Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
March-2019 Volume 17 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2019 Volume 17 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

The diagnostic value of circulating microRNAs in heart failure (Review)

  • Authors:
    • Yao‑Meng Huang
    • Wei‑Wei Li
    • Jun Wu
    • Mei Han
    • Bing‑Hui Li
  • View Affiliations / Copyright

    Affiliations: Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China, Department of Oncological Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
    Copyright: © Huang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1985-2003
    |
    Published online on: January 15, 2019
       https://doi.org/10.3892/etm.2019.7177
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Heart failure (HF) is a complex clinical syndrome, characterized by inadequate blood perfusion of tissues and organs caused by decreased heart ejection capacity resulting from structural or functional cardiac disorders. HF is the most severe heart condition and it severely compromises human health; thus, its early diagnosis and effective management are crucial. However, given the lack of satisfactory sensitivity and specificity of the currently available biomarkers, the majority of patients with HF are not diagnosed early and do not receive timely treatment. A number of studies have demonstrated that peripheral blood circulating nucleic acids [such as microRNAs (miRs), mRNA and DNA] are important for the diagnosis and monitoring of treatment response in HF. miRs have been attracting increasing attention as promising biomarkers, given their presence in body fluids and relative structural stability under diverse conditions of sampling. The aim of the present review was to analyze the associations between the mechanisms underlying the development of HF and the expression of miRs, and discuss the value of using circulating miRs as diagnostic biomarkers in HF management. In particular, miR‑155, miR‑22 and miR‑133 appear to be promising for the diagnosis, prognosis and management of HF patients.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Cordes KR and Srivastava D: MicroRNA regulation of cardiovascular development. Circ Res. 104:724–732. 2009. View Article : Google Scholar : PubMed/NCBI

2 

Anderson ME, Brown JH and Bers DM: CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol. 51:468–473. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Yang J, Savvatis K, Kang JS, Fan P, Zhong H, Schwartz K, Barry V, Mikels-Vigdal A, Karpinski S, Kornyeyev D, et al: Targeting LOXL2 for cardiac interstitial fibrosis and heart failure treatment. Nat Commun. 7:137102016. View Article : Google Scholar : PubMed/NCBI

4 

Kawakami H, Kubota Y, Takeno S, Miyazaki Y, Wada T, Hamada R and Nanashima A: Gastrointestinal: Severe congestive heart failure and acute gastric mucosal necrosis. J Gastroenterol Hepatol. 32:9492017. View Article : Google Scholar : PubMed/NCBI

5 

Petrovic D: Cytopathological basis of heart failure-cardiomyocyte apoptosis, interstitial fibrosis and inflammatory cell response. Folia Biol (Praha). 50:58–62. 2004.PubMed/NCBI

6 

Orsborne C, Chaggar PS, Shaw SM and Williams SG: The renin-angiotensin-aldosterone system in heart failure for the non-specialist: The past, the present and the future. Postgrad Med J. 93:29–37. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Polyakova V, Loeffler I, Hein S, Miyagawa S, Piotrowska I, Dammer S, Risteli J, Schaper J and Kostin S: Fibrosis in endstage human heart failure: Severe changes in collagen metabolism and MMP/TIMP profiles. Int J Cardiol. 151:18–33. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Romaine SP, Tomaszewski M, Condorelli G and Samani NJ: MicroRNAs in cardiovascular disease: An introduction for clinicians. Heart. 101:921–928. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Liu X, Tong Z, Chen K, Hu X, Jin H and Hou M: The role of miRNA-132 against apoptosis and oxidative stress in heart failure. Biomed Res Int. 2018:34527482018.PubMed/NCBI

10 

Gómez AM, Valdivia HH, Cheng H, Lederer MR, Santanaet LF, Cannel MB, McCune SA, Altschuld RA and Lederer WJ: Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science. 276:800–806. 1997. View Article : Google Scholar : PubMed/NCBI

11 

Kumar R, Woo MA, Birrer BV, Macey PM, Fonarow GC, Hamilton MA and Harper RM: Mammillary bodies and fornix fibers are injured in heart failure. Neurobiol Dis. 33:236–242. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Neupane B, Zhou Q, Gawaz M and Gramlich M: Personalized medicine in inflammatory cardiomyopathy. Per Med. 15:127–136. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Dludla PV, Dias SC, Obonye N, Johnson R, Louw J and Nkambule BB: A systematic review on the protective effect of N-acetyl cysteine against diabetes-associated cardiovascular complications. Am J Cardiovasc Drugs. 18:283–298. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Güven Bağla A, Içkin Gülen M, Ercan F, Aşgün F, Ercan E and Bakar C: Changes in kidney tissue and effects of erythropoietin after acute heart failure. Biotech Histochem. 93:340–353. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Lindner K, Haier J, Wang Z, Watson DI, Hussey DJ and Hummel R: Circulating microRNAs: Emerging biomarkers for diagnosis and prognosis in patients with gastrointestinal cancers. Clin Sci (Lond). 128:1–15. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Li R, Geng HH, Xiao J, Qin XT, Wang F, Xing JH, Xia YF, Mao Y, Liang JW and Jia XP: miR-7a/b attenuates post-myocardial infarction remodeling and protects H9c2 cardiomyoblast against hypoxia-induced apoptosis involving Sp1 and PARP-1. Sci Rep. 6:290822016. View Article : Google Scholar : PubMed/NCBI

