Mizuki N and Bahram S: Genome-wide association
study of normal tension glaucoma: Common variants in SRBD1 and
ELOVL5 contribute to disease susceptibility. Ophthalmology.
117:1331.e5–1338.e5. 2010.
|
|
118
|
Chi ZL, Akahori M, Obazawa M, Minami M,
Noda T, Nakaya N, Tomarev S, Kawase K, Yamamoto T, Noda S, et al:
Overexpression of optineurin E50K disrupts Rab8 interaction and
leads to a progressive retinal degeneration in mice. Hum Mol Genet.
19:2606–2615. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Chi ZL, Yasumoto F, Sergeev Y, Minami M,
Obazawa M, Kimura I, Takada Y and Iwata T: Mutant WDR36 directly
affects axon growth of retinal ganglion cells leading to
progressive retinal degeneration in mice. Hum Mol Genet.
19:3806–3815. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Heiduschka P, Schnichels S, Fuhrmann N,
Hofmeister S, Schraermeyer U, Wissinger B and Alavi MV:
Electrophysiological and histologic assessment of retinal ganglion
cell fate in a mouse model for OPA1-associated autosomal dominant
optic atrophy. Invest Ophthalmol Vis Sci. 51:1424–1431. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Mi XS, Zhang X, Feng Q, Lo AC, Chung SK
and So KF: Progressive retinal degeneration in transgenic mice with
overexpression of endothelin-1 in vascular endothelial cells.
Invest Ophthalmol Vis Sci. 53:4842–4851. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Gasparini L, Crowther RA, Martin KR, Berg
N, Coleman M, Goedert M and Spillantini MG: Tau inclusions in
retinal ganglion cells of human P301S tau transgenic mice: Effects
on axonal viability. Neurobiol Aging. 32:419–433. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Ning A, Cui J, To E, Ashe KH and Matsubara
J: Amyloid-beta deposits lead to retinal degeneration in a mouse
model of Alzheimer disease. Invest Ophthalmol Vis Sci.
49:5136–5143. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Harada C, Namekata K, Guo X, Yoshida H,
Mitamura Y, Matsumoto Y, Tanaka K, Ichijo H and Harada T: ASK1
deficiency attenuates neural cell death in GLAST-deficient mice, a
model of normal tension glaucoma. Cell Death Differ. 17:1751–1759.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Ayub H, Khan MI, Micheal S, Akhtar F,
Ajmal M, Shafique S, Ali SH, den Hollander AI, Ahmed A and Qamar R:
Association of eNOS and HSP70 gene polymorphisms with glaucoma in
Pakistani cohorts. Mol Vis. 16:18–25. 2010.PubMed/NCBI
|
|
126
|
Fernández-Martínez L, Letteboer S, Mardin
CY, Weisschuh N, Gramer E, Weber BH, Rautenstrauss B, Ferreira PA,
Kruse FE, Reis A, et al: Evidence for RPGRIP1 gene as risk factor
for primary open angle glaucoma. Eur J Hum Genet. 19:445–451. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Fingert JH, Robin AL, Stone JL, Roos BR,
Davis LK, Scheetz TE, Bennett SR, Wassink TH, Kwon YH, Alward WL,
et al: Copy number variations on chromosome 12q14 in patients with
normal tension glaucoma. Hum Mol Genet. 20:2482–2494. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Janssen SF, Gorgels TG, van der Spek PJ,
Jansonius NM and Bergen AA: In silico analysis of the molecular
machinery underlying aqueous humor production: Potential
implications for glaucoma. J Clin Bioinforma. 3:212013. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Kumar S, Malik MA, Goswami S, Sihota R and
Kaur J: Candidate genes involved in the susceptibility of primary
open angle glaucoma. Gene. 577:119–131. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Lascaratos G, Garway-Heath DF, Willoughby
CE, Chau KY and Schapira AH: Mitochondrial dysfunction in glaucoma:
Understanding genetic influences. Mitochondrion. 12:202–212. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Mabuchi F, Sakurada Y, Kashiwagi K,
Yamagata Z, Iijima H and Tsukahara S: Association between genetic
variants associated with vertical cup-to-disc ratio and phenotypic
features of primary open-angle glaucoma. Ophthalmology.
119:1819–1825. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Monemi S, Spaeth G, DaSilva A, Popinchalk
S, Ilitchev E, Liebmann J, Ritch R, Héon E, Crick RP, Child A, et
al: Identification of a novel adult-onset primary open-angle
glaucoma (POAG) gene on 5q22.1. Hum Mol Genet. 14:725–733. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Nowak A, Majsterek I, Przybyłowska-Sygut
K, Pytel D, Szymanek K, Szaflik J and Szaflik JP: Analysis of the
expression and polymorphism of APOE, HSP, BDNF, and GRIN2B genes
associated with the neurodegeneration process in the pathogenesis
of primary open angle glaucoma. Biomed Res Int. 2015:2582812015.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Pasutto F, Keller KE, Weisschuh N, Sticht
H, Samples JR, Yang YF, Zenkel M, Schlötzer-Schrehardt U, Mardin
CY, Frezzotti P, et al: Variants in ASB10 are associated with
open-angle glaucoma. Hum Mol Genet. 21:1336–1349. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Rangachari K, Dhivya M, Eswari
Pandaranayaka PJ, Prasanthi N, Sundaresan P, Krishnadas SR and
Krishnaswamy S: Glaucoma database. Bioinformation. 5:398–399. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Rezaie T, Child A, Hitchings R, Brice G,
Miller L, Coca-Prados M, Héon E, Krupin T, Ritch R, Kreutzer D, et
al: Adult-onset primary open-angle glaucoma caused by mutations in
optineurin. Science. 295:1077–1079. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Sahay P, Rao A, Padhy D, Sarangi S, Das G,
Reddy MM and Modak R: Functional activity of matrix
metalloproteinases 2 and 9 in tears of patients with glaucoma.
Invest Ophthalmol Vis Sci. 58:BIO106–BIO113. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Stoilova D, Child A, Trifan OC, Crick RP,
Coakes RL and Sarfarazi M: Localization of a locus (GLC1B) for
adult-onset primary open angle glaucoma to the 2cen-q13 region.
Genomics. 36:142–150. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Stone EM, Fingert JH, Alward WL, Nguyen
TD, Polansky JR, Sunden SL, Nishimura D, Clark AF, Nystuen A,
Nichols BE, et al: Identification of a gene that causes primary
open angle glaucoma. Science. 275:668–670. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Wirtz MK, Samples JR, Rust K, Lie J,
Nordling L, Schilling K, Acott TS and Kramer PL: GLC1F, a new
primary open-angle glaucoma locus, maps to 7q35-q36. Arch
Ophthalmol. 117:237–241. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Woo SJ, Kim JY, Kim DM, Park SS, Ko HS and
Yoo T: Investigation of the association between 677C>T and
1298A>C 5,10-methylenetetra- hydrofolate reductase gene
polymorphisms and normal-tension glaucoma. Eye (Lond). 23:17–24.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Yu-Wai-Man P, Stewart JD, Hudson G,
Andrews RM, Griffiths PG, Birch MK and Chinnery PF: OPA1 increases
the risk of normal but not high tension glaucoma. J Med Genet.
47:120–125. 2010. View Article : Google Scholar : PubMed/NCBI
|