Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
October-2019 Volume 18 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2019 Volume 18 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article

Aminoguanidine reduces diabetes‑associated cardiac fibrosis

  • Authors:
    • Fernando Magdaleno
    • Chuck Christopher Blajszczak
    • Claudia Lisette Charles‑Niño
    • Alma Marlene Guadrón‑Llanos
    • Alan Omar Vázquez‑Álvarez
    • Alejandra Guillermina Miranda‑Díaz
    • Natalia Nieto
    • María Cristina Islas‑Carbajal
    • Ana Rosa Rincón‑Sánchez
  • View Affiliations / Copyright

    Affiliations: Department of Physiology, University Center of Health Sciences, Guadalajara University, Guadalajara, Jalisco 44340, Mexico, Department of Pathology, College of Medicine, University of Illinois at Chicago, IL 60612, USA, Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Center of Health Sciences, Guadalajara University, Guadalajara, Jalisco 44340, Mexico, Institute of Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, Guadalajara University, Guadalajara, Jalisco 44340, Mexico
  • Pages: 3125-3138
    |
    Published online on: August 20, 2019
       https://doi.org/10.3892/etm.2019.7921
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Aminoguanidine (AG) inhibits advanced glycation end products (AGEs) and advanced oxidation protein products (AOPP) accumulated as a result of excessive oxidative stress in diabetes. However, the molecular mechanism by which AG reduces AGE‑associated damage in diabetes is not well understood. Thus, we investigated whether AG supplementation mitigates oxidative‑associated cardiac fibrosis in rats with type 2 diabetes mellitus (T2DM). Forty‑five male Wistar rats were divided into three groups: Control, T2DM and T2DM+AG. Rats were fed with a high‑fat, high‑carbohydrate diet (HFCD) for 2 weeks and rendered diabetic using low‑dose streptozotocin (STZ) (20 mg/kg), and one group was treated with AG (20 mg/kg) up to 25 weeks. In vitro experiments were performed in primary rat myofibroblasts to confirm the antioxidant and antifibrotic effects of AG and to determine if blocking the receptor for AGEs (RAGE) prevents the fibrogenic response in myofibroblasts. Diabetic rats exhibited an increase in cardiac fibrosis resulting from HFCD and STZ injections. By contrast, AG treatment significantly reduced cardiac fibrosis, α‑smooth muscle actin (αSMA) and oxidative‑associated Nox4 and Nos2 mRNA expression. In vitro challenge of myofibroblasts with AG under T2DM conditions reduced intra‑ and extracellular collagen type I expression and Pdgfb, Tgfβ1 and Col1a1 mRNAs, albeit with similar expression of Tnfα and Il6 mRNAs. This was accompanied by reduced phosphorylation of ERK1/2 and SMAD2/3 but not of AKT1/2/3 and STAT pathways. RAGE blockade further attenuated collagen type I expression in AG‑treated myofibroblasts. Thus, AG reduces oxidative stress‑associated cardiac fibrosis by reducing pERK1/2, pSMAD2/3 and collagen type I expression via AGE/RAGE signaling in T2DM.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

View References

1 

Patel D, Kumar R, Laloo D and Hemalatha S: Diabetes mellitus: An overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. Asian Pac J Trop Biomed. 2:411–420. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Kayama Y, Raaz U, Jagger A, Adam M, Schellinger IN, Sakamoto M, Suzuki H, Toyama K, Spin JM and Tsao PS: Diabetic cardiovascular disease induced by oxidative stress. Int J Mol Sci. 16:25234–25263. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Kumar S, Singh R, Vasudeva N and Sharma S: Acute and chronic animal models for the evaluation of anti-diabetic agents. Cardiovasc Diabetol. 11:92012. View Article : Google Scholar : PubMed/NCBI

4 

Wang HJ, Jin YX, Shen W, Neng J, Wu T, Li YJ and Fu ZW: Low dose streptozotocin (STZ) combined with high energy intake can effectively induce type 2 diabetes through altering the related gene expression. Asia Pac J Clin Nutr. 16 (Suppl 1):S412–S417. 2007.