17 

Ball JP, Syed M, Marañon RO, Hall ME, Kc R, Reckelhoff JF, Yanes Cardozo LL and Romero DG: Role and regulation of MicroRNAs in aldosterone-mediated cardiac injury and dysfunction in male rats. Endocrinology. 158:1859–1874. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Deng W, Wang Y, Long X, Zhao R, Wang Z, Liu Z, Cao S and Shi B: miR-21 reduces hydrogen peroxide-induced apoptosis in c-kit+ cardiac stem cells in vitro through PTEN/PI3K/Akt signaling. Oxid Med Cell Longev. 2016:53891812016. View Article : Google Scholar : PubMed/NCBI

19 

Cheng M, Wu G, Song Y, Wang L, Tu L, Zhang L and Zhang C: Celastrol-induced suppression of the MiR-21/ERK signalling pathway attenuates cardiac fibrosis and dysfunction. Cell Physiol Biochem. 38:1928–1938. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Xiao J, Pan Y, Li XH, Yang XY, Feng YL, Tan HH, Jiang L, Feng J and Yu XY: Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4. Cell Death Dis. 7:e22772016. View Article : Google Scholar : PubMed/NCBI

21 

Tao H, Chen ZW, Yang JJ and Shi KH: MicroRNA-29a suppresses cardiac fibroblasts proliferation via targeting VEGF-A/MAPK signal pathway. Int J Biol Macromol. 88:414–423. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Liu CZ, Zhong Q and Huang YQ: Elevated plasma miR-29a levels are associated with increased carotid intima-media thickness in atherosclerosis patients. Tohoku J Exp Med. 241:183–188. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Lu Z, Wang F, Yu P, Wang X, Wang Y, Tang ST and Zhu HQ: Inhibition of miR-29b suppresses MAPK signaling pathway through targeting SPRY1 in atherosclerosis. Vascul Pharmacol. 102:29–36. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Sassi Y, Avramopoulos P, Ramanujam D, Grüter L, Werfel S, Giosele S, Brunner A, Esfandyari D, Papadopoulou AS, De Strooper B, et al: Cardiac myocyte miR-29 promotes pathological remodeling of the heart by activating Wnt signaling. Nat Commun. 8:16142017. View Article : Google Scholar : PubMed/NCBI

25 

Panizo S, Carrillo-López N, Naves-Díaz M, Solache-Berrocal G, Martínez-Arias L, Rodrigues-Díez RR, Fernández-Vázquez A, Martínez-Salgado C, Ruiz-Ortega M, Dusso A, et al: Regulation of miR-29b and miR-30c by vitamin D receptor activators contributes to attenuate uraemia-induced cardiac fibrosis. Nephrol Dial Transplant. 32:1831–1840. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Heid J, Cencioni C, Ripa R, Baumgart M, Atlante S, Milano G, Scopece A, Kuenne C, Guenther S, Azzimato V, et al: Age-dependent increase of oxidative stress regulates microRNA-29 family preserving cardiac health. Sci Rep. 7:168392017. View Article : Google Scholar : PubMed/NCBI

27 

Chen L, Ji Q, Zhu H, Ren Y, Fan Z and Tian N: miR-30a attenuates cardiac fibrosis in rats with myocardial infarction by inhibiting CTGF. Exp Ther Med. 15:4318–4324. 2018.PubMed/NCBI

28 

Roca-Alonso L, Castellano L, Mills A, Dabrowska AF, Sikkel MB, Pellegrino L, Jacob J, Frampton AE, Krell J, Coombes RC, et al: Myocardial MiR-30 downregulation triggered by doxorubicin drives alterations in β-adrenergic signaling and enhances apoptosis. Cell Death Dis. 6:e17542015. View Article : Google Scholar : PubMed/NCBI

29 

Lai L, Chen J, Wang N, Zhu G, Duan X and Ling F: MiRNA-30e mediated cardioprotection of ACE2 in rats with Doxorubicin-induced heart failure through inhibiting cardiomyocytes autophagy. Life Sci. 169:69–75. 2017. View Article : Google Scholar : PubMed/NCBI

30 

van Middendorp LB, Kuiper M, Munts C, Wouters P, Maessen JG, van Nieuwenhoven FA and Prinzen FW: Local microRNA-133a downregulation is associated with hypertrophy in the dyssynchronous heart. ESC Heart Fail. 4:241–251. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Li Q, Lin X, Yang X and Chang J: NFATc4 is negatively regulated in miR-133a-mediated cardiomyocyte hypertrophic repression. Am J Physiol Heart Circ Physiol. 298:H1340–H1347. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Li AY, Yang Q and Yang K: miR-133a mediates the hypoxia-induced apoptosis by inhibiting TAGLN2 expression in cardiac myocytes. Mol Cell Biochem. 400:173–181. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Rangrez AY, Hoppe P, Kuhn C, Zille E, Frank J, Frey N and Frank D: MicroRNA miR-301a is a novel cardiac regulator of Cofilin-2. PLoS One. 12:e01839012017. View Article : Google Scholar : PubMed/NCBI

