Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
October-2019 Volume 18 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2019 Volume 18 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Effect of type 2 diabetes mellitus caveolin‑3 K15N mutation on glycometabolism

Corrigendum in: /10.3892/etm.2019.8307
  • Authors:
    • Yiyuan Huang
    • Yufeng Deng
    • Lina Shang
    • Lihui Yang
    • Juanjuan Huang
    • Jing Ma
    • Xianshan Liao
    • Hui Zhou
    • Jing Xian
    • Guining Liang
    • Qin Huang
  • View Affiliations / Copyright

    Affiliations: School of Nursing, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China, Department of Physiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China, Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
    Copyright: © Huang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 2531-2539
    |
    Published online on: August 2, 2019
       https://doi.org/10.3892/etm.2019.7840
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Caveolin‑3 (CAV3) is a muscle‑specific protein present within the muscle cell membrane that affects signaling pathways, including the insulin signaling pathway. A previous assessment of patients with newly developed type 2 diabetes (T2DM) demonstrated that CAV3 gene mutations may lead to changes in protein secondary structure. A severe CAV3 P104L mutation has previously been indicated to influence the phosphorylation of skeletal muscle cells and result in impaired glucose metabolism. In the present study, the effect of CAV3 K15N gene transfection in C2C12 cells was assessed. Transfection with K15N reduced the expression of total CAV3 and AKT2 proteins in the cells, and the translocation of glucose transporter type 4 to the muscle cell membrane, which resulted in decreased glucose uptake and glycogen synthesis in myocytes. In conclusion, these results indicate that the CAV3 K15N mutation may cause insulin‑stimulated impaired glucose metabolism in myocytes, which may contribute to the development of T2DM.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Horikawa YT, Panneerselvam M, Kawaraguchi Y, Tsutsumi YM, Ali SS, Balijepalli RC, Murray F, Head BP, Niesman IR, Rieg T, et al: Cardiac-specific overexpression of caveolin-3 attenuates cardiac hypertrophy and increases natriuretic peptide expression and signaling. J Am Coll Cardiol. 57:2273–2283. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Song KS, Scherer PE, Tang Z, Okamoto T, Li S, Chafel M, Chu C, Kohtz DS and Lisanti M: Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J Biol Chem. 271:15160–15165. 1996. View Article : Google Scholar : PubMed/NCBI

3 

Talukder MA, Preda M, Ryzhova L, Prudovsky I and Pinz IM: Heterozygous caveolin-3 mice show increased susceptibility to palmitate-induced insulin resistance. Physiological reports. 4:e127362016. View Article : Google Scholar : PubMed/NCBI

4 

Oshikawa J, Otsu K, Toya Y, Tsunematsu T, Hankins R, Kawabe J, Minamisawa S, Umemura S, Hagiwara Y and Ishikawa Y: Insulin resistance in skeletal muscles of caveolin-3-null mice. Proc Natl Acad Sci USA. 101:12670–12675. 2004. View Article : Google Scholar : PubMed/NCBI

5 

Patel HH, Murray F and Insel PA: G-protein-coupled receptor-signaling components in membrane raft and caveolae microdomains. Handb Exp Pharmacol. 167–184. 2008. View Article : Google Scholar : PubMed/NCBI

6 

Lei S, Li H, Xu J, Liu Y, Gao X, Wang J, Ng KF, Lau WB, Ma XL, Rodrigues B, et al: Hyperglycemia-induced protein kinase C β2 activation induces diastolic cardiac dysfunction in diabetic rats by impairing caveolin-3 expression and Akt/eNOS signaling. Diabetes. 62:2318–2328. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Gervásio OL, Whitehead NP, Yeung EW, Phillips WD and Allen DG: TRPC1 binds to caveolin-3 and is regulated by Src kinase-role in Duchenne muscular dystrophy. J Cell Sci. 121:2246–2255. 2008. View Article : Google Scholar : PubMed/NCBI

8 

Su W, Zhang Y, Zhang Q, Xu J, Zhan L, Zhu Q, Lian Q, Liu H, Xia ZY, Xia Z and Lei S: N-acetylcysteine attenuates myocardial dysfunction and postischemic injury by restoring caveolin-3/eNOS signaling in diabetic rats. Cardiovasc Diabetol. 15:1462016. View Article : Google Scholar : PubMed/NCBI