5 

Malfitano C, de Souza Junior AL, Carbonaro M, Bolsoni-Lopes A, Figueroa D, de Souza LE, Silva KA, Consolim-Colombo F, Curi R and Irigoyen MC: Glucose and fatty acid metabolism in infarcted heart from streptozotocin-induced diabetic rats after 2 weeks of tissue remodeling. Cardiovasc Diabetol. 14:1492015. View Article : Google Scholar : PubMed/NCBI

6 

Nugent DA, Smith DM and Jones HB: A review of islet of Langerhans degeneration in rodent models of type 2 diabetes. Toxicol Pathol. 36:529–551. 2008. View Article : Google Scholar : PubMed/NCBI

7 

Serban AI, Stanca L, Geicu OI, Munteanu MC, Costache M and Dinischiotu A: Extracellular matrix is modulated in advanced glycation end products milieu via a RAGE receptor dependent pathway boosted by transforming growth factor-β1 RAGE. J Diabetes. 7:114–124. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Du AJ, Ren B, Gao XW, Yang L, Fu Y and Zhao XD: Effects of aminoguanidine on retinal apoptosis in mice with oxygen-induced retinopathy. Int J Ophthalmol. 6:436–441. 2013.PubMed/NCBI

9 

Serhiyenko VA and Serhiyenko AA: Diabetic cardiac autonomic neuropathy: Do we have any treatment perspectives? World J Diabetes. 6:245–258. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Thornalley PJ: Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. Arch Biochem Biophys. 419:31–40. 2003. View Article : Google Scholar : PubMed/NCBI

11 

Soliman M: Preservation of myocardial contractile function by aminoguanidine, a nitric oxide synthase inhibitors, in a rat model of hemorrhagic shock. Pak J Med Sci. 29:1415–1419. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Niki T, Rombouts K, De Bleser P, De Smet K, Rogiers V, Schuppan D, Yoshida M, Gabbiani G and Geerts A: A histone deacetylase inhibitor, trichostatin A, suppresses myofibroblastic differentiation of rat hepatic stellate cells in primary culture. Hepatology. 29:858–867. 1999. View Article : Google Scholar : PubMed/NCBI

13 

Rombouts K, Niki T, Greenwel P, Vandermonde A, Wielant A, Hellemans K, De Bleser P, Yoshida M, Schuppan D, Rojkind M and Geerts A: Trichostatin A, a histone deacetylase inhibitor, suppresses collagen synthesis and prevents TGF-beta(1)-induced fibrogenesis in skin fibroblasts. Exp Cell Res. 278:184–197. 2002. View Article : Google Scholar : PubMed/NCBI

14 

Grabiec K, Gajewska M, Milewska M, Blaszczyk M and Grzelkowska-Kowalczyk K: The influence of high glucose and high insulin on mechanisms controlling cell cycle progression and arrest in mouse C2C12 myoblasts: The comparison with IGF-I effect. J Endocrinol Invest. 37:233–245. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Wang CC, Gurevich I and Draznin B: Insulin affects vascular smooth muscle cell phenotype and migration via distinct signaling pathways. Diabetes. 52:2562–2569. 2003. View Article : Google Scholar : PubMed/NCBI

16 

Boateng SY, Hartman TJ, Ahluwalia N, Vidula H, Desai TA and Russell B: Inhibition of fibroblast proliferation in cardiac myocyte cultures by surface microtopography. Am J Physiol Cell Physiol. 285:C171–C182. 2003. View Article : Google Scholar : PubMed/NCBI

17 

Li M and Hagerman AE: Effect of (−)-epigallocatechin-3-gallate on glucose-induced human serum albumin glycation. Free Radic Res. 49:946–953. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Johnson PD and Besselsen DG: Practical aspects of experimental design in animal research. ILAR J. 43:202–206. 2002. View Article : Google Scholar : PubMed/NCBI