34 

Dong H, Dong S, Zhang L, Gao X, Lv G, Chen W and Shao S: MicroRNA-214 exerts a Cardio-protective effect by inhibition of fibrosis. Anat Rec (Hoboken). 299:1348–1357. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Chaturvedi P, Kalani A, Medina I, Familtseva A and Tyagi SC: Cardiosome mediated regulation of MMP9 in diabetic heart: Role of mir29b and mir455 in exercise. J Cell Mol Med. 19:2153–2161. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Liu N, Shi YF, Diao HY, Li YX, Cui Y, Song XJ, Tian X, Li TY and Liu B: MicroRNA-135a regulates apoptosis induced by hydrogen peroxide in rat cardiomyoblast cells. Int J Biol Sci. 13:13–21. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Wang Y, Ouyang M, Wang Q and Jian Z: MicroRNA-142-3p inhibits hypoxia/reoxygenation-induced apoptosis and fibrosis of cardiomyocytes by targeting high mobility group box 1. Int J Mol Med. 38:1377–1386. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Yang F, Li T, Dong Z and Mi R: MicroRNA-410 is involved in mitophagy after cardiac ischemia/reperfusion injury by targeting high-mobility group box 1 protein. J Cell Biochem. 119:2427–2439. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Zhang S, Zhang R, Wu F and LI X: MicroRNA-208a regulates H9c2 cells simulated ischemia-reperfusion myocardial injury via targeting CHD9 through Notch/NF-kappa B signal pathways. Int Heart J. 59:580–588. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Fan ZG, Qu XL, Chu P, Gao YL, Gao XF, Chen SL and Tian NL: MicroRNA-210 promotes angiogenesis in acute myocardial infarction. Mol Med Rep. 17:5658–5665. 2018.PubMed/NCBI

41 

Zhang Y, Fang J and Ma H: Inhibition of miR-182-5p protects cardiomyocytes from hypoxia-induced apoptosis by targeting CIAPIN1. Biochem Cell Biol. 96:646–654. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Liu X, Tong Z, Chen K, Hu X, Jin H and Hou M: The role of miRNA-132 against apoptosis and oxidative stress in heart failure. Biomed Res Int. 2018:34527482018.PubMed/NCBI

43 

Zhou G, Li C, Feng J, Zhang J and Fang Y: lncRNA UCA1 is a novel regulator in cardiomyocyte hypertrophy through targeting the miR-184/HOXA9 axis. Cardiorenal Med. 8:130–139. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Rubiś P, Totoń-Żurańska J, Wiśniowska-Śmiałek S, Holcman K, Kołton-Wróż M, Wołkow P, Wypasek E, Natorska J, Rudnicka-Sosin L, Pawlak A, et al: Relations between circulating microRNAs (miR-21, miR-26, miR-29, miR-30 and miR-133a), extracellular matrix fibrosis and serum markers of fibrosis in dilated cardiomyopathy. Int J Cardiol. 231:201–206. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Ji Y, Qiu M, Shen Y, Gao L, Wang Y, Sun W, Li X, Lu Y and Kong X: MicroRNA-327 regulates cardiac hypertrophy and fibrosis induced by pressure overload. Int J Mol Med. 41:1909–1916. 2018.PubMed/NCBI

46 

Lu Y and Wu F: A new miRNA regulator, miR-672, reduces cardiac hypertrophy by inhibiting JUN expression. Gene. 648:21–30. 2018. View Article : Google Scholar : PubMed/NCBI

47 

Wang Y, Cai H, Li H, Gao Z and Song K: Atrial overexpression of microRNA-27b attenuates angiotensin II-induced atrial fibrosis and fibrillation by targeting ALK5. Hum Cell. 31:251–260. 2018. View Article : Google Scholar : PubMed/NCBI

48 

Yang J, Chen L, Ding J, Zhang J, Fan Z, Yang C, Yu Q and Yang J: Cardioprotective effect of miRNA-22 on hypoxia/reoxygenation induced cardiomyocyte injury in neonatal rats. Gene. 579:17–22. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Zhang L, Yin H, Jiao L, Liu T, Gao Y, Shao Y, Zhang Y, Shan H, Zhang Y and Yang B: Abnormal downregulation of caveolin-3 mediates the pro-fibrotic action of MicroRNA-22 in a model of myocardial infarction. Cell Physiol Biochem. 45:1641–1653. 2018. View Article : Google Scholar : PubMed/NCBI

50 

Zheng L, Lin S and Lv C: MiR-26a-5p regulates cardiac fibroblasts collagen expression by targeting ULK1. Sci Rep. 8:21042018. View Article : Google Scholar : PubMed/NCBI

51 

Gu M, Wang J, Wang Y, Xu Y, Zhang Y, Wu W and Liao S: MiR-147b inhibits cell viability and promotes apoptosis of rat H9c2 cardiomyocytes via down-regulating KLF13 expression. Acta Biochim Biophys Sin (Shanghai). 50:288–297. 2018. View Article : Google Scholar : PubMed/NCBI

52 

Sun N, Meng F, Xue N, Pang G, Wang Q and Ma H: Inducible miR-145 expression by HIF-1a protects cardiomyocytes against apoptosis via regulating SGK1 in simulated myocardial infarction hypoxic microenvironment. Cardiol J. 25:268–278. 2018.PubMed/NCBI

