|
1
|
Cordes KR and Srivastava D: MicroRNA
regulation of cardiovascular development. Circ Res. 104:724–732.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Anderson ME, Brown JH and Bers DM: CaMKII
in myocardial hypertrophy and heart failure. J Mol Cell Cardiol.
51:468–473. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Yang J, Savvatis K, Kang JS, Fan P, Zhong
H, Schwartz K, Barry V, Mikels-Vigdal A, Karpinski S, Kornyeyev D,
et al: Targeting LOXL2 for cardiac interstitial fibrosis and heart
failure treatment. Nat Commun. 7:137102016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kawakami H, Kubota Y, Takeno S, Miyazaki
Y, Wada T, Hamada R and Nanashima A: Gastrointestinal: Severe
congestive heart failure and acute gastric mucosal necrosis. J
Gastroenterol Hepatol. 32:9492017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Petrovic D: Cytopathological basis of
heart failure-cardiomyocyte apoptosis, interstitial fibrosis and
inflammatory cell response. Folia Biol (Praha). 50:58–62.
2004.PubMed/NCBI
|
|
6
|
Orsborne C, Chaggar PS, Shaw SM and
Williams SG: The renin-angiotensin-aldosterone system in heart
failure for the non-specialist: The past, the present and the
future. Postgrad Med J. 93:29–37. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Polyakova V, Loeffler I, Hein S, Miyagawa
S, Piotrowska I, Dammer S, Risteli J, Schaper J and Kostin S:
Fibrosis in endstage human heart failure: Severe changes in
collagen metabolism and MMP/TIMP profiles. Int J Cardiol.
151:18–33. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Romaine SP, Tomaszewski M, Condorelli G
and Samani NJ: MicroRNAs in cardiovascular disease: An introduction
for clinicians. Heart. 101:921–928. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Liu X, Tong Z, Chen K, Hu X, Jin H and Hou
M: The role of miRNA-132 against apoptosis and oxidative stress in
heart failure. Biomed Res Int. 2018:34527482018.PubMed/NCBI
|
|
10
|
Gómez AM, Valdivia HH, Cheng H, Lederer
MR, Santanaet LF, Cannel MB, McCune SA, Altschuld RA and Lederer
WJ: Defective excitation-contraction coupling in experimental
cardiac hypertrophy and heart failure. Science. 276:800–806. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kumar R, Woo MA, Birrer BV, Macey PM,
Fonarow GC, Hamilton MA and Harper RM: Mammillary bodies and fornix
fibers are injured in heart failure. Neurobiol Dis. 33:236–242.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Neupane B, Zhou Q, Gawaz M and Gramlich M:
Personalized medicine in inflammatory cardiomyopathy. Per Med.
15:127–136. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Dludla PV, Dias SC, Obonye N, Johnson R,
Louw J and Nkambule BB: A systematic review on the protective
effect of N-acetyl cysteine against diabetes-associated
cardiovascular complications. Am J Cardiovasc Drugs. 18:283–298.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Güven Bağla A, Içkin Gülen M, Ercan F,
Aşgün F, Ercan E and Bakar C: Changes in kidney tissue and effects
of erythropoietin after acute heart failure. Biotech Histochem.
93:340–353. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Lindner K, Haier J, Wang Z, Watson DI,
Hussey DJ and Hummel R: Circulating microRNAs: Emerging biomarkers
for diagnosis and prognosis in patients with gastrointestinal
cancers. Clin Sci (Lond). 128:1–15. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Li R, Geng HH, Xiao J, Qin XT, Wang F,
Xing JH, Xia YF, Mao Y, Liang JW and Jia XP: miR-7a/b attenuates
post-myocardial infarction remodeling and protects H9c2
cardiomyoblast against hypoxia-induced apoptosis involving Sp1 and
PARP-1. Sci Rep. 6:290822016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Ball JP, Syed M, Marañon RO, Hall ME, Kc
R, Reckelhoff JF, Yanes Cardozo LL and Romero DG: Role and
regulation of MicroRNAs in aldosterone-mediated cardiac injury and
dysfunction in male rats. Endocrinology. 158:1859–1874. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Deng W, Wang Y, Long X, Zhao R, Wang Z,
Liu Z, Cao S and Shi B: miR-21 reduces hydrogen peroxide-induced
apoptosis in c-kit+ cardiac stem cells in vitro through
PTEN/PI3K/Akt signaling. Oxid Med Cell Longev. 2016:53891812016.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Cheng M, Wu G, Song Y, Wang L, Tu L, Zhang
L and Zhang C: Celastrol-induced suppression of the MiR-21/ERK
signalling pathway attenuates cardiac fibrosis and dysfunction.