19 

Festing MF and Altman DG: Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J. 43:244–258. 2002. View Article : Google Scholar : PubMed/NCBI

20 

Lattouf R, Younes R, Lutomski D, Naaman N, Godeau G, Senni K and Changotade S: Picrosirius red staining: A useful tool to appraise collagen networks in normal and pathological tissues. J Histochem Cytochem. 62:751–758. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

22 

Halban PA, Polonsky KS, Bowden DW, Hawkins MA, Ling C, Mather KJ, Powers AC, Rhodes CJ, Sussel L and Weir GC: β-cell failure in type 2 diabetes: Postulated mechanisms and prospects for prevention and treatment. J Clin Endocrinol Metab. 99:1983–1992. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Rao KB, Malathi N, Narashiman S and Rajan ST: Evaluation of myofibroblasts by expression of alpha smooth muscle actin: A marker in fibrosis, dysplasia and carcinoma. J Clin Diagn Res. 8:ZC14–ZC17. 2014.

24 

Lijnen PJ, van Pelt JF and Fagard RH: Stimulation of reactive oxygen species and collagen synthesis by angiotensin II in cardiac fibroblasts. Cardiovasc Ther. 30:e1–e8. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Ma ZA, Zhao Z and Turk J: Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Exp Diabetes Res. 2012:7035382012. View Article : Google Scholar : PubMed/NCBI

26 

Tian XY, Wong WT, Xu A, Lu Y, Zhang Y, Wang L, Cheang WS, Wang Y, Yao X and Huang Y: Uncoupling protein-2 protects endothelial function in diet-induced obese mice. Circ Res. 110:1211–1216. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Parthasarathy A, Gopi V, Devi K M S, Balaji N and Vellaichamy E: Aminoguanidine inhibits ventricular fibrosis and remodeling process in isoproterenol-induced hypertrophied rat hearts by suppressing ROS and MMPs. Life Sci. 118:15–26. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Chowdhury P, Soulsby ME and Scott JL: Effects of aminoguanidine on tissue oxidative stress induced by hindlimb unloading in rats. Ann Clin Lab Sci. 39:64–70. 2009.PubMed/NCBI

29 

Cigremis Y, Parlakpinar H, Polat A, Colak C, Ozturk F, Sahna E, Ermis N and Acet A: Beneficial role of aminoguanidine on acute cardiomyopathy related to doxorubicin-treatment. Mol Cell Biochem. 285:149–154. 2006. View Article : Google Scholar : PubMed/NCBI

30 

Wegner M, Neddermann D, Piorunska-Stolzmann M and Jagodzinski PP: Role of epigenetic mechanisms in the development of chronic complications of diabetes. Diabetes Res Clin Pract. 105:164–175. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Bertacca A, Ciccarone A, Cecchetti P, Vianello B, Laurenza I, Maffei M, Chiellini C, Del Prato S and Benzi L: Continually high insulin levels impair Akt phosphorylation and glucose transport in human myoblasts. Metabolism. 54:1687–163. 2005. View Article : Google Scholar : PubMed/NCBI

32 

Lu TC, Wang ZH, Feng X, Chuang PY, Fang W, Shen Y, Levy DE, Xiong H, Chen N and He JC: Knockdown of Stat3 activity in vivo prevents diabetic glomerulopathy. Kidney Int. 76:63–71. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Yahiaoui L, Gvozdic D, Danialou G, Mack M and Petrof BJ: CC family chemokines directly regulate myoblast responses to skeletal muscle injury. J Physiol. 586:3991–4004. 2008. View Article : Google Scholar : PubMed/NCBI

34 

Tang M, Zhang W, Lin H, Jiang H, Dai H and Zhang Y: High glucose promotes the production of collagen types I and III by cardiac fibroblasts through a pathway dependent on extracellular-signal-regulated kinase 1/2. Mol Cell Biochem. 301:109–114. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Dong Y, Lakhia R, Thomas SS, Dong Y, Wang XH, Silva KA and Zhang L: Interactions between p-Akt and Smad3 in injured muscles initiate myogenesis or fibrogenesis. Am J Physiol Endocrinol Metab. 305:E367–E375. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Schiaffino S and Mammucari C: Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: Insights from genetic models. Skelet Muscle. 1:42011. View Article : Google Scholar : PubMed/NCBI

