|
1
|
Pavord ID, Beasley R, Agusti A, Anderson
GP, Bel E, Brusselle G, Cullinan P, Custovic A, Ducharme FM, Fahy
JV, et al: After asthma: Redefining airways diseases. Lancet.
391:350–400. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Bateman ED, Hurd SS, Barnes PJ, Bousquet
J, Drazen JM, FitzGerald M, Gibson P, Ohta K, O'Byrne P, Pedersen
SE, et al: Global strategy for asthma management and prevention:
GINA executive summary. Eur Respir J. 31:143–178. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Ray A, Raundhal M, Oriss TB, Ray P and
Wenzel SE: Current concepts of severe asthma. J Clin Invest.
126:2394–2403. 2016. View
Article : Google Scholar : PubMed/NCBI
|
|
4
|
Word Health Organiztion (2017), . Asthma
Fact Sheet. http://www.who.int/mediacentre/factsheets/fs307/en/May
26–2018
|
|
5
|
McInnes RN, Hernming D, Burgess P, Lyndsay
D, Osborne NJ, Skjøth CA, Thomas S and Vardoulakis S: Mapping
allergenic pollen vegetation in UK to study environmental exposure
and human health. Sci Total Environ. 599-600:483–499. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Stein MM, Hrusch CL, Gozdz J, Igartua C,
Pivniouk V, Murray SE, Ledford JG, dos Santos MM, Anderson RL,
Metwali N, et al: Innate immunity and asthma risk in amish and
hutterite farm children. N Engl J Med. 375:411–421. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Bleecker ER, FitzGerald JM, Chanez P, Papi
A, Weinstein SF, Barker P, Sproule S, Gilmartin G, Aurivillius M,
Werkström V, et al: Efficacy and safety of benralizumab for
patients with severe asthma uncontrolled with high-dosage inhaled
corticosteroids and long-acting β2-agonists (SIROCCO): A
randomised, multicentre, placebo-controlled phase 3 trial. Lancet.
388:2115–2127. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Chiu CN, Rihel J, Lee DA, Singh C, Mosser
EA, Chen SJ, Sapin V, Pham U, Engle J, Niles BJ, et al: A zebrafish
genetic screen identifies neuromedin U as a regulator of sleep/wake
states. Neuron. 89:842–856. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Schlegel P, Texada MJ, Miroschnikow A,
Schoofs A, Hückesfeld S, Peters M, Schneider-Mizell CM, Lacin H, Li
F, Fetter RD, et al: Synaptic transmission parallels
neuromodulation in a central food-intake circuit. Elife.
5:e167992016. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Martinez VG and O'Driscoll L: Neuromedin
U: A multifunctional neuropeptide with pleiotropic roles. Clin
Chem. 61:471–482. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Lee J, Snyder ER, Liu YH, Gu XY, Wang J,
Flowers BM, Kim YJ, Park S, Szot GL, Hruban RH, et al:
Reconstituting development of pancreatic intraepithelial neoplasia
from primary human pancreas duct cells. Nat Commun. 8:146862017.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Alfa RW, Park S, Skelly KR, Poffenberger
G, Jain N, Gu X, Kockel L, Wang J, Liu YH, Powers AC and Kim SK:
Suppression of insulin production and secretion by a decretin
hormone. Cell Metab. 21:323–333. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wallrapp A, Riesenfeld SJ, Burkett PR,
Abdulnour RE, Nyman J, Dionne D, Hofree M, Cuoco MS, Rodman C,
Farouq D, et al: The neuropeptide NMU amplifies ILC2-driven
allergic lung inflammation. Nature. 549:351–356. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Cardoso V, Chesné J, Ribeiro H,
García-Cassani B, Carvalho T, Bouchery T, Shah K, Barbosa-Morais
NL, Harris N and Veiga-Fernandes H: Neuronal regulation of type 2
innate lymphoid cells via neuromedin U. Nature. 549:277–281. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Klose CSN, Mahlakõiv T, Moeller JB, Rankin
LC, Flamar AL, Kabata H, Monticelli LA, Moriyama S, Putzel GG,
Rakhilin N, et al: The neuropeptide neuromedin U stimulates innate
lymphoid cells and type 2 inflammation. Nature. 549:282–286. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Hargreave FE and Nair P: The definition
and diagnosis of asthma. Clin Exp Allergy. 39:1652–1658. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
O'Reilly R, Ullmann N, Irving S, Bossley
CJ, Sonnappa S, Zhu J, Oates T, Banya W, Jeffery PK, Bush A and
Saglani S: Increased airway smooth muscle in preschool wheezers who
have asthma at school age. J Allergy Clin Immunol. 131:1024–1032,
32.e1-16. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Noble PB, Pascoe CD, Lan B, Ito S,
Kistemaker LE, Tatler AL, Pera T, Brook BS, Gosens R and West AR:
Airway smooth muscle in asthma: Linking contraction and
mechanotransduction to disease pathogenesis and remodelling. Pulm
Pharmacol Ther. 29:96–107. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Nair P, Martin JG, Cockcroft DC, Dolovich
M, Lemiere C, Boulet LP and O'Byrne PM: Airway hyperresponsiveness
in asthma: Measurement and clinical relevance. J Allergy Clin
Immunol Pract. 5:649–659.e2. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Jackson DJ and Johnston SL: The role of
viruses in acute exacerbations of asthma. J Allergy Clin Immunol.