Cell Physiol Biochem. 38:1928–1938. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Xiao J, Pan Y, Li XH, Yang XY, Feng YL,
Tan HH, Jiang L, Feng J and Yu XY: Cardiac progenitor cell-derived
exosomes prevent cardiomyocytes apoptosis through exosomal miR-21
by targeting PDCD4. Cell Death Dis. 7:e22772016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Tao H, Chen ZW, Yang JJ and Shi KH:
MicroRNA-29a suppresses cardiac fibroblasts proliferation via
targeting VEGF-A/MAPK signal pathway. Int J Biol Macromol.
88:414–423. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Liu CZ, Zhong Q and Huang YQ: Elevated
plasma miR-29a levels are associated with increased carotid
intima-media thickness in atherosclerosis patients. Tohoku J Exp
Med. 241:183–188. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Lu Z, Wang F, Yu P, Wang X, Wang Y, Tang
ST and Zhu HQ: Inhibition of miR-29b suppresses MAPK signaling
pathway through targeting SPRY1 in atherosclerosis. Vascul
Pharmacol. 102:29–36. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Sassi Y, Avramopoulos P, Ramanujam D,
Grüter L, Werfel S, Giosele S, Brunner A, Esfandyari D,
Papadopoulou AS, De Strooper B, et al: Cardiac myocyte miR-29
promotes pathological remodeling of the heart by activating Wnt
signaling. Nat Commun. 8:16142017. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Panizo S, Carrillo-López N, Naves-Díaz M,
Solache-Berrocal G, Martínez-Arias L, Rodrigues-Díez RR,
Fernández-Vázquez A, Martínez-Salgado C, Ruiz-Ortega M, Dusso A, et
al: Regulation of miR-29b and miR-30c by vitamin D receptor
activators contributes to attenuate uraemia-induced cardiac
fibrosis. Nephrol Dial Transplant. 32:1831–1840. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Heid J, Cencioni C, Ripa R, Baumgart M,
Atlante S, Milano G, Scopece A, Kuenne C, Guenther S, Azzimato V,
et al: Age-dependent increase of oxidative stress regulates
microRNA-29 family preserving cardiac health. Sci Rep. 7:168392017.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Chen L, Ji Q, Zhu H, Ren Y, Fan Z and Tian
N: miR-30a attenuates cardiac fibrosis in rats with myocardial
infarction by inhibiting CTGF. Exp Ther Med. 15:4318–4324.
2018.PubMed/NCBI
|
|
28
|
Roca-Alonso L, Castellano L, Mills A,
Dabrowska AF, Sikkel MB, Pellegrino L, Jacob J, Frampton AE, Krell
J, Coombes RC, et al: Myocardial MiR-30 downregulation triggered by
doxorubicin drives alterations in β-adrenergic signaling and
enhances apoptosis. Cell Death Dis. 6:e17542015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Lai L, Chen J, Wang N, Zhu G, Duan X and
Ling F: MiRNA-30e mediated cardioprotection of ACE2 in rats with
Doxorubicin-induced heart failure through inhibiting cardiomyocytes
autophagy. Life Sci. 169:69–75. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
van Middendorp LB, Kuiper M, Munts C,
Wouters P, Maessen JG, van Nieuwenhoven FA and Prinzen FW: Local
microRNA-133a downregulation is associated with hypertrophy in the
dyssynchronous heart. ESC Heart Fail. 4:241–251. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Li Q, Lin X, Yang X and Chang J: NFATc4 is
negatively regulated in miR-133a-mediated cardiomyocyte
hypertrophic repression. Am J Physiol Heart Circ Physiol.