9 

Woodman SE, Sotgia F, Galbiati F, Minetti C and Lisanti MP: Caveolinopathies: Mutations in caveolin-3 cause four distinct autosomal dominant muscle diseases. Neurology. 62:538–543. 2004. View Article : Google Scholar : PubMed/NCBI

10 

Milone M, McEvoy KM, Sorenson EJ and Daube JR: Myotonia associated with caveolin-3 mutation. Muscle Nerve. 45:897–900. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Woodman SE, Park DS, Cohen AW, Cheung MW, Chandra M, Shirani J, Tang B, Jelicks LA, Kitsis RN, Christ GJ, et al: Caveolin-3 knock-out mice develop a progressive cardiomyopathy and show hyperactivation of the p42/44 MAPK cascade. J Biol Chem. 277:38988–38997. 2002. View Article : Google Scholar : PubMed/NCBI

12 

Capozza F, Combs TP, Cohen AW, Cho YR, Park SY, Schubert W, Williams TM, Brasaemle DL, Jelicks LA, Scherer PE, et al: Caveolin-3 knockout mice show increased adiposity and whole body insulin resistance, with ligand-induced insulin receptor instability in skeletal muscle. Am J Physiol Cell Physiol. 288:C1317–C1331. 2005. View Article : Google Scholar : PubMed/NCBI

13 

Nader NS and Kumar S: Type 2 diabetes mellitus in children and adolescents: Where do we stand with drug treatment and behavioral management? Curr Diab Rep. 8:383–388. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Huang Q, Huang YY, Deng YF, Xian J, Lu WS and Wei HQ: Caveolin-3 gene polymorphism in Chinese H an diabetic patients. J Pract Med. 30:1757–1759. 2014.

15 

Shang L, Chen T, Deng Y, Huang Y, Huang Y, Xian J, Lu W, Yang L and Huang Q: Caveolin-3 promotes glycometabolism, growth and proliferation in muscle cells. PLoS One. 12:e01890042017. View Article : Google Scholar : PubMed/NCBI

16 

Deng YF, Huang YY, Lu WS, Huang YH, Xian J, Wei HQ and Huang Q: The Caveolin-3 P104L mutation of LGMD-1C leads to disordered glucose metabolism in muscle cells. Biochem Biophys Res Commun. 486:218–223. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Koistinen HA, Galuska D, Chibalin AV, Yang J, Zierath JR, Holman GD and Wallberg-Henriksson H: 5-amino-imidazole carboxamide riboside increases glucose transport and cell-surface GLUT4 content in skeletal muscle from subjects with type 2 diabetes. Diabetes. 52:1066–1072. 2003. View Article : Google Scholar : PubMed/NCBI

18 

Kim HS, Kim HJ, Kim YS, Park SC, Harris R and Kim CK: Caveolin, GLUT4 and insulin receptor protein content in human arm and leg muscles. Eur J Appl Physiol. 106:173–179. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Visvanathan R, Jayathilake C and Liyanage R: A simple microplate-based method for the determination of alpha-amylase activity using the glucose assay kit (GOD method). Food Chem. 211:853–859. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Luo J, Xu Q, Jiang B, Zhang R, Jia X, Li X, Wang L, Guo C, Wu N and Shi D: Selectivity, cell permeability and oral availability studies of novel bromophenol derivative HPN as protein tyrosine phosphatase 1B inhibitor. Br J Pharmacol. 175:140–153. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Feng W, Mao G, Li Q, Wang W, Chen Y, Zhao T, Li F, Zou Y, Wu H, Yang L and Wu X: Effects of chromium malate on glycometabolism, glycometabolism-related enzyme levels and lipid metabolism in type 2 diabetic rats: A dose-response and curative effects study. J Diabetes Investig. 6:396–407. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Ben Jemaa A, Bouraoui Y, Sallami S, Banasr A, Nouira Y, Horchani A and Oueslati R: PSMA-PSA clones controlled by full Akt phosphorylation (T308+,S473+) recapitulate molecular features of human prostate cancer. Tunis Med. 93:556–564. 2015.PubMed/NCBI

23 

Sarbassov DD, Guertin DA, Ali SM and Sabatini DM: Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 307:1098–1101. 2005. View Article : Google Scholar : PubMed/NCBI

24 

Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, Brown M, Fitzgerald KJ and Sabatini DM: Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell. 11:859–871. 2006. View Article : Google Scholar : PubMed/NCBI