125:1178–1187; quiz 1188–1189. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Pascoe S, Locantore N, Dransfield MT,
Barnes NC and Pavord ID: Blood eosinophil counts, exacerbations,
and response to the addition of inhaled fluticasone furoate to
vilanterol in patients with chronic obstructive pulmonary disease:
A secondary analysis of data from two parallel randomised
controlled trials. Lancet Respir Med. 3:435–442. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Brusselle GG, Maes T and Bracke KR:
Eosinophils in the spotlight: Eosinophilic airway inflammation in
nonallergic asthma. Nat Med. 19:977–979. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Veres TZ, Shevchenko M, Krasteva G, Spies
E, Prenzler F, Rochlitzer S, Tschernig T, Krug N, Kummer W and
Braun A: Dendritic cell-nerve clusters are sites of T cell
proliferation in allergic airway inflammation. Am J Pathol.
174:808–817. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Furuhashi K, Chua YL, Wong KHS, Zhou Q,
Lee DCP, Liong KH, Teo GH, Hutchinson PE and Kemeny DM: Priming
with high and low respiratory allergen dose induces differential
CD4+ T helper type 2 cells and IgE/IgG1 antibody
responses in mice. Immunology. 151:227–238. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Suzuki R, Leach S, Liu WH, Ralston E,
Scheffel J, Zhang W, Lowell CA and Rivera J: Molecular editing of
cellular responses by the high-affinity receptor for IgE. Science.
343:1021–1025. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Cao PP, Zhang YN, Liao B, Ma J, Wang BF,
Wang H, Zeng M, Liu WH, Schleimer RP and Liu Z: Increased local IgE
production induced by common aeroallergens and phenotypic
alteration of mast cells in Chinese eosinophilic, but not
non-eosinophilic, chronic rhinosinusitis with nasal polyps. Clin
Exp Allergy. 44:690–700. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Moretti S, Renga G, Oikonomou V, Galosi C,
Pariano M, Iannitti RG, Borghi M, Puccetti M, De Zuani M, Pucillo
CE, et al: A mast cell-ILC2-Th9 pathway promotes lung inflammation
in cystic fibrosis. Nat Commun. 8:140172017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Serafini N, Vosshenrich CA and Di Santo
JP: Transcriptional regulation of innate lymphoid cell fate. Nat
Rev Immunol. 15:415–428. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Licona-Limón P, Kim LK, Palm NW and
Flavell RA: TH2, allergy and group 2 innate lymphoid cells. Nat
Immunol. 14:536–542. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Mesnil C, Raulier S, Paulissen G, Xiao X,
Birrell MA, Pirottin D, Janss T, Starkl P, Ramery E, Henket M, et
al: Lung-resident eosinophils represent a distinct regulatory
eosinophil subset. J Clin Invest. 126:3279–3295. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Bal SM, Bernink JH, Nagasawa M, Groot J,
Shikhagaie MM, Golebski K, van Drunen CM, Lutter R, Jonkers RE,
Hombrink P, et al: IL-1β, IL-4 and IL-12 control the fate of group
2 innate lymphoid cells in human airway inflammation in the lungs.
Nat Immunol. 17:636–645. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wenzel SE: Asthma phenotypes: The
evolution from clinical to molecular approaches. Nat Med.