298:H1340–H1347. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Li AY, Yang Q and Yang K: miR-133a
mediates the hypoxia-induced apoptosis by inhibiting TAGLN2
expression in cardiac myocytes. Mol Cell Biochem. 400:173–181.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Rangrez AY, Hoppe P, Kuhn C, Zille E,
Frank J, Frey N and Frank D: MicroRNA miR-301a is a novel cardiac
regulator of Cofilin-2. PLoS One. 12:e01839012017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Dong H, Dong S, Zhang L, Gao X, Lv G, Chen
W and Shao S: MicroRNA-214 exerts a Cardio-protective effect by
inhibition of fibrosis. Anat Rec (Hoboken). 299:1348–1357. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Chaturvedi P, Kalani A, Medina I,
Familtseva A and Tyagi SC: Cardiosome mediated regulation of MMP9
in diabetic heart: Role of mir29b and mir455 in exercise. J Cell
Mol Med. 19:2153–2161. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Liu N, Shi YF, Diao HY, Li YX, Cui Y, Song
XJ, Tian X, Li TY and Liu B: MicroRNA-135a regulates apoptosis
induced by hydrogen peroxide in rat cardiomyoblast cells. Int J
Biol Sci. 13:13–21. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang Y, Ouyang M, Wang Q and Jian Z:
MicroRNA-142-3p inhibits hypoxia/reoxygenation-induced apoptosis
and fibrosis of cardiomyocytes by targeting high mobility group box
1. Int J Mol Med. 38:1377–1386. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Yang F, Li T, Dong Z and Mi R:
MicroRNA-410 is involved in mitophagy after cardiac
ischemia/reperfusion injury by targeting high-mobility group box 1
protein. J Cell Biochem. 119:2427–2439. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhang S, Zhang R, Wu F and LI X:
MicroRNA-208a regulates H9c2 cells simulated ischemia-reperfusion
myocardial injury via targeting CHD9 through Notch/NF-kappa B
signal pathways. Int Heart J. 59:580–588. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Fan ZG, Qu XL, Chu P, Gao YL, Gao XF, Chen
SL and Tian NL: MicroRNA-210 promotes angiogenesis in acute
myocardial infarction. Mol Med Rep. 17:5658–5665. 2018.PubMed/NCBI
|
|
41
|
Zhang Y, Fang J and Ma H: Inhibition of
miR-182-5p protects cardiomyocytes from hypoxia-induced apoptosis
by targeting CIAPIN1. Biochem Cell Biol. 96:646–654. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Liu X, Tong Z, Chen K, Hu X, Jin H and Hou
M: The role of miRNA-132 against apoptosis and oxidative stress in
heart failure. Biomed Res Int. 2018:34527482018.PubMed/NCBI
|
|
43
|
Zhou G, Li C, Feng J, Zhang J and Fang Y:
lncRNA UCA1 is a novel regulator in cardiomyocyte hypertrophy
through targeting the miR-184/HOXA9 axis. Cardiorenal Med.
8:130–139. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Rubiś P, Totoń-Żurańska J,
Wiśniowska-Śmiałek S, Holcman K, Kołton-Wróż M, Wołkow P, Wypasek
E, Natorska J, Rudnicka-Sosin L, Pawlak A, et al: Relations between
circulating microRNAs (miR-21, miR-26, miR-29, miR-30 and
miR-133a), extracellular matrix fibrosis and serum markers of
fibrosis in dilated cardiomyopathy. Int J Cardiol. 231:201–206.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ji Y, Qiu M, Shen Y, Gao L, Wang Y, Sun W,
Li X, Lu Y and Kong X: MicroRNA-327 regulates cardiac hypertrophy
and fibrosis induced by pressure overload. Int J Mol Med.
41:1909–1916. 2018.PubMed/NCBI
|
|
46
|
Lu Y and Wu F: A new miRNA regulator,
miR-672, reduces cardiac hypertrophy by inhibiting JUN expression.
Gene. 648:21–30. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wang Y, Cai H, Li H, Gao Z and Song K:
Atrial overexpression of microRNA-27b attenuates angiotensin
II-induced atrial fibrosis and fibrillation by targeting ALK5. Hum
Cell. 31:251–260. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Yang J, Chen L, Ding J, Zhang J, Fan Z,
Yang C, Yu Q and Yang J: Cardioprotective effect of miRNA-22 on
hypoxia/reoxygenation induced cardiomyocyte injury in neonatal
rats. Gene. 579:17–22. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zhang L, Yin H, Jiao L, Liu T, Gao Y, Shao
Y, Zhang Y, Shan H, Zhang Y and Yang B: Abnormal downregulation of
caveolin-3 mediates the pro-fibrotic action of MicroRNA-22 in a
model of myocardial infarction. Cell Physiol Biochem. 45:1641–1653.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zheng L, Lin S and Lv C: MiR-26a-5p
regulates cardiac fibroblasts collagen expression by targeting
ULK1. Sci Rep. 8:21042018. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Gu M, Wang J, Wang Y, Xu Y, Zhang Y, Wu W
and Liao S: MiR-147b inhibits cell viability and promotes apoptosis
of rat H9c2 cardiomyocytes via down-regulating KLF13 expression.
Acta Biochim Biophys Sin (Shanghai). 50:288–297. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Sun N, Meng F, Xue N, Pang G, Wang Q and
Ma H: Inducible miR-145 expression by HIF-1a protects
cardiomyocytes against apoptosis via regulating SGK1 in simulated
myocardial infarction hypoxic microenvironment. Cardiol J.
25:268–278. 2018.PubMed/NCBI
|
|
53
|
Chen Z, Zhang S, Guo C, Li J and Sang W:
Downregulation of miR-200c protects cardiomyocytes from
hypoxia-induced apoptosis by targeting GATA-4. Int J Mol Med.