53 

Chen Z, Zhang S, Guo C, Li J and Sang W: Downregulation of miR-200c protects cardiomyocytes from hypoxia-induced apoptosis by targeting GATA-4. Int J Mol Med. 39:1589–1596. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Meng X, Ji Y, Wan Z, Zhao B, Feng C, Zhao J, Li H and Song Y: Inhibition of miR-363 protects cardiomyocytes against hypoxia-induced apoptosis through regulation of Notch signaling. Biomed Pharmacother. 90:509–516. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Li T, Yang GM, Zhu Y, Wu Y, Chen XY, Lan D, Tian K and Liu LM: Diabetes and hyperlipidemia induce dysfunction of VSMCs: Contribution of the metabolic inflammation/miRNA pathway. Am J Physiol Endocrinol Metab. 308:E257–E269. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Gallego I, Beaumont J, López B, Ravassa S, Gómez-Doblas JJ, Moreno MU, Valencia F, de Teresa E, Díez J and González A: Potential role of microRNA-10b down-regulation in cardiomyocyte apoptosis in aortic stenosis patients. Clin Sci (Lond). 130:2139–2149. 2016. View Article : Google Scholar : PubMed/NCBI

57 

Hang P, Sun C, Guo J, Zhao J and Du Z: BDNF-mediates down-regulation of MicroRNA-195 inhibits ischemic cardiac apoptosis in rats. Int J Biol Sci. 12:979–989. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Blumensatt M, Fahlbusch P, Hilgers R, Bekaert M, Herzfeld de Wiza D, Akhyari P, Ruige JB and Ouwens DM: Secretory products from epicardial adipose tissue from patients with type 2 diabetes impair mitochondrial β-oxidation in cardiomyocytes via activation of the cardiac renin-angiotensin system and induction of miR-208a. Basic Res Cardiol. 112:22017. View Article : Google Scholar : PubMed/NCBI

59 

Marchand A, Atassi F, Mougenot N, Clergue M, Codoni V, Berthuin J, Proust C, Trégouët DA, Hulot JS and Lompré AM: miR-322 regulates insulin signaling pathway and protects against metabolic syndrome-induced cardiac dysfunction in mice. Biochim Biophys Acta. 1862:611–621. 2016. View Article : Google Scholar : PubMed/NCBI

60 

Zhong C, Wang K, Liu Y, Lv D, Zheng B, Zhou Q, Sun Q, Chen P, Ding S, Xu Y and Huang H: miR-19b controls cardiac fibroblast proliferation and migration. J Cell Mol Med. 20:1191–1197. 2016. View Article : Google Scholar : PubMed/NCBI

61 

Pan L, Huang BJ, Ma XE, Wang SY, Feng J, Lv F, Liu Y, Liu Y, Li CM, Liang DD, et al: MiR-25 protects cardiomyocytes against oxidative damage by targeting the mitochondrial calcium uniporter. Int J Mol Sci. 16:5420–5433. 2015. View Article : Google Scholar : PubMed/NCBI

62 

Das S, Kohr M, Dunkerly-Eyring B, Lee DI, Bedja D, Kent OA, Leung AK, Henao-Mejia J, Flavell RA and Steenbergen C: Divergent effects of miR-181 family members on myocardial function through protective cytosolic and detrimental mitochondrial microRNA targets. J Am Heart Assoc. 6(pii): e0046942017.PubMed/NCBI

63 

Palomer X, Capdevila-Busquets E, Botteri G, Davidson MM, Rodríguez C, Martínez-González J, Vidal F, Barroso E, Chan TO, Feldman AM, et al: miR-146a targets Fos expression in human cardiac cells. Dis Model Mech. 8:1081–1091. 2015. View Article : Google Scholar : PubMed/NCBI

64 

Khamaneh AM, Alipour MR, Sheikhzadeh Hesari F and Ghadiri Soufi F: A signature of microRNA-155 in the pathogenesis of diabetic complications. J Physiol Biochem. 71:301–309. 2015. View Article : Google Scholar : PubMed/NCBI

65 

Fang Y, Chen H, Hu Y, Li Q, Hu Z, Ma T and Mao X: Burkholderia pseudomallei-derived miR-3473 enhances NF-κB via targeting TRAF3 and is associated with different inflammatory responses compared to Burkholderia thailandensis in murine macrophages. BMC Microbiol. 16:2832016. View Article : Google Scholar : PubMed/NCBI

66 

Kuwabara Y, Horie T, Baba O, Watanabe S, Nishiga M, Usami S, Izuhara M, Nakao T, Nishino T, Otsu K, et al: MicroRNA-451 exacerbates lipotoxicity in cardiac myocytes and high-fat diet-induced cardiac hypertrophy in mice through suppression of the LKB1/AMPK Pathway. Circ Res. 116:279–288. 2015. View Article : Google Scholar : PubMed/NCBI

67 

Cohen-Solal A, Beauvais F and Logeart D: Heart failure and diabetes mellitus: Epidemiology and management of an alarming association. J Card Fail. 14:615–625. 2008. View Article : Google Scholar : PubMed/NCBI

68 

Nargesi AA, Esteghamati S, Heidari B, Hafezi-Nejad N, Sheikhbahaei S, Pajouhi A, Nakhjavani M and Esteghamati A: Nonlinear relation between pulse pressure and coronary heart disease in patients with type 2 diabetes or hypertension. J Hypertens. 34:974–980. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Puntmann VO, Carr-White G, Jabbour A, Yu CY, Gebker R, Kelle S, Hinojar R, Doltra A, Varma N, Child N, et al: T1-mapping and outcome in nonischemic cardiomyopathy: All-cause mortality and heart failure. JACC Cardiovasc Imaging. 9:40–50. 2016. View Article : Google Scholar : PubMed/NCBI