18:716–725. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Sugita K, Steer CA, Martinez-Gonzalez I,
Altunbulakli C, Morita H, Castro-Giner F, Kubo T, Wawrzyniak P,
Ruckert B, Sudo K, et al: Type 2 innate lymphoid cells disrupt
bronchial epithelial barrier integrity by targeting tight junctions
through IL-13 in asthmatic patients. J Allergy Clin Immunol.
141:300–310.e11. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Pauwels RA, Löfdahl CG, Postma DS,
Tattersfield AE, O'Byrne P, Barnes PJ and Ullman A: Effect of
inhaled formoterol and budesonide on exacerbations of asthma.
formoterol and corticosteroids establishing therapy (FACET)
international study group. N Engl J Med. 337:1405–1411. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Gibson PG, Powell H and Ducharme FM:
Differential effects of maintenance long-acting beta-agonist and
inhaled corticosteroid on asthma control and asthma exacerbations.
J Allergy Clin Immunol. 119:344–350. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Weinstein RS: Clinical practice.
Glucocorticoid-induced bone disease. N Engl J Med. 365:62–70. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Mak VH, Melchor R and Spiro SG: Easy
bruising as a side-effect of inhaled corticosteroids. Eur Respir J.
5:1068–1074. 1992.PubMed/NCBI
|
|
38
|
Brown PH, Greening AP and Crompton GK:
Large volume spacer devices and the influence of high dose
beclomethasone dipropionate on hypothalamo-pituitary-adrenal axis
function. Thorax. 48:233–238. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Mukherjee M, Aleman Paramo F, Kjarsgaard
M, Salter B, Nair G, LaVigne N, Radford K, Sehmi R and Nair P:
Weight-adjusted intravenous reslizumab in severe asthma with
inadequate response to fixed-dose subcutaneous mepolizumab. Am J
Respir Crit Care Med. 197:38–46. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Minamino N, Kangawa K and Matsuo H:
Neuromedin U-8 and U-25: Novel uterus stimulating and hypertensive
peptides identified in porcine spinal cord. Biochem Biophys Res
Commun. 130:1078–1085. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Domin J, Ghatei MA, Chohan P and Bloom SR:
Neuromedin U--a study of its distribution in the rat. Peptides.
8:779–784. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Tanida M, Satomi J, Shen J and Nagai K:
Autonomic and cardiovascular effects of central neuromedin U in
rats. Physiol Behav. 96:282–288. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Austin C, Lo G, Nandha KA, Meleagros L and
Bloom SR: Cloning and characterization of the cDNA encoding the
human neuromedin U (NmU) precursor: NmU expression in the human
gastrointestinal tract. J Mol Endocrinol. 14:157–169. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Gevaert B, Wynendaele E, Stalmans S,
Bracke N, D'Hondt M, Smolders I, van Eeckhaut A and De Spiegeleer
B: Blood-brain barrier transport kinetics of the neuromedin
peptides NMU, NMN, NMB and NT. Neuropharmacology. 107:460–470.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Mitchell JD, Maguire JJ and Davenport AP:
Emerging pharmacology and physiology of neuromedin U and the
structurally related peptide neuromedin S. Br J Pharmacol.
158:87–103. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Szekeres PG, Muir AI, Spinage LD, Miller
JE, Butler SI, Smith A, Rennie GI, Murdock PR, Fitzgerald LR, Wu H,
et al: Neuromedin U is a potent agonist at the orphan G
protein-coupled receptor FM3. J Biol Chem. 275:20247–20250. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Alexander SP, Mathie A and Peters JA:
Guide to receptors and channels (GRAC), 3rd edition. Br J
Pharmacol. 153 (Suppl 2):S1–S209. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Hosoya M, Moriya T, Kawamata Y, Ohkubo S,
Fujii R, Matsui H, Shintani Y, Fukusumi S, Habata Y, Hinuma S, et
al: Identification and functional characterization of a novel
subtype of neuromedin U receptor. J Biol Chem. 275:29528–29532.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Fujii R, Hosoya M, Fukusumi S, Kawamata Y,
Habata Y, Hinuma S, Onda H, Nishimura O and Fujino M:
Identification of neuromedin U as the cognate ligand of the orphan
G protein-coupled receptor FM-3. J Biol Chem. 275:21068–21074.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Howard AD, Wang R, Pong SS, Mellin TN,
Strack A, Guan XM, Zeng Z, Williams DL Jr, Feighner SD, Nunes CN,
et al: Identification of receptors for neuromedin U and its role in
feeding. Nature. 406:70–74. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kakarala KK and Jamil K:
Sequence-structure based phylogeny of GPCR Class A Rhodopsin
receptors. Mol Phylogenet Evol. 74:66–96. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Brighton PJ, Szekeres PG, Wise A and
Willars GB: Signaling and ligand binding by recombinant neuromedin
U receptors: Evidence for dual coupling to Galphaq/11 and Galphai
and an irreversible ligand-receptor interaction. Mol Pharmacol.