37 

Sakai M, Oimomi M and Kasuga M: Experimental studies on the role of fructose in the development of diabetic complications. Kobe J Med Sci. 48:125–136. 2002.PubMed/NCBI

38 

Wang XL, Lau WB, Yuan YX, Wang YJ, Yi W, Christopher TA, Lopez BL, Liu HR and Ma XL: Methylglyoxal increases cardiomyocyte ischemia-reperfusion injury via glycative inhibition of thioredoxin activity. Am J Physiol Endocrinol Metab. 299:E207–E214. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Ding WY, Liu L, Wang ZH, Tang MX, Ti Y, Han L, Zhang L, Zhang Y, Zhong M and Zhang W: FP-receptor gene silencing ameliorates myocardial fibrosis and protects from diabetic cardiomyopathy. J Mol Med (Berl). 92:629–640. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Yu W, Wu J, Cai F, Xiang J, Zha W, Fan D, Guo S, Ming Z and Liu C: Curcumin alleviates diabetic cardiomyopathy in experimental diabetic rats. PLoS One. 7:e520132012. View Article : Google Scholar : PubMed/NCBI

41 

Rajesh M, Mukhopadhyay P, Bátkai S, Patel V, Saito K, Matsumoto S, Kashiwaya Y, Horváth B, Mukhopadhyay B, Becker L, et al: Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J Am Coll Cardiol. 56:2115–2125. 2010. View Article : Google Scholar : PubMed/NCBI

42 

King AJ: The use of animal models in diabetes research. Br J Pharmacol. 166:877–894. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Zhang Y, Babcock SA, Hu N, Maris JR, Wang H and Ren J: Mitochondrial aldehyde dehydrogenase (ALDH2) protects against streptozotocin-induced diabetic cardiomyopathy: Role of GSK3β and mitochondrial function. BMC Med. 10:402012. View Article : Google Scholar : PubMed/NCBI

44 

Asbun J and Villarreal FJ: The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. J Am Coll Cardiol. 47:693–700. 2006. View Article : Google Scholar : PubMed/NCBI

45 

Vijan S: In the clinic. Type 2 diabetes. Ann Intern Med. 152:ITC31–ITC15, ITC316. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Ježek P, Olejár T, Smolková K, Jezek J, Dlasková A, Plecitá-Hlavatá L, Zelenka J, Špaček T, Engstová H, Pajuelo Reguera D and Jabůrek M: Antioxidant and regulatory role of mitochondrial uncoupling protein UCP2 in pancreatic beta-cells. Physiol Res. 63 (Suppl 1):S73–S91. 2014.PubMed/NCBI

47 

Baldelli S, Aquilano K and Ciriolo MR: Punctum on two different transcription factors regulated by PGC-α: Nuclear factor erythroid-derived 2-like 2 and nuclear respiratory factor 2. Biochim Biophys Acta. 1830:4137–4146. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Li B, Liu S, Miao L and Cai L: Prevention of diabetic complications by activation of Nrf2: Diabetic cardiomyopathy and nephropathy. Exp Diabetes Res. 2012:2165122012. View Article : Google Scholar : PubMed/NCBI

49 

Lasségue B and Griendling KK: NADPH oxidases: Functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol. 30:653–661. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Chen F, Haigh S, Barman S and Fulton DJ: From form to function: The role of Nox4 in the cardiovascular system. Front Physiol. 3:4122012. View Article : Google Scholar : PubMed/NCBI

51 

Pendyala S and Natarajan V: Redox regulation of Nox proteins. Respir Physiol Neurobiol. 174:265–271. 2010. View Article : Google Scholar : PubMed/NCBI