70 

Cahill TJ, Ashrafian H and Watkins H: Genetic cardiomyopathies causing heart failure. Circ Res. 113:660–675. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Ortega A, Roselló-Lletí E, Tarazón E, Molina-Navarro MM, Martínez-Dolz L, González-Juanatey JR, Lago F, Montoro-Mateos JD, Salvador A, Rivera M and Portolés M: Endoplasmic reticulum stress induces different molecular structural alterations in human dilated and ischemic cardiomyopathy. PLoS One. 9:e1076352014. View Article : Google Scholar : PubMed/NCBI

72 

Yeung F, Chung E, Guess MG, Bell ML and Leinwand LA: Myh7b/miR-499 gene expression is transcriptionally regulated by MRFs and Eos. Nucleic Acids Res. 40:7303–7318. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Abraityte A, Lunde IG, Askevold ET, Michelsen AE, Christensen G, Aukrust P, Yndestad A, Fiane A, Andreassen A, Aakhus S, et al: Wnt5a is associated with rightventricular dysfunction and adverse outcome in dilated cardiomyopathy. Sci Rep. 7:34902017. View Article : Google Scholar : PubMed/NCBI

74 

Yamamoto S, Yang G, Zablocki D, Liu J, Hong C, Kim SJ, Soler S, Odashima M, Thaisz J, Yehia G, et al: Activation of Mst1 causes dilated cardiomyopathy by stimulating apoptosis without compensatory ventricular myocyte hypertrophy. J Clin Invest. 111:1463–1474. 2003. View Article : Google Scholar : PubMed/NCBI

75 

Zhang Y, Kanter EM and Yamada KA: Remodeling of cardiac fibroblasts following myocardial infarction results in increased gap junction intercellular communication. Cardiovasc Pathol. 19:e233–e240. 2010. View Article : Google Scholar : PubMed/NCBI

76 

Naga Prasad SV, Gupta MK, Duan ZH, Surampudi VS, Liu CG, Kotwal A, Moravec CS, Starling RC, Perez DM, Sen S, et al: A unique microRNA profile in end-stage heart failure indicates alterations in specific cardiovascular signaling networks. PLoS One. 12:e01704562017. View Article : Google Scholar : PubMed/NCBI

77 

Enes C, oşkun M, Kervancıoğlu M, Öztuzcu S, Yılmaz Coşkun F, Ergün S, Başpınar O, Kılınç M, Temel L and Coşkun MY: Plasma microRNA profiling of children with idiopathic dilated cardiomyopathy. Biomarkers. 21:56–61. 2016. View Article : Google Scholar : PubMed/NCBI

78 

Miyamoto SD, Karimpour-Fard A, Peterson V, Auerbach SR, Stenmark KR, Stauffer BL and Sucharov CC: Circulating microRNA as a biomarker for recovery in pediatric dilated cardiomyopathy. J Heart Lung Transplant. 34:724–733. 2015. View Article : Google Scholar : PubMed/NCBI

79 

Leger KJ, Singh S, Canseco D, VonGrote EC, Karim-Ud-Din S, Collins SC, Thibodeau JT, Mishkin JD, Patel PC, Markham DW, et al: Abstract 13120: Identification of novel circulating microRNAs in ischemic cardiomyopathy utilizing whole blood microRNA profiling. Circulation. 128 Suppl 22:A131202013.

80 

Zeng X, Li X and Wen H: Expression of circulating microRNA-182, CITED2 and HIF-1 in ischemic cardiomyopathy and their correlation. J Clin Cardiol. 33:119–122. 2017.(In Chinese).

81 

Olson E and Rooij EV: Dual targeting of miR-208 and miR-499 in the treatment of cardiac disorders. US Patent 14104886. Filed December 12, 2013; issued. June 26–2014.

82 

Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Röxe T, Müller-Ardogan M, et al: Circulating microRNAs in patients with coronary artery disease. Circ Res. 107:677–684. 2010. View Article : Google Scholar : PubMed/NCBI

83 

Li X, Liu CY, Li YS, Xu J, Li DG, Li X and Han D: Deep RNA sequencing elucidates microRNA-regulated molecular pathways in ischemic cardiomyopathy and nonischemic cardiomyopathy. Genet Mol Res. 15:gmr74652016.

84 

Phelan D, Watson C, Martos R, Collier P, Patle A, Donnelly S, Ledwidge M, Baugh J and McDonald K: Modest elevation in BNP in asymptomatic hypertensive patients reflects sub-clinical cardiac remodeling, inflammation and extracellular matrix changes. PLoS One. 7:e492592012. View Article : Google Scholar : PubMed/NCBI

85 

Mohammed SF, Hussain S, Mirzoyev SA, Edwards WD, Maleszewski JJ and Redfield MM: Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation. 131:550–559. 2015. View Article : Google Scholar : PubMed/NCBI

86 

Shyu KG, Wang BW, Cheng WP and Lo HM: MicroRNA-208a increases myocardial endoglin expression and myocardial fibrosis in acute myocardial infarction. Can J Cardiol. 31:679–690. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Cengiz M, Karatas OF, Koparir E, Yavuzer S, Ali C, Yavuzer H, Kirat E, Karter Y and Ozen M: Differential expression of hypertension-associated microRNAs in the plasma of patients with white coat hypertension. Medicine (Baltimore). 94:e6932015. View Article : Google Scholar : PubMed/NCBI