39:1589–1596. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Meng X, Ji Y, Wan Z, Zhao B, Feng C, Zhao
J, Li H and Song Y: Inhibition of miR-363 protects cardiomyocytes
against hypoxia-induced apoptosis through regulation of Notch
signaling. Biomed Pharmacother. 90:509–516. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Li T, Yang GM, Zhu Y, Wu Y, Chen XY, Lan
D, Tian K and Liu LM: Diabetes and hyperlipidemia induce
dysfunction of VSMCs: Contribution of the metabolic
inflammation/miRNA pathway. Am J Physiol Endocrinol Metab.
308:E257–E269. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Gallego I, Beaumont J, López B, Ravassa S,
Gómez-Doblas JJ, Moreno MU, Valencia F, de Teresa E, Díez J and
González A: Potential role of microRNA-10b down-regulation in
cardiomyocyte apoptosis in aortic stenosis patients. Clin Sci
(Lond). 130:2139–2149. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Hang P, Sun C, Guo J, Zhao J and Du Z:
BDNF-mediates down-regulation of MicroRNA-195 inhibits ischemic
cardiac apoptosis in rats. Int J Biol Sci. 12:979–989. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Blumensatt M, Fahlbusch P, Hilgers R,
Bekaert M, Herzfeld de Wiza D, Akhyari P, Ruige JB and Ouwens DM:
Secretory products from epicardial adipose tissue from patients
with type 2 diabetes impair mitochondrial β-oxidation in
cardiomyocytes via activation of the cardiac renin-angiotensin
system and induction of miR-208a. Basic Res Cardiol. 112:22017.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Marchand A, Atassi F, Mougenot N, Clergue
M, Codoni V, Berthuin J, Proust C, Trégouët DA, Hulot JS and Lompré
AM: miR-322 regulates insulin signaling pathway and protects
against metabolic syndrome-induced cardiac dysfunction in mice.
Biochim Biophys Acta. 1862:611–621. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhong C, Wang K, Liu Y, Lv D, Zheng B,
Zhou Q, Sun Q, Chen P, Ding S, Xu Y and Huang H: miR-19b controls
cardiac fibroblast proliferation and migration. J Cell Mol Med.
20:1191–1197. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Pan L, Huang BJ, Ma XE, Wang SY, Feng J,
Lv F, Liu Y, Liu Y, Li CM, Liang DD, et al: MiR-25 protects
cardiomyocytes against oxidative damage by targeting the
mitochondrial calcium uniporter. Int J Mol Sci. 16:5420–5433. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Das S, Kohr M, Dunkerly-Eyring B, Lee DI,
Bedja D, Kent OA, Leung AK, Henao-Mejia J, Flavell RA and
Steenbergen C: Divergent effects of miR-181 family members on
myocardial function through protective cytosolic and detrimental
mitochondrial microRNA targets. J Am Heart Assoc. 6(pii):
e0046942017.PubMed/NCBI
|
|
63
|
Palomer X, Capdevila-Busquets E, Botteri
G, Davidson MM, Rodríguez C, Martínez-González J, Vidal F, Barroso
E, Chan TO, Feldman AM, et al: miR-146a targets Fos expression in
human cardiac cells. Dis Model Mech. 8:1081–1091. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Khamaneh AM, Alipour MR, Sheikhzadeh
Hesari F and Ghadiri Soufi F: A signature of microRNA-155 in the
pathogenesis of diabetic complications. J Physiol Biochem.
71:301–309. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Fang Y, Chen H, Hu Y, Li Q, Hu Z, Ma T and
Mao X: Burkholderia pseudomallei-derived miR-3473 enhances NF-κB
via targeting TRAF3 and is associated with different inflammatory
responses compared to Burkholderia thailandensis in murine
macrophages. BMC Microbiol. 16:2832016. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kuwabara Y, Horie T, Baba O, Watanabe S,
Nishiga M, Usami S, Izuhara M, Nakao T, Nishino T, Otsu K, et al:
MicroRNA-451 exacerbates lipotoxicity in cardiac myocytes and
high-fat diet-induced cardiac hypertrophy in mice through
suppression of the LKB1/AMPK Pathway. Circ Res. 116:279–288. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Cohen-Solal A, Beauvais F and Logeart D:
Heart failure and diabetes mellitus: Epidemiology and management of
an alarming association. J Card Fail. 14:615–625. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Nargesi AA, Esteghamati S, Heidari B,
Hafezi-Nejad N, Sheikhbahaei S, Pajouhi A, Nakhjavani M and
Esteghamati A: Nonlinear relation between pulse pressure and
coronary heart disease in patients with type 2 diabetes or
hypertension. J Hypertens. 34:974–980. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Puntmann VO, Carr-White G, Jabbour A, Yu
CY, Gebker R, Kelle S, Hinojar R, Doltra A, Varma N, Child N, et
al: T1-mapping and outcome in nonischemic cardiomyopathy: All-cause
mortality and heart failure. JACC Cardiovasc Imaging. 9:40–50.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Cahill TJ, Ashrafian H and Watkins H:
Genetic cardiomyopathies causing heart failure. Circ Res.