25 

Chu N, Salguero AL, Liu AZ, Chen Z, Dempsey DR, Ficarro SB, Alexander WM, Marto JA, Li Y, Amzel LM, et al: Akt kinase activation mechanisms revealed using protein semisynthesis. Cell. 174:897–907.e14. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Spisni E, Tomasi V, Cestaro A and Tosatto SC: Structural insights into the function of human caveolin 1. Biochem Biophys Res Commun. 338:1383–1390. 2005. View Article : Google Scholar : PubMed/NCBI

27 

Kim JH, Schlebach JP, Lu Z, Peng D, Reasoner KC and Sanders CR: A pH-mediated topological switch within the N-terminal domain of human caveolin-3. Biophys J. 110:2475–2485. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Vaidyanathan R, Van Ert H, Haq KT, Morotti S, Esch S, McCune EC, Grandi E and Eckhardt LL: Inward rectifier potassium channels (Kir2.x) and caveolin-3 domain-specific interaction: Implications for purkinje cell-dependent ventricular arrhythmias. Circ Arrhythm Electrophysiol. 11:e0058002018. View Article : Google Scholar : PubMed/NCBI

29 

Fischer D, Schroers A, Blümcke I, Urbach H, Zerres K, Mortier W, Vorgerd M and Schröder R: Consequences of a novel caveolin-3 mutation in a large German family. Ann Neurol. 53:233–241. 2003. View Article : Google Scholar : PubMed/NCBI

30 

Couet J, Li S, Okamoto T, Ikezu T and Lisanti MP: Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem. 272:6525–6533. 1997. View Article : Google Scholar : PubMed/NCBI

31 

Couet J, Sargiacomo M and Lisanti MP: Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J Biol Chem. 272:30429–30438. 1997. View Article : Google Scholar : PubMed/NCBI

32 

Minetti C, Sotgia F, Bruno C, Scartezzini P, Broda P, Bado M, Masetti E, Mazzocco M, Egeo A, Donati MA, et al: Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nat Genet. 18:365–368. 1998. View Article : Google Scholar : PubMed/NCBI

33 

Hernández-Deviez DJ, Martin S, Laval SH, Lo HP, Cooper ST, North KN, Bushby K and Parton RG: Aberrant dysferlin trafficking in cells lacking caveolin or expressing dystrophy mutants of caveolin-3. Hum Mol Genet. 15:129–142. 2006. View Article : Google Scholar : PubMed/NCBI

34 

Oh YS, Cho KA, Ryu SJ, Khil LY, Jun HS, Yoon JW and Park SC: Regulation of insulin response in skeletal muscle cell by caveolin status. J Cell Biochem. 99:747–758. 2006. View Article : Google Scholar : PubMed/NCBI

35 

Zhang X and Wang Y: Glycosylation quality control by the Golgi structure. J Mol Biol. 428:3183–3193. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Gao Y, Zhang M, Wu T, Xu M, Cai H and Zhang Z: Effects of D-pinitol on insulin resistance through the PI3K/Akt signaling pathway in type 2 diabetes mellitus rats. J Agric Food Chem. 63:6019–6026. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Yang M, Ren Y, Lin Z, Tang C, Jia Y, Lai Y, Zhou T, Wu S, Liu H, Yang G and Li L: Krüppel-like factor 14 increases insulin sensitivity through activation of PI3K/Akt signal pathway. Cell Signal. 27:2201–2208. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Tan Z, Zhou LJ, Mu PW, Liu SP, Chen SJ, Fu XD and Wang TH: Caveolin-3 is involved in the protection of resveratrol against high-fat-diet-induced insulin resistance by promoting GLUT4 translocation to the plasma membrane in skeletal muscle of ovariectomized rats. J Nutr Biochem. 23:1716–1724. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Ferrannini E, Bjorkman O, Reichard GA Jr, Pilo A, Olsson M, Wahren J and DeFronzo RA: The disposal of an oral glucose load in healthy subjects. A quantitative study. Diabetes. 34:580–588. 1985. View Article : Google Scholar : PubMed/NCBI

40 

Gazzerro E, Sotgia F, Bruno C, Lisanti MP and Minetti C: Caveolinopathies: From the biology of caveolin-3 to human diseases. Eur J Hum Genet. 18:137–145. 2010. View Article : Google Scholar : PubMed/NCBI