52 

Brewer AC, Murray TV, Arno M, Zhang M, Anilkumar NP, Mann GE and Shah AM: Nox4 regulates Nrf2 and glutathione redox in cardiomyocytes in vivo. Free Radic Biol Med. 51:205–215. 2011. View Article : Google Scholar : PubMed/NCBI

53 

Dusting GJ and Triggle C: Are we over oxidized? Oxidative stress, cardiovascular disease, and the future of intervention studies with antioxidants. Vasc Health Risk Manag. 1:93–97. 2005. View Article : Google Scholar : PubMed/NCBI

54 

Kazakov A, Hall R, Jagoda P, Bachelier K, Müller-Best P, Semenov A, Lammert F, Böhm M and Laufs U: Inhibition of endothelial nitric oxide synthase induces and enhances myocardial fibrosis. Cardiovasc Res. 100:211–221. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Oak JH, Youn JY and Cai H: Aminoguanidine inhibits aortic hydrogen peroxide production, VSMC NOX activity and hypercontractility in diabetic mice. Cardiovasc Diabetol. 8:652009. View Article : Google Scholar : PubMed/NCBI

56 

Li W, Cui M, Wei Y, Kong X, Tang L and Xu D: Inhibition of the expression of TGF-β1 and CTGF in human mesangial cells by exendin-4, a glucagon-like peptide-1 receptor agonist. Cell Physiol Biochem. 30:749–757. 2012. View Article : Google Scholar : PubMed/NCBI

57 

Yokoi H, Kasahara M, Mori K, Kuwabara T, Toda N, Yamada R, Namoto S, Yamamoto T, Seki N, Souma N, et al: Peritoneal fibrosis and high transport are induced in mildly pre-injured peritoneum by 3,4-dideoxyglucosone-3-ene in mice. Perit Dial Int. 33:143–154. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Dhar A, Dhar I, Desai KM and Wu L: Methylglyoxal scavengers attenuate endothelial dysfunction induced by methylglyoxal and high concentrations of glucose. Br J Pharmacol. 161:1843–1856. 2010. View Article : Google Scholar : PubMed/NCBI

59 

Eika B, Levin RM and Longhurst PA: Modulation of urinary bladder function by sex hormones in streptozotocin-diabetic rats. J Urol. 152:537–543. 1994. View Article : Google Scholar : PubMed/NCBI

60 

Youssef S, Nguyen DT, Soulis T, Panagiotopoulos S, Jerums G and Cooper ME: Effect of diabetes and aminoguanidine therapy on renal advanced glycation end-product binding. Kidney Int. 55:907–916. 1999. View Article : Google Scholar : PubMed/NCBI

61 

Wilkinson-Berka JL, Kelly DJ, Koerner SM, Jaworski K, Davis B, Thallas V and Cooper ME: ALT-946 and aminoguanidine, inhibitors of advanced glycation, improve severe nephropathy in the diabetic transgenic (mREN-2)27 rat. Diabetes. 51:3283–3289. 2002. View Article : Google Scholar : PubMed/NCBI

62 

Han DC, Isono M, Hoffman BB and Ziyadeh FN: High glucose stimulates proliferation and collagen type I synthesis in renal cortical fibroblasts: Mediation by autocrine activation of TGF-beta. J Am Soc Nephrol. 10:1891–1899. 1999.PubMed/NCBI

63 

Aguilar H, Fricovsky E, Ihm S, Schimke M, Maya-Ramos L, Aroonsakool N, Ceballos G, Dillmann W, Villarreal F and Ramirez-Sanchez I: Role for high-glucose-induced protein O-GlcNAcylation in stimulating cardiac fibroblast collagen synthesis. Am J Physiol Cell Physiol. 306:C794–C804. 2014. View Article : Google Scholar : PubMed/NCBI

64 

Fiaschi T, Magherini F, Gamberi T, Lucchese G, Faggian G, Modesti A and Modesti PA: Hyperglycemia and angiotensin II cooperate to enhance collagen I deposition by cardiac fibroblasts through a ROS-STAT3-dependent mechanism. Biochim Biophys Acta. 1843:2603–2610. 2014. View Article : Google Scholar : PubMed/NCBI