113:660–675. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ortega A, Roselló-Lletí E, Tarazón E,
Molina-Navarro MM, Martínez-Dolz L, González-Juanatey JR, Lago F,
Montoro-Mateos JD, Salvador A, Rivera M and Portolés M: Endoplasmic
reticulum stress induces different molecular structural alterations
in human dilated and ischemic cardiomyopathy. PLoS One.
9:e1076352014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yeung F, Chung E, Guess MG, Bell ML and
Leinwand LA: Myh7b/miR-499 gene expression is transcriptionally
regulated by MRFs and Eos. Nucleic Acids Res. 40:7303–7318. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Abraityte A, Lunde IG, Askevold ET,
Michelsen AE, Christensen G, Aukrust P, Yndestad A, Fiane A,
Andreassen A, Aakhus S, et al: Wnt5a is associated with
rightventricular dysfunction and adverse outcome in dilated
cardiomyopathy. Sci Rep. 7:34902017. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Yamamoto S, Yang G, Zablocki D, Liu J,
Hong C, Kim SJ, Soler S, Odashima M, Thaisz J, Yehia G, et al:
Activation of Mst1 causes dilated cardiomyopathy by stimulating
apoptosis without compensatory ventricular myocyte hypertrophy. J
Clin Invest. 111:1463–1474. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhang Y, Kanter EM and Yamada KA:
Remodeling of cardiac fibroblasts following myocardial infarction
results in increased gap junction intercellular communication.
Cardiovasc Pathol. 19:e233–e240. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Naga Prasad SV, Gupta MK, Duan ZH,
Surampudi VS, Liu CG, Kotwal A, Moravec CS, Starling RC, Perez DM,
Sen S, et al: A unique microRNA profile in end-stage heart failure
indicates alterations in specific cardiovascular signaling
networks. PLoS One. 12:e01704562017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Enes C, oşkun M, Kervancıoğlu M, Öztuzcu
S, Yılmaz Coşkun F, Ergün S, Başpınar O, Kılınç M, Temel L and
Coşkun MY: Plasma microRNA profiling of children with idiopathic
dilated cardiomyopathy. Biomarkers. 21:56–61. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Miyamoto SD, Karimpour-Fard A, Peterson V,
Auerbach SR, Stenmark KR, Stauffer BL and Sucharov CC: Circulating
microRNA as a biomarker for recovery in pediatric dilated
cardiomyopathy. J Heart Lung Transplant. 34:724–733. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Leger KJ, Singh S, Canseco D, VonGrote EC,
Karim-Ud-Din S, Collins SC, Thibodeau JT, Mishkin JD, Patel PC,
Markham DW, et al: Abstract 13120: Identification of novel
circulating microRNAs in ischemic cardiomyopathy utilizing whole
blood microRNA profiling. Circulation. 128 Suppl 22:A131202013.
|
|
80
|
Zeng X, Li X and Wen H: Expression of
circulating microRNA-182, CITED2 and HIF-1 in ischemic
cardiomyopathy and their correlation. J Clin Cardiol. 33:119–122.
2017.(In Chinese).
|
|
81
|
Olson E and Rooij EV: Dual targeting of
miR-208 and miR-499 in the treatment of cardiac disorders. US
Patent 14104886. Filed December 12, 2013; issued. June 26–2014.
|
|
82
|
Fichtlscherer S, De Rosa S, Fox H,
Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Röxe T,
Müller-Ardogan M, et al: Circulating microRNAs in patients with
coronary artery disease. Circ Res. 107:677–684. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Li X, Liu CY, Li YS, Xu J, Li DG, Li X and
Han D: Deep RNA sequencing elucidates microRNA-regulated molecular
pathways in ischemic cardiomyopathy and nonischemic cardiomyopathy.