41 

Manning BD and Cantley LC: AKT/PKB signaling: Navigating downstream. Cell. 129:1261–1274. 2007. View Article : Google Scholar : PubMed/NCBI

42 

Lee J and Kim MS: The role of GSK3 in glucose homeostasis and the development of insulin resistance. Diabetes Res Clin Pract. 77 (Suppl 1):S49–S57. 2007. View Article : Google Scholar : PubMed/NCBI

43 

Biddinger SB and Kahn CR: From mice to men: Insights into the insulin resistance syndromes. Annu Rev Physiol. 68:123–158. 2006. View Article : Google Scholar : PubMed/NCBI

44 

Boura-Halfon S and Zick Y: Phosphorylation of IRS proteins, insulin action, and insulin resistance. Am J Physiol Endocrinol Metab. 296:E581–E591. 2009. View Article : Google Scholar : PubMed/NCBI

45 

Saltiel AR and Kahn CR: Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 414:799–806. 2001. View Article : Google Scholar : PubMed/NCBI

46 

Gual P, Le Marchand-Brustel Y and Tanti JF: Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie. 87:99–109. 2005. View Article : Google Scholar : PubMed/NCBI

47 

Dummler B and Hemmings BA: Physiological roles of PKB/Akt isoforms in development and disease. Biochem Soc Trans. 35:231–235. 2007. View Article : Google Scholar : PubMed/NCBI

48 

Cohen MM Jr: The AKT genes and their roles in various disorders. Am J Med Genet A 161A. 2931–2937. 2013. View Article : Google Scholar

49 

Hadj Sassi A, Monteil J, Sauvant P and Atgié C: Overexpression of caveolin-3-enhanced protein synthesis rather than proteolysis inhibition in C2C12 myoblasts: Relationship with myostatin activity. J Physiol Biochem. 68:683–690. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Yudushkin I: Getting the Akt together: Guiding intracellular Akt activity by PI3K. Biomolecules. 9:E672019. View Article : Google Scholar : PubMed/NCBI

51 

Cho H, Thorvaldsen JL, Chu Q, Feng F and Birnbaum MJ: Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem. 276:38349–38352. 2001. View Article : Google Scholar : PubMed/NCBI

52 

Garofalo RS, Orena SJ, Rafidi K, Torchia AJ, Stock JL, Hildebrandt AL, Coskran T, Black SC, Brees DJ, Wicks JR, et al: Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta. J Clin Invest. 112:197–208. 2003. View Article : Google Scholar : PubMed/NCBI

53 

George S, Rochford JJ, Wolfrum C, Gray SL, Schinner S, Wilson JC, Soos MA, Murgatroyd PR, Williams RM, Acerini CL, et al: A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science. 304:1325–1328. 2004. View Article : Google Scholar : PubMed/NCBI

54 

Katome T, Obata T, Matsushima R, Masuyama N, Cantley LC, Gotoh Y, Kishi K, Shiota H and Ebina Y: Use of RNA interference-mediated gene silencing and adenoviral overexpression to elucidate the roles of AKT/protein kinase B isoforms in insulin actions. J Biol Chem. 278:28312–28323. 2003. View Article : Google Scholar : PubMed/NCBI

55 

Huang S and Czech MP: The GLUT4 glucose transporter. Cell Metab. 5:237–252. 2007. View Article : Google Scholar : PubMed/NCBI

56 

Fecchi K, Volonte D, Hezel MP, Schmeck K and Galbiati F: Spatial and temporal regulation of GLUT4 translocation by flotillin-1 and caveolin-3 in skeletal muscle cells. FASEB J. 20:705–707. 2006. View Article : Google Scholar : PubMed/NCBI

57 

Pedersen O, Bak JF, Andersen PH, Lund S, Moller DE, Flier JS and Kahn BB: Evidence against altered expression of GLUT1 or GLUT4 in skeletal muscle of patients with obesity or NIDDM. Diabetes. 39:865–870. 1990. View Article : Google Scholar : PubMed/NCBI

58 

Ryder JW, Yang J, Galuska D, Rincón J, Björnholm M, Krook A, Lund S, Pedersen O, Wallberg-Henriksson H, Zierath JR and Holman GD: Use of a novel impermeable biotinylated photolabeling reagent to assess insulin- and hypoxia-stimulated cell surface GLUT4 content in skeletal muscle from type 2 diabetic patients. Diabetes. 49:647–654. 2000. View Article : Google Scholar : PubMed/NCBI