66:1544–1556. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Hsu SH and Luo CW: Molecular dissection of
G protein preference using Gsalpha chimeras reveals novel ligand
signaling of GPCRs. Am J Physiol Endocrinol Metab. 293:E1021–E1029.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Moriyama M, Matsukawa A, Kudoh S,
Takahashi T, Sato T, Kano T, Yoshimura A and Kojima M: The
neuropeptide neuromedin U promotes IL-6 production from macrophages
and endotoxin shock. Biochem Biophys Res Commun. 341:1149–1154.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Johnson EN, Appelbaum ER, Carpenter DC,
Cox RF, Disa J, Foley JJ, Ghosh SK, Naselsky DP, Pullen MA, Sarau
HM, et al: Neuromedin U elicits cytokine release in murine Th2-type
T cell clone D10.G4.1. J Immunol. 173:7230–7238. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Cording S, Medvedovic J, Aychek T and
Eberl G: Innate lymphoid cells in defense, immunopathology and
immunotherapy. Nat Immunol. 17:755–757. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Zhang Y, Jiang D, Zhang Y, Jiang X, Wang F
and Tao J: Neuromedin U type 1 receptor stimulation of A-type K+
current requires the βg subunits of Go protein, protein kinase A,
and extracellular signal-regulated kinase 1/2 (ERK1/2) in sensory
neurons. J Biol Chem. 287:18562–18572. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Gaudenzio N, Sibilano R, Marichal T,
Starkl P, Reber LL, Cenac N, McNeil BD, Dong XZ, Hernandez JD,
Sagi-Eisenberg R, et al: Different activation signals induce
distinct mast cell degranulation strategies. J Clin Invest.
126:3981–3998. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Mizutani N, Nabe T and Yoshino S:
IgE/antigen-mediated enhancement of IgE production is a mechanism
underlying the exacerbation of airway inflammation and remodelling
in mice. Immunology. 144:107–115. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhang N, Li H, Jia JH and He MQ:
Anti-inflammatory effect of curcumin on mast cell-mediated allergic
responses in ovalbumin-induced allergic rhinitis mouse. Cell
Immunol. 298:88–95. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Tore F and Tuncel N: Mast cells: Target
and source of neuropeptides. Curr Pharm Des. 15:3433–3445. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Moriyama M, Sato T, Inoue H, Fukuyama S,
Teranishi H, Kangawa K, Kano T, Yoshimura A and Kojima M: The
neuropeptide neuromedin U promotes inflammation by direct
activation of mast cells. J Exp Med. 202:217–224. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Smith SG, Chen R, Kjarsgaard M, Huang C,
Oliveria JP, O'Byrne PM, Gauvreau GM, Boulet LP, Lemiere C, Martin
J, et al: Increased numbers of activated group 2 innate lymphoid
cells in the airways of patients with severe asthma and persistent
airway eosinophilia. J Allergy Clin Immunol. 137:75–86.e8. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Mukherjee M, Bulir DC, Radford K,
Kjarsgaard M, Huang CM, Jacobsen EA, Ochkur SI, Catuneanu A,
Lamothe-Kipnes H, Mahony J, et al: Sputum autoantibodies in
patients with severe eosinophilic asthma. J Allergy Clin Immunol.
141:1269–1279. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Johansson MW: Eosinophil activation status
in separate compartments and association with asthma. Front Med
(Lausanne). 4:752017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Borchers MT, Justice PJ, Ansay T, Mancino
V, McGarry MP, Crosby J, Simon MI, Lee NA and Lee JJ: Gq signaling
is required for allergen-induced pulmonary eosinophilia. J Immunol.