Genet Mol Res. 15:gmr74652016.
|
|
84
|
Phelan D, Watson C, Martos R, Collier P,
Patle A, Donnelly S, Ledwidge M, Baugh J and McDonald K: Modest
elevation in BNP in asymptomatic hypertensive patients reflects
sub-clinical cardiac remodeling, inflammation and extracellular
matrix changes. PLoS One. 7:e492592012. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Mohammed SF, Hussain S, Mirzoyev SA,
Edwards WD, Maleszewski JJ and Redfield MM: Coronary microvascular
rarefaction and myocardial fibrosis in heart failure with preserved
ejection fraction. Circulation. 131:550–559. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Shyu KG, Wang BW, Cheng WP and Lo HM:
MicroRNA-208a increases myocardial endoglin expression and
myocardial fibrosis in acute myocardial infarction. Can J Cardiol.
31:679–690. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Cengiz M, Karatas OF, Koparir E, Yavuzer
S, Ali C, Yavuzer H, Kirat E, Karter Y and Ozen M: Differential
expression of hypertension-associated microRNAs in the plasma of
patients with white coat hypertension. Medicine (Baltimore).
94:e6932015. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Fu M, Gao Y, Zhou Q, Zhang Q, Peng Y, Tian
K, Wang J and Zheng X: Human cytomegalovirus latent infection
alters the expression of cellular and viral microRNA. Gene.
536:272–278. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Stern-Ginossar N, Saleh N, Goldberg MD,
Prichard M, Wolf DG and Mandelboim O: Analysis of human
cytomegalovirus-encoded microRNA activity during infection. J
Virol. 83:10684–10693. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Li S, Zhu J, Zhang W, Chen Y, Zhang K,
Popescu LM, Ma X, Lau WB, Rong R, Yu X, et al: Signature microRNA
expression profile of essential hypertension and its novel link to
human cytomegalovirus infection. Circulation. 124:175–184. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Ding M, Wang X, Wang C, Liu X, Zen K, Wang
W, Zhang CY and Zhang C: Distinct expression profile of HCMV
encoded miRNAs in plasma from oral lichen planus patients. J Transl
Med. 15:1332017. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Kellawan JM, Johansson RE, Harrell JW,
Sebranek JJ, Walker BJ, Eldridge MW and Schrage WG: Exercise
vasodilation is greater in women: Contributions of nitric oxide
synthase and cyclooxygenase. Eur J Appl Physiol. 115:1735–1746.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Dolcino M, Puccetti A, Barbieri A, Bason
C, Tinazzi E, Ottria A, Patuzzo G, Martinelli N and Lunardi C:
Infections and autoimmunity: Role of human cytomegalovirus in
autoimmune endothelial cell damage. Lupus. 24:419–432. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Kontaraki JE, Marketou ME, Zacharis EA,
Parthenakis FI and Vardas PE: MiR-1, miR-9 and miR-126 levels in
peripheral blood mononuclear cells of patients with essential
hypertension associate with prognostic indices of ambulatory blood
pressure monitoring. Eur Heart J. 34 Suppl 1:S51582013. View Article : Google Scholar
|
|
95
|
Kontaraki JE, Marketou ME, Zacharis EA,
Parthenakis FI and Vardas PE: Mir-143/mir-145 levels in peripheral
blood mononuclear cells associate with ambulatory blood pressure
monitoring parameters in patients with essential hypertension. Eur
Heart J. 34 Suppl 1:S56562013. View Article : Google Scholar
|
|
96
|
Dickinson BA, Semus HM, Montgomery RL,
Stack C, Latimer PA, Lewton SM, Lynch JM, Hullinger TG, Seto AG and
van Rooij E: Plasma microRNAs serve as biomarkers of therapeutic
efficacy and disease progression in hypertension-induced heart
failure. Eur J Heart Fail. 15:650–659. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Hou YL, LI SL and Liu LL: Effects of
MicroRNA-137 and AngII on cardiac remodeling in spontaneously
hypertensive rats. Chin J Comp Med. 7–2016.(In Chinese).
|
|
98
|
Li JZ, Tang XN, Li TT, Liu LJ, Yu SY, Zhou
GY, Shao QR, Sun HP, Wu C and Yang Y: Paeoniflorin inhibits
doxorubicin-induced cardiomyocyte apoptosis by downregulating
microRNA-1 expression. Exp Ther Med. 11:2407–2412. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Yang Q, Jia C, Wang P, Xiong M, Cui J, Li
L, Wang W, Wu Q, Chen Y and Zhang T: MicroRNA-505 identified from
patients with essential hypertension impairs endothelial cell
migration and tube formation. Int J Cardiol. 177:925–934. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Li Y, Wu H, Zhu M, Shelat H, Qu J, Zheng
M, Yuan J, Yuan G, Xu J, Wang H and Geng YJ: Insulin-like growth
factor prevents diabetes induced cardiomyopathy mediated by
MICRORNA-1. J Am College Cardiol. 55:A21.E1962010. View Article : Google Scholar
|
|
101
|
Finn NA, Eapen D, Manocha P, Al Kassem H,
Lassegue B, Ghasemzadeh N, Quyyumi A and Searles CD: Coronary heart
disease alters intercellular communication by modifying
microparticle-mediated microRNA transport. FEBS Lett.