65 

Kojima H, Fujimiya M, Matsumura K, Nakahara T, Hara M and Chan L: Extrapancreatic insulin-producing cells in multiple organs in diabetes. Proc Natl Acad Sci USA. 101:2458–2463. 2004. View Article : Google Scholar : PubMed/NCBI

66 

Phadnis SM, Ghaskadbi SM, Hardikar AA and Bhonde RR: Mesenchymal stem cells derived from bone marrow of diabetic patients portrait unique markers influenced by the diabetic microenvironment. Rev Diabet Stud. 6:260–270. 2009. View Article : Google Scholar : PubMed/NCBI

67 

Wang CC, Goalstone ML and Draznin B: Molecular mechanisms of insulin resistance that impact cardiovascular biology. Diabetes. 53:2735–2740. 2004. View Article : Google Scholar : PubMed/NCBI

68 

Grzebyk E and Piwowar A: Inhibitory actions of selected natural substances on formation of advanced glycation endproducts and advanced oxidation protein products. BMC Complement Altern Med. 16:3812016. View Article : Google Scholar : PubMed/NCBI

69 

Islas-Carbajal MC, Covarrubias A, Grijalva G, Alvarez-Rodriguez A, Armendáriz-Borunda J and Rincón-Sánchez AR: Nitric oxide synthases inhibition results in renal failure improvement in cirrhotic rats. Liver Int. 25:131–140. 2005. View Article : Google Scholar : PubMed/NCBI

70 

Corbett JA, Tilton RG, Chang K, Hasan KS, Ido Y, Wang JL, Sweetland MA, Lancaster JR Jr, Williamson JR and McDaniel ML: Aminoguanidine, a novel inhibitor of nitric oxide formation, prevents diabetic vascular dysfunction. Diabetes. 41:552–556. 1992. View Article : Google Scholar : PubMed/NCBI

71 

Ara C, Karabulut AB, Kirimlioglu H, Yilmaz M, Kirimliglu V and Yilmaz S: Protective effect of aminoguanidine against oxidative stress in an experimental peritoneal adhesion model in rats. Cell Biochem Funct. 24:443–448. 2006. View Article : Google Scholar : PubMed/NCBI

72 

Stadler K, Jenei V, Somogyi A and Jakus J: Beneficial effects of aminoguanidine on the cardiovascular system of diabetic rats. Diabetes Metab Res Rev. 21:189–196. 2005. View Article : Google Scholar : PubMed/NCBI

73 

Richardson MA, Furlani RE, Podell BK, Ackart DF, Haugen JD, Melander RJ, Melander C and Basaraba RJ: Inhibition and breaking of advanced glycation end-products (AGEs) with bis-2-aminoimidazole derivatives. Tetrahedron Lett. 56:3406–3409. 2015. View Article : Google Scholar : PubMed/NCBI

74 

Giardino I, Fard AK, Hatchell DL and Brownlee M: Aminoguanidine inhibits reactive oxygen species formation, lipid peroxidation, and oxidant-induced apoptosis. Diabetes. 47:1114–1120. 1998. View Article : Google Scholar : PubMed/NCBI

75 

Oldfield MD, Bach LA, Forbes JM, Nikolic-Paterson D, McRobert A, Thallas V, Atkins RC, Osicka T, Jerums G and Cooper ME: Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J Clin Invest. 108:1853–1863. 2001. View Article : Google Scholar : PubMed/NCBI

76 

Khazaei M, Karimi J, Sheikh N, Goodarzi MT, Saidijam M, Khodadadi I and Moridi H: Effects of resveratrol on receptor for advanced glycation end products (RAGE) expression and oxidative stress in the liver of rats with type 2 diabetes. Phytother Res. 30:66–71. 2016. View Article : Google Scholar : PubMed/NCBI