168:3543–3549. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Moriyama M, Fukuyama S, Inoue H, Matsumoto
T, Sato T, Tanaka K, Kinjyo I, Kano T, Yoshimura A and Kojima M:
The neuropeptide neuromedin U activates eosinophils and is involved
in allergen-induced eosinophilia. Am J Physiol Lung Cell Mol
Physiol. 290:L971–L977. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Talbot S, Foster SL and Woolf CJ:
Neuroimmunity: Physiology and pathology. Annu Rev Immunol.
34:421–447. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Ni D, Gu Q, Hu HZ, Gao N, Zhu MX and Lee
LY: Thermal sensitivity of isolated vagal pulmonary sensory
neurons: Role of transient receptor potential vanilloid receptors.
Am J Physiol Regul Integr Comp Physiol. 291:R541–R550. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Myers AC, Kajekar R and Undem BJ: Allergic
inflammation-induced neuropeptide production in rapidly adapting
afferent nerves in guinea pig airways. Am J Physiol Lung Cell Mol
Physiol. 282:L775–L781. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Canning BJ and Spina D: Sensory nerves and
airway irritability. Handb Exp Pharmacol. 139–183. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Hoogerwerf WA, Zou L, Shenoy M, Sun D,
Micci MA, Lee-Hellmich H, Xiao SY, Winston JH and Pasricha PJ: The
proteinase-activated receptor 2 is involved in nociception. J
Neurosci. 21:9036–9042. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Talbot S, Abdulnour RE, Burkett PR, Lee S,
Cronin SJ, Pascal MA, Laedermann C, Foster SL, Tran JV, Lai N, et
al: Silencing nociceptor neurons reduces allergic airway
inflammation. Neuron. 87:341–354. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Ballesta J, Carlei F, Bishop AE, Steel JH,
Gibson SJ, Fahey M, Hennessey R, Domin J, Bloom SR and Polak JM:
Occurrence and developmental pattern of neuromedin U-immunoreactive
nerves in the gastrointestinal tract and brain of the rat.
Neuroscience. 25:797–816. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Yu XH, Cao CQ, Mennicken F, Puma C, Dray
A, O'Donnell D, Ahmad S and Perkins M: Pro-nociceptive effects of
neuromedin U in rat. Neuroscience. 120:467–474. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wall PD and Melzack R: Textbook of Pain.
4th. Churchill Livingstone; London: 1999
|
|
77
|
Cao CQ, Yu XH, Dray A, Filosa A and
Perkins MN: A pro-nociceptive role of neuromedin U in adult mice.
Pain. 104:609–616. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Nakahara K, Kojima M, Hanada R, Egi Y, Ida
T, Miyazato M, Kangawa K and Murakami N: Neuromedin U is involved
in nociceptive reflexes and adaptation to environmental stimuli in
mice. Biochem Biophys Res Commun. 323:615–620. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Fang L, Zhang M, Li C, Dong S and Hu Y:
Chemical genetic analysis reveals the effects of NMU2R on the
expression of peptide hormones. Neurosci Lett. 404:148–153. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zheng X, Hu Y, Liu J and Ouyang K:
Screening of active compounds as neuromedin U2 receptor agonist
from natural products. Bioorg Med Chem Lett. 15:4531–4535. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Takayama K, Mori K, Sohma Y, Taketa K,
Taguchi A, Yakushiji F, Minamino N, Miyazato M, Kangawa K and
Hayashi Y: Discovery of potent hexapeptide agonists to human
neuromedin U receptor 1 and identification of their serum
metabolites. ACS Med Chem Lett. 6:302–307. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Szczeklik A, Czerniawska-Mysik G,
Adamek-Guzik T, Woloszynski J and Koterba A: Ketotifen versus
sodium cromoglycate in the therapy of allergic (extrinsic)
bronchial asthma. Respiration. 39 (Suppl 1):S3–S9. 1980. View Article : Google Scholar
|
|
83
|
Theiler A, Barnthaler T, Platzer W,
Richtig G, Peinhaupt M, Rittchen S, Kargl J, Ulven T, Marsh LM,
Marsche G, et al: Butyrate ameliorates allergic airway inflammation
by limiting eosinophil trafficking and survival. J Allergy Clin
Immunol. 144:764–776. 2019. View Article : Google Scholar : PubMed/NCBI
|