587:3456–3463. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Dickstein K: Is substantial renal
dysfunction in patients with heart failure no longer a
contraindication for RAS inhibition? The power of a large,
high-quality registry to illuminate major clinical issues. Eur
Heart J. 36:2279–2280. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Shang F, Wang SC, Hsu CY, Miao Y, Martin
M, Yin Y, Wu CC, Wang YT, Wu G, Chien S, et al: MicroRNA-92a
mediates endothelial dysfunction in CKD. J Am Soc Nephrol.
28:3251–3261. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Valadi H, Ekström K, Bossios A, Sjöstrand
M, Lee JJ and Lötvall JO: Exosome-mediated transfer of mRNAs and
microRNAs is a novel mechanism of genetic exchange between cells.
Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Wang C, Fan F, Cao Q, Shen C, Zhu H, Wang
P, Zhao X, Sun X, Dong Z, Ma X, et al: Mitochondrial aldehyde
dehydrogenase 2 deficiency aggravates energy metabolism disturbance
and diastolic dysfunction in diabetic mice. J Mol Med (Berl).
94:1229–1240. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Wong AK, AlZadjali MA, Choy AM and Lang
CC: Insulin resistance: A potential new target for therapy in
patients with heart failure. Cardiovasc Ther. 26:203–213. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Yu XY, Song YH, Geng YJ, Lin QX, Shan ZX,
Lin SG and Li Y: Glucose induces apoptosis of cardiomyocytes via
microRNA-1 and IGF-1. Biochem Biophys Res Commun. 376:548–552.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Horie T, Ono K, Nishi H, Iwanaga Y, Nagao
K, Kinoshita M, Kuwabara Y, Takanabe R, Hasegawa K, Kita T and
Kimura T: MicroRNA-133 regulates the expression of GLUT4 by
targeting KLF15 and is involved in metabolic control in cardiac
myocytes. Biochem Biophys Res Commun. 389:315–320. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Latronico MV, Catalucci D and Condorelli
G: Emerging role of microRNAs in cardiovascular biology. Circ Res.
101:1225–1236. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Greco S, Fasanaro P, Castelvecchio S,
D'Alessandra Y, Arcelli D, Di Donato M, Malavazos A, Capogrossi MC,
Menicanti L and Martelli F: MicroRNA dysregulation in diabetic
ischemic heart failure patients. Diabetes. 61:1633–1641. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Nandi SS, Duryee MJ, Shahshahan HR, Thiele
GM, Anderson DR and Mishra PK: Induction of autophagy markers is
associated with attenuation of miR-133a in diabetic heart failure
patients undergoing mechanical unloading. Am J Transl Res.
7:683–696. 2015.PubMed/NCBI
|
|
112
|
Deng X, Liu Y, Luo M and Wu J, Ma R, Wan Q
and Wu J: Circulating miRNA-24 and its target YKL-40 as potential
biomarkers in patients with coronary heart disease and type 2
diabetes mellitus. Oncotarget. 8:63038–63046. 2017.PubMed/NCBI
|
|
113
|
Chavali V, Tyagi SC and Mishra PK:
Differential expression of dicer, miRNAs, and inflammatory markers
in diabetic Ins2+/− Akita hearts. Cell Biochem Biophys. 68:25–35.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Izarra A, Moscoso I, Cañón S, Carreiro C,
Fondevila D, Martín-Caballero J, Blanca V, Valiente I, Díez-Juan A
and Bernad A: miRNA-1 and miRNA-133a are involved in early
commitment of pluripotent stem cells and demonstrate antagonistic
roles in the regulation of cardiac differentiation. J Tissue Eng
Regen Med. 11:787–799. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Liu H, Yang L, Chen KH, Sun HY, Jin MW,
Xiao GS, Wang Y and Li GR: SKF-96365 blocks human
ether-à-go-go-related gene potassium channels stably expressed in
HEK 293 cells. Pharmacol Res. 104:61–69. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
van Solingen C, Bijkerk R, de Boer HC,
Rabelink TJ and van Zonneveld AJ: The Role of microRNA-126 in
vascular homeostasis. Curr Vasc Pharmacol. 13:341–351. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Fichtlscherer S, De Rosa S, Fox H,
Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Röxe T,
Müller-Ardogan M, et al: Circulating microRNAs in patients with
coronary artery disease. Circ Res. 107:677–684. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Škrha P, Hajer J, Anděl M, Hořínek A and
Korabečná M: miRNA as a new marker of diabetes mellitus and
pancreatic carcinoma progression. Cas Lek Cesk. 154:122–126.