77 

Tan Y, Ichikawa T, Li J, Si Q, Yang H, Chen X, Goldblatt CS, Meyer CJ, Li X, Cai L and Cui T: Diabetic downregulation of Nrf2 activity via ERK contributes to oxidative stress-induced insulin resistance in cardiac cells in vitro and in vivo. Diabetes. 60:625–633. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Magdaleno F, Blajszczak CC, Charles‑Niño CL, Guadrón‑Llanos AM, Vázquez‑Álvarez AO, Miranda‑Díaz AG, Nieto N, Islas‑Carbajal MC and Rincón‑Sánchez AR: Aminoguanidine reduces diabetes‑associated cardiac fibrosis. Exp Ther Med 18: 3125-3138, 2019.
APA
Magdaleno, F., Blajszczak, C.C., Charles‑Niño, C.L., Guadrón‑Llanos, A.M., Vázquez‑Álvarez, A.O., Miranda‑Díaz, A.G. ... Rincón‑Sánchez, A.R. (2019). Aminoguanidine reduces diabetes‑associated cardiac fibrosis. Experimental and Therapeutic Medicine, 18, 3125-3138. https://doi.org/10.3892/etm.2019.7921
MLA
Magdaleno, F., Blajszczak, C. C., Charles‑Niño, C. L., Guadrón‑Llanos, A. M., Vázquez‑Álvarez, A. O., Miranda‑Díaz, A. G., Nieto, N., Islas‑Carbajal, M. C., Rincón‑Sánchez, A. R."Aminoguanidine reduces diabetes‑associated cardiac fibrosis". Experimental and Therapeutic Medicine 18.4 (2019): 3125-3138.
Chicago
Magdaleno, F., Blajszczak, C. C., Charles‑Niño, C. L., Guadrón‑Llanos, A. M., Vázquez‑Álvarez, A. O., Miranda‑Díaz, A. G., Nieto, N., Islas‑Carbajal, M. C., Rincón‑Sánchez, A. R."Aminoguanidine reduces diabetes‑associated cardiac fibrosis". Experimental and Therapeutic Medicine 18, no. 4 (2019): 3125-3138. https://doi.org/10.3892/etm.2019.7921
Copy and paste a formatted citation
x
Spandidos Publications style
Magdaleno F, Blajszczak CC, Charles‑Niño CL, Guadrón‑Llanos AM, Vázquez‑Álvarez AO, Miranda‑Díaz AG, Nieto N, Islas‑Carbajal MC and Rincón‑Sánchez AR: Aminoguanidine reduces diabetes‑associated cardiac fibrosis. Exp Ther Med 18: 3125-3138, 2019.
APA
Magdaleno, F., Blajszczak, C.C., Charles‑Niño, C.L., Guadrón‑Llanos, A.M., Vázquez‑Álvarez, A.O., Miranda‑Díaz, A.G. ... Rincón‑Sánchez, A.R. (2019). Aminoguanidine reduces diabetes‑associated cardiac fibrosis. Experimental and Therapeutic Medicine, 18, 3125-3138. https://doi.org/10.3892/etm.2019.7921
MLA
Magdaleno, F., Blajszczak, C. C., Charles‑Niño, C. L., Guadrón‑Llanos, A. M., Vázquez‑Álvarez, A. O., Miranda‑Díaz, A. G., Nieto, N., Islas‑Carbajal, M. C., Rincón‑Sánchez, A. R."Aminoguanidine reduces diabetes‑associated cardiac fibrosis". Experimental and Therapeutic Medicine 18.4 (2019): 3125-3138.
Chicago
Magdaleno, F., Blajszczak, C. C., Charles‑Niño, C. L., Guadrón‑Llanos, A. M., Vázquez‑Álvarez, A. O., Miranda‑Díaz, A. G., Nieto, N., Islas‑Carbajal, M. C., Rincón‑Sánchez, A. R."Aminoguanidine reduces diabetes‑associated cardiac fibrosis". Experimental and Therapeutic Medicine 18, no. 4 (2019): 3125-3138. https://doi.org/10.3892/etm.2019.7921
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team