59 

Konno S, Alexander B, Zade J and Choudhury M: Possible hypoglycemic action of SX-fraction targeting insulin signal transduction pathway. Int J Gen Med. 6:181–187. 2013. View Article : Google Scholar : PubMed/NCBI

60 

Dewulf M, Köster DV, Sinha B, Viaris de Lesegno C, Chambon V, Bigot A, Bensalah M, Negroni E, Tardif N, Podkalicka J, et al: Dystrophy-associated caveolin-3 mutations reveal that caveolae couple IL6/STAT3 signaling with mechanosensing in human muscle cells. Nat Commun. 10:19742019. View Article : Google Scholar : PubMed/NCBI

61 

Pál E, Zima J, Hadzsiev K, Ito YA, Hartley T; Care4Rare Canada Consortium, ; Boycott KM and Melegh B: A novel pathogenic variant in TNPO3 in a Hungarian family with limb-girdle muscular dystrophy 1F. Eur J Med Genet. 62:1036622019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Huang Y, Deng Y, Shang L, Yang L, Huang J, Ma J, Liao X, Zhou H, Xian J, Liang G, Liang G, et al: Effect of type 2 diabetes mellitus caveolin‑3 K15N mutation on glycometabolism Corrigendum in /10.3892/etm.2019.8307 . Exp Ther Med 18: 2531-2539, 2019.
APA
Huang, Y., Deng, Y., Shang, L., Yang, L., Huang, J., Ma, J. ... Huang, Q. (2019). Effect of type 2 diabetes mellitus caveolin‑3 K15N mutation on glycometabolism Corrigendum in /10.3892/etm.2019.8307 . Experimental and Therapeutic Medicine, 18, 2531-2539. https://doi.org/10.3892/etm.2019.7840
MLA
Huang, Y., Deng, Y., Shang, L., Yang, L., Huang, J., Ma, J., Liao, X., Zhou, H., Xian, J., Liang, G., Huang, Q."Effect of type 2 diabetes mellitus caveolin‑3 K15N mutation on glycometabolism Corrigendum in /10.3892/etm.2019.8307 ". Experimental and Therapeutic Medicine 18.4 (2019): 2531-2539.
Chicago
Huang, Y., Deng, Y., Shang, L., Yang, L., Huang, J., Ma, J., Liao, X., Zhou, H., Xian, J., Liang, G., Huang, Q."Effect of type 2 diabetes mellitus caveolin‑3 K15N mutation on glycometabolism Corrigendum in /10.3892/etm.2019.8307 ". Experimental and Therapeutic Medicine 18, no. 4 (2019): 2531-2539. https://doi.org/10.3892/etm.2019.7840
Copy and paste a formatted citation
x
Spandidos Publications style
Huang Y, Deng Y, Shang L, Yang L, Huang J, Ma J, Liao X, Zhou H, Xian J, Liang G, Liang G, et al: Effect of type 2 diabetes mellitus caveolin‑3 K15N mutation on glycometabolism Corrigendum in /10.3892/etm.2019.8307 . Exp Ther Med 18: 2531-2539, 2019.
APA
Huang, Y., Deng, Y., Shang, L., Yang, L., Huang, J., Ma, J. ... Huang, Q. (2019). Effect of type 2 diabetes mellitus caveolin‑3 K15N mutation on glycometabolism Corrigendum in /10.3892/etm.2019.8307 . Experimental and Therapeutic Medicine, 18, 2531-2539. https://doi.org/10.3892/etm.2019.7840
MLA
Huang, Y., Deng, Y., Shang, L., Yang, L., Huang, J., Ma, J., Liao, X., Zhou, H., Xian, J., Liang, G., Huang, Q."Effect of type 2 diabetes mellitus caveolin‑3 K15N mutation on glycometabolism Corrigendum in /10.3892/etm.2019.8307 ". Experimental and Therapeutic Medicine 18.4 (2019): 2531-2539.
Chicago
Huang, Y., Deng, Y., Shang, L., Yang, L., Huang, J., Ma, J., Liao, X., Zhou, H., Xian, J., Liang, G., Huang, Q."Effect of type 2 diabetes mellitus caveolin‑3 K15N mutation on glycometabolism Corrigendum in /10.3892/etm.2019.8307 ". Experimental and Therapeutic Medicine 18, no. 4 (2019): 2531-2539. https://doi.org/10.3892/etm.2019.7840
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team