2015.(In Czech). PubMed/NCBI
|
|
119
|
Talmud PJ: How to identify
gene-environment interactions in a multifactorial disease: CHD as
an example. Proc Nutr Soc. 63:5–10. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Carè A, Catalucci D, Felicetti F, Bonci D,
Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, et al:
MicroRNA-133 controls cardiac hypertrophy. Nat Med. 13:613–618.
2007. View
Article : Google Scholar : PubMed/NCBI
|
|
121
|
Wang L, Tian D, Hu J, Xing H, Sun M, Wang
J, Jian Q and Yang H: MiRNA-145 regulates the development of
congenital heart disease through targeting FXN. Pediatr Cardiol.
37:629–636. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Feng Y, Niu LL, Wei W, Zhang WY, Li XY,
Cao JH and Zhao SH: A feedback circuit between miR-133 and the
ERK1/2 pathway involving an exquisite mechanism for regulating
myoblast proliferation and differentiation. Cell Death Dis.
4:e9342013. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Liu N, Bezprozvannaya S, Williams AH, Qi
X, Richardson JA, Bassel-Duby R and Olson EN: microRNA-133a
regulates cardiomyocyte proliferation and suppresses smooth muscle
gene expression in the heart. Genes Dev. 22:3242–3254. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Shan ZX, Lin QX, Deng CY, Zhou ZL, Zhang
XC, Fu YH and Yu XY: Plasmid-mediated miRNA-1-2 specifically
inhibits Hand2 protein expression in H9C2 cells. Nan Fang Yi Ke Da
Xue Xue Bao. 28:1559–1561. 2008.(In Chinese). PubMed/NCBI
|
|
125
|
Mukai N, Nakayama Y, Murakami S, Tanahashi
T, Sessler DI, Ishii S, Ogawa S, Tokuhira N, Mizobe T, Sawa T and
Nakajima Y: Potential contribution of erythrocyte microRNA to
secondary erythrocytosis and thrombocytopenia in congenital heart
disease. Pediatr Res. 83:866–873. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Zhao Y, Samal E and Srivastava D: Serum
response factor regulates a muscle-specific microRNA that targets
Hand2 during cardiogenesis. Nature. 436:214–220. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Lu CX, Gong HR, Liu XY, Wang J, Zhao CM,
Huang RT, Xue S and Yang YQ: A novel HAND2 loss-of-function
mutation responsible for tetralogy of Fallot. Int J Mol Med.
37:445–451. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Ferreira LR, Frade AF, Santos RH, Teixeira
PC, Baron MA, Navarro IC, Benvenuti LA, Fiorelli AI, Bocchi EA,
Stolf NA, et al: MicroRNAs miR-1, miR-133a, miR-133b, miR-208a and
miR-208b are dysregulated in chronic chagas disease cardiomyopathy.
Int J Cardiol. 175:409–417. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Chen W and Li S: Circulating microRNA as a
novel biomarker for pulmonary arterial hypertension due to
congenital heart disease. Pediatr Cardiol. 38:86–94. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Patrick DM, Montgomery RL, Qi X, Obad S,
Kauppinen S, Hill JA, van Rooij E and Olson EN: Stress-dependent
cardiac remodeling occurs in the absence of microRNA-21 in mice. J
Clin Invest. 120:3912–3916. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Wang Y, Gu J, Roth JA, Hildebrandt MA,
Lippman SM, Ye Y, Minna JD and Wu X: Pathway-based serum microRNA
profiling and survival in patients with advanced-stage non-small
cell lung cancer. Cancer Res. 73:4801–4809. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Hamam R, Hamam D, Alsaleh KA, Kassem M,
Zaher W, Alfayez M, Aldahmash A and Alajez NM: Circulating
microRNAs in breast cancer: Novel diagnostic and prognostic
biomarkers. Cell Death Dis. 8:e30452017. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Duttagupta R, Jiang R, Gollub J, Getts RC
and Jones KW: Impact of cellular miRNAs on circulating miRNA
biomarker signatures. PLos One. 6:e207692011. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Sassi Y, Avramopoulos P, Ramanujam D,
Grüter L, Werfel S, Giosele S, Brunner AD, Esfandyari D,
Papadopoulou AS, De Strooper B, et al: Cardiac myocyte miR-29
promotes pathological remodeling of the heart by activating Wnt
signaling. Nat Commun. 8:16142017. View Article : Google Scholar : PubMed/NCBI
|