88 

Fu M, Gao Y, Zhou Q, Zhang Q, Peng Y, Tian K, Wang J and Zheng X: Human cytomegalovirus latent infection alters the expression of cellular and viral microRNA. Gene. 536:272–278. 2014. View Article : Google Scholar : PubMed/NCBI

89 

Stern-Ginossar N, Saleh N, Goldberg MD, Prichard M, Wolf DG and Mandelboim O: Analysis of human cytomegalovirus-encoded microRNA activity during infection. J Virol. 83:10684–10693. 2009. View Article : Google Scholar : PubMed/NCBI

90 

Li S, Zhu J, Zhang W, Chen Y, Zhang K, Popescu LM, Ma X, Lau WB, Rong R, Yu X, et al: Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation. 124:175–184. 2011. View Article : Google Scholar : PubMed/NCBI

91 

Ding M, Wang X, Wang C, Liu X, Zen K, Wang W, Zhang CY and Zhang C: Distinct expression profile of HCMV encoded miRNAs in plasma from oral lichen planus patients. J Transl Med. 15:1332017. View Article : Google Scholar : PubMed/NCBI

92 

Kellawan JM, Johansson RE, Harrell JW, Sebranek JJ, Walker BJ, Eldridge MW and Schrage WG: Exercise vasodilation is greater in women: Contributions of nitric oxide synthase and cyclooxygenase. Eur J Appl Physiol. 115:1735–1746. 2015. View Article : Google Scholar : PubMed/NCBI

93 

Dolcino M, Puccetti A, Barbieri A, Bason C, Tinazzi E, Ottria A, Patuzzo G, Martinelli N and Lunardi C: Infections and autoimmunity: Role of human cytomegalovirus in autoimmune endothelial cell damage. Lupus. 24:419–432. 2015. View Article : Google Scholar : PubMed/NCBI

94 

Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI and Vardas PE: MiR-1, miR-9 and miR-126 levels in peripheral blood mononuclear cells of patients with essential hypertension associate with prognostic indices of ambulatory blood pressure monitoring. Eur Heart J. 34 Suppl 1:S51582013. View Article : Google Scholar

95 

Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI and Vardas PE: Mir-143/mir-145 levels in peripheral blood mononuclear cells associate with ambulatory blood pressure monitoring parameters in patients with essential hypertension. Eur Heart J. 34 Suppl 1:S56562013. View Article : Google Scholar

96 

Dickinson BA, Semus HM, Montgomery RL, Stack C, Latimer PA, Lewton SM, Lynch JM, Hullinger TG, Seto AG and van Rooij E: Plasma microRNAs serve as biomarkers of therapeutic efficacy and disease progression in hypertension-induced heart failure. Eur J Heart Fail. 15:650–659. 2013. View Article : Google Scholar : PubMed/NCBI

97 

Hou YL, LI SL and Liu LL: Effects of MicroRNA-137 and AngII on cardiac remodeling in spontaneously hypertensive rats. Chin J Comp Med. 7–2016.(In Chinese).

98 

Li JZ, Tang XN, Li TT, Liu LJ, Yu SY, Zhou GY, Shao QR, Sun HP, Wu C and Yang Y: Paeoniflorin inhibits doxorubicin-induced cardiomyocyte apoptosis by downregulating microRNA-1 expression. Exp Ther Med. 11:2407–2412. 2016. View Article : Google Scholar : PubMed/NCBI

99 

Yang Q, Jia C, Wang P, Xiong M, Cui J, Li L, Wang W, Wu Q, Chen Y and Zhang T: MicroRNA-505 identified from patients with essential hypertension impairs endothelial cell migration and tube formation. Int J Cardiol. 177:925–934. 2014. View Article : Google Scholar : PubMed/NCBI

100 

Li Y, Wu H, Zhu M, Shelat H, Qu J, Zheng M, Yuan J, Yuan G, Xu J, Wang H and Geng YJ: Insulin-like growth factor prevents diabetes induced cardiomyopathy mediated by MICRORNA-1. J Am College Cardiol. 55:A21.E1962010. View Article : Google Scholar

101 

Finn NA, Eapen D, Manocha P, Al Kassem H, Lassegue B, Ghasemzadeh N, Quyyumi A and Searles CD: Coronary heart disease alters intercellular communication by modifying microparticle-mediated microRNA transport. FEBS Lett. 587:3456–3463. 2013. View Article : Google Scholar : PubMed/NCBI

102 

Dickstein K: Is substantial renal dysfunction in patients with heart failure no longer a contraindication for RAS inhibition? The power of a large, high-quality registry to illuminate major clinical issues. Eur Heart J. 36:2279–2280. 2015. View Article : Google Scholar : PubMed/NCBI

103 

Shang F, Wang SC, Hsu CY, Miao Y, Martin M, Yin Y, Wu CC, Wang YT, Wu G, Chien S, et al: MicroRNA-92a mediates endothelial dysfunction in CKD. J Am Soc Nephrol. 28:3251–3261. 2017. View Article : Google Scholar : PubMed/NCBI

104 

Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ and Lötvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI

105 

Wang C, Fan F, Cao Q, Shen C, Zhu H, Wang P, Zhao X, Sun X, Dong Z, Ma X, et al: Mitochondrial aldehyde dehydrogenase 2 deficiency aggravates energy metabolism disturbance and diastolic dysfunction in diabetic mice. J Mol Med (Berl). 94:1229–1240. 2016. View Article : Google Scholar : PubMed/NCBI

106 

Wong AK, AlZadjali MA, Choy AM and Lang CC: Insulin resistance: A potential new target for therapy in patients with heart failure. Cardiovasc Ther. 26:203–213. 2008. View Article : Google Scholar : PubMed/NCBI

107 

Yu XY, Song YH, Geng YJ, Lin QX, Shan ZX, Lin SG and Li Y: Glucose induces apoptosis of cardiomyocytes via microRNA-1 and IGF-1. Biochem Biophys Res Commun. 376:548–552. 2008. View Article : Google Scholar : PubMed/NCBI

108 

Horie T, Ono K, Nishi H, Iwanaga Y, Nagao K, Kinoshita M, Kuwabara Y, Takanabe R, Hasegawa K, Kita T and Kimura T: MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes. Biochem Biophys Res Commun. 389:315–320. 2009. View Article : Google Scholar : PubMed/NCBI

109 

Latronico MV, Catalucci D and Condorelli G: Emerging role of microRNAs in cardiovascular biology. Circ Res. 101:1225–1236. 2007. View Article : Google Scholar : PubMed/NCBI

110 

Greco S, Fasanaro P, Castelvecchio S, D'Alessandra Y, Arcelli D, Di Donato M, Malavazos A, Capogrossi MC, Menicanti L and Martelli F: MicroRNA dysregulation in diabetic ischemic heart failure patients. Diabetes. 61:1633–1641. 2012. View Article : Google Scholar : PubMed/NCBI

111 

Nandi SS, Duryee MJ, Shahshahan HR, Thiele GM, Anderson DR and Mishra PK: Induction of autophagy markers is associated with attenuation of miR-133a in diabetic heart failure patients undergoing mechanical unloading. Am J Transl Res. 7:683–696. 2015.PubMed/NCBI

112 

Deng X, Liu Y, Luo M and Wu J, Ma R, Wan Q and Wu J: Circulating miRNA-24 and its target YKL-40 as potential biomarkers in patients with coronary heart disease and type 2 diabetes mellitus. Oncotarget. 8:63038–63046. 2017.PubMed/NCBI

113 

Chavali V, Tyagi SC and Mishra PK: Differential expression of dicer, miRNAs, and inflammatory markers in diabetic Ins2+/− Akita hearts. Cell Biochem Biophys. 68:25–35. 2014. View Article : Google Scholar : PubMed/NCBI

114 

Izarra A, Moscoso I, Cañón S, Carreiro C, Fondevila D, Martín-Caballero J, Blanca V, Valiente I, Díez-Juan A and Bernad A: miRNA-1 and miRNA-133a are involved in early commitment of pluripotent stem cells and demonstrate antagonistic roles in the regulation of cardiac differentiation. J Tissue Eng Regen Med. 11:787–799. 2017. View Article : Google Scholar : PubMed/NCBI

115 

Liu H, Yang L, Chen KH, Sun HY, Jin MW, Xiao GS, Wang Y and Li GR: SKF-96365 blocks human ether-à-go-go-related gene potassium channels stably expressed in HEK 293 cells. Pharmacol Res. 104:61–69. 2016. View Article : Google Scholar : PubMed/NCBI

116 

van Solingen C, Bijkerk R, de Boer HC, Rabelink TJ and van Zonneveld AJ: The Role of microRNA-126 in vascular homeostasis. Curr Vasc Pharmacol. 13:341–351. 2015. View Article : Google Scholar : PubMed/NCBI

117 

Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Röxe T, Müller-Ardogan M, et al: Circulating microRNAs in patients with coronary artery disease. Circ Res. 107:677–684. 2010. View Article : Google Scholar : PubMed/NCBI

118 

Škrha P, Hajer J, Anděl M, Hořínek A and Korabečná M: miRNA as a new marker of diabetes mellitus and pancreatic carcinoma progression. Cas Lek Cesk. 154:122–126. 2015.(In Czech). PubMed/NCBI

119 

Talmud PJ: How to identify gene-environment interactions in a multifactorial disease: CHD as an example. Proc Nutr Soc. 63:5–10. 2004. View Article : Google Scholar : PubMed/NCBI

120 

Carè A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, et al: MicroRNA-133 controls cardiac hypertrophy. Nat Med. 13:613–618. 2007. View Article : Google Scholar : PubMed/NCBI

121 

Wang L, Tian D, Hu J, Xing H, Sun M, Wang J, Jian Q and Yang H: MiRNA-145 regulates the development of congenital heart disease through targeting FXN. Pediatr Cardiol. 37:629–636. 2016. View Article : Google Scholar : PubMed/NCBI

122 

Feng Y, Niu LL, Wei W, Zhang WY, Li XY, Cao JH and Zhao SH: A feedback circuit between miR-133 and the ERK1/2 pathway involving an exquisite mechanism for regulating myoblast proliferation and differentiation. Cell Death Dis. 4:e9342013. View Article : Google Scholar : PubMed/NCBI

123 

Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R and Olson EN: microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 22:3242–3254. 2008. View Article : Google Scholar : PubMed/NCBI

124 

Shan ZX, Lin QX, Deng CY, Zhou ZL, Zhang XC, Fu YH and Yu XY: Plasmid-mediated miRNA-1-2 specifically inhibits Hand2 protein expression in H9C2 cells. Nan Fang Yi Ke Da Xue Xue Bao. 28:1559–1561. 2008.(In Chinese). PubMed/NCBI

125 

Mukai N, Nakayama Y, Murakami S, Tanahashi T, Sessler DI, Ishii S, Ogawa S, Tokuhira N, Mizobe T, Sawa T and Nakajima Y: Potential contribution of erythrocyte microRNA to secondary erythrocytosis and thrombocytopenia in congenital heart disease. Pediatr Res. 83:866–873. 2018. View Article : Google Scholar : PubMed/NCBI

126 

Zhao Y, Samal E and Srivastava D: Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 436:214–220. 2005. View Article : Google Scholar : PubMed/NCBI

127 

Lu CX, Gong HR, Liu XY, Wang J, Zhao CM, Huang RT, Xue S and Yang YQ: A novel HAND2 loss-of-function mutation responsible for tetralogy of Fallot. Int J Mol Med. 37:445–451. 2016. View Article : Google Scholar : PubMed/NCBI

128 

Ferreira LR, Frade AF, Santos RH, Teixeira PC, Baron MA, Navarro IC, Benvenuti LA, Fiorelli AI, Bocchi EA, Stolf NA, et al: MicroRNAs miR-1, miR-133a, miR-133b, miR-208a and miR-208b are dysregulated in chronic chagas disease cardiomyopathy. Int J Cardiol. 175:409–417. 2014. View Article : Google Scholar : PubMed/NCBI

129 

Chen W and Li S: Circulating microRNA as a novel biomarker for pulmonary arterial hypertension due to congenital heart disease. Pediatr Cardiol. 38:86–94. 2017. View Article : Google Scholar : PubMed/NCBI

130 

Patrick DM, Montgomery RL, Qi X, Obad S, Kauppinen S, Hill JA, van Rooij E and Olson EN: Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J Clin Invest. 120:3912–3916. 2010. View Article : Google Scholar : PubMed/NCBI

131 

Wang Y, Gu J, Roth JA, Hildebrandt MA, Lippman SM, Ye Y, Minna JD and Wu X: Pathway-based serum microRNA profiling and survival in patients with advanced-stage non-small cell lung cancer. Cancer Res. 73:4801–4809. 2013. View Article : Google Scholar : PubMed/NCBI

132 

Hamam R, Hamam D, Alsaleh KA, Kassem M, Zaher W, Alfayez M, Aldahmash A and Alajez NM: Circulating microRNAs in breast cancer: Novel diagnostic and prognostic biomarkers. Cell Death Dis. 8:e30452017. View Article : Google Scholar : PubMed/NCBI

133 

Duttagupta R, Jiang R, Gollub J, Getts RC and Jones KW: Impact of cellular miRNAs on circulating miRNA biomarker signatures. PLos One. 6:e207692011. View Article : Google Scholar : PubMed/NCBI

134 

Sassi Y, Avramopoulos P, Ramanujam D, Grüter L, Werfel S, Giosele S, Brunner AD, Esfandyari D, Papadopoulou AS, De Strooper B, et al: Cardiac myocyte miR-29 promotes pathological remodeling of the heart by activating Wnt signaling. Nat Commun. 8:16142017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Huang YM, Li WW, Wu J, Han M and Li BH: The diagnostic value of circulating microRNAs in heart failure (Review). Exp Ther Med 17: 1985-2003, 2019.
APA
Huang, Y., Li, W., Wu, J., Han, M., & Li, B. (2019). The diagnostic value of circulating microRNAs in heart failure (Review). Experimental and Therapeutic Medicine, 17, 1985-2003. https://doi.org/10.3892/etm.2019.7177
MLA
Huang, Y., Li, W., Wu, J., Han, M., Li, B."The diagnostic value of circulating microRNAs in heart failure (Review)". Experimental and Therapeutic Medicine 17.3 (2019): 1985-2003.
Chicago
Huang, Y., Li, W., Wu, J., Han, M., Li, B."The diagnostic value of circulating microRNAs in heart failure (Review)". Experimental and Therapeutic Medicine 17, no. 3 (2019): 1985-2003. https://doi.org/10.3892/etm.2019.7177
Copy and paste a formatted citation
x
Spandidos Publications style
Huang YM, Li WW, Wu J, Han M and Li BH: The diagnostic value of circulating microRNAs in heart failure (Review). Exp Ther Med 17: 1985-2003, 2019.
APA
Huang, Y., Li, W., Wu, J., Han, M., & Li, B. (2019). The diagnostic value of circulating microRNAs in heart failure (Review). Experimental and Therapeutic Medicine, 17, 1985-2003. https://doi.org/10.3892/etm.2019.7177
MLA
Huang, Y., Li, W., Wu, J., Han, M., Li, B."The diagnostic value of circulating microRNAs in heart failure (Review)". Experimental and Therapeutic Medicine 17.3 (2019): 1985-2003.
Chicago
Huang, Y., Li, W., Wu, J., Han, M., Li, B."The diagnostic value of circulating microRNAs in heart failure (Review)". Experimental and Therapeutic Medicine 17, no. 3 (2019): 1985-2003. https://doi.org/10.3892/etm.2019.7177
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team