Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
August-2020 Volume 20 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2020 Volume 20 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

A single genetic locus associated with pediatric fractures: A genome-wide association study on 3,230 patients

  • Authors:
    • Roope Parviainen
    • Sini Skarp
    • Linda Korhonen
    • Willy Serlo
    • Minna Männikkö
    • Juha-Jaakko Sinikumpu
  • View Affiliations / Copyright

    Affiliations: Department of Children and Adolescents, Oulu Childhood Fracture and Sports Injury Study, Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology (PEDEGO), Oulu Medical Research Center (MRC), University of Oulu and Oulu University Hospital, FI-90029 Oulu, Finland, Northern Finland Birth Cohort, Faculty of Medicine, University of Oulu, FI-90014 Oulu, Finland
    Copyright: © Parviainen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1716-1724
    |
    Published online on: June 12, 2020
       https://doi.org/10.3892/etm.2020.8885
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The understanding of the biological and environmental risk factors of fractures in pediatrics is limited. Previous studies have reported that fractures involve heritable traits, but the genetic factors contributing to the risk of fractures remain elusive. Furthermore, genetic influences specific to immature bone have not been thoroughly studied. Therefore, the aim of the present study was to identify genetic variations that are associated with fractures in early childhood. The present study used a prospective Northern Finland Birth Cohort (year 1986; n=9,432). The study population was comprised of 3,230 cohort members with available genotype data. A total of 48 members of the cohort (1.5%) had in‑hospital treated bone fractures during their first 6 years of life. Furthermore, individuals without fracture (n=3,182) were used as controls. A genome‑wide association study (GWAS) was performed using a frequentist association test. In the GWAS analysis, a linear regression model was fitted to test for additive effects of single‑nucleotide polymorphisms (SNPs; genotype dosage) adjusting for sex and performing population stratification using genotypic principal components. Using the GWAS analysis, the present study identified one locus with a significant association with fractures during childhood on chromosome 10 (rs112635931) and six loci with a suggested implication. The lead SNP rs112635931 was located near proline‑ and serine‑rich 2 (PROSER2) antisense RNA 1 (PROSER2‑AS1) and PROSER2, thus suggesting that these may be novel candidate genes associated with the risk of pediatric fractures.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Melton LJ III, Atkinson EJ, O'Fallon WM, Wahner HW and Riggs BL: Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res. 8:1227–1233. 1993.PubMed/NCBI View Article : Google Scholar

2 

Jones IE, Williams SM, Dow N and Goulding A: How many children remain fracture-free during growth? A longitudinal study of children and adolescents participating in the Dunedin Multidisciplinary Health and Development Study. Osteoporos Int. 13:990–995. 2002.PubMed/NCBI View Article : Google Scholar

3 

Manias K, McCabe D and Bishop N: Fractures and recurrent fractures in children; varying effects of environmental factors as well as bone size and mass. Bone. 39:652–657. 2006.PubMed/NCBI View Article : Google Scholar

4 

Goulding A, Jones IE, Williams SM, Grant AM, Taylor RW, Manning PJ and Langley J: First fracture is associated with increased risk of new fractures during growth. J Pediatr. 146:286–288. 2005.PubMed/NCBI View Article : Google Scholar

5 

Grabala P: Epidemiology of forearm fractures in the population of children and adolescents: Current data from the typical polish city. Orthop Muscular Syst. 4(203)2015. View Article : Google Scholar

6 

Ma DQ and Jones G: Clinical risk factors but not bone density are associated with prevalent fractures in prepubertal children. J Paediatr Child Health. 38:497–500. 2002.PubMed/NCBI View Article : Google Scholar

7 

Duren DL, Blangeroc J, Sherwood RJ, Šešelj M, Dyer T, Cole SA, Lee M, Choh AC, Chumlea WC, Siervogel RM, et al: Cortical bone health shows significant linkage to chromosomes 2p, 3p, and 17q in 10-year-old children. Bone. 49:1213–1218. 2011.PubMed/NCBI View Article : Google Scholar

8 

Chesi A, Mitchell JA, Kalkwarf HJ, Bradfield JP, Lappe JM, Cousminer DL, Roy SM, McCormack SE, Gilsanz V, Oberfield SE, et al: A genomewide association study identifies two sex-specific loci, at SPTB and IZUMO3, influencing pediatric bone mineral density at multiple skeletal sites. J Bone Miner Res. 32:1274–1281. 2017.PubMed/NCBI View Article : Google Scholar

9 

Pocock NA, Eisman JA, Hopper JL, Yeates MG, Sambrook PN and Eberl S: Genetic determinants of bone mass in adults. A twin study. J Clin Invest. 80:706–710. 1987.PubMed/NCBI View Article : Google Scholar

10 

Arden NK, Baker J, Hogg C, Baan K and Spector TD: The heritability of bone mineral density, ultrasound of the calcaneus and hip axis length: a study of postmenopausal twins. J Bone Miner Res. 11:530–534. 1996. View Article : Google Scholar

11 

Harris M, Nguyen TV, Howard GM, Kelly PJ and Eisman JA: Genetic and environmental correlations between bone formation and bone mineral density: a twin study. Bone. 22:141–145. 1998.PubMed/NCBI View Article : Google Scholar

12 

Mora S and Gilsanz V: Establishment of peak bone mass. Endocrinol Metab Clin North Am. 32:39–63. 2003.PubMed/NCBI View Article : Google Scholar

13 

Goulding A, Jones IE, Taylor RW, Manning PJ and Williams SM: More broken bones: A 4-year double cohort study of young girls with and without distal forearm fractures. J Bone Miner Res. 15:2011–2018. 2000.PubMed/NCBI View Article : Google Scholar

14 

Cook SD, Harding AF, Morgan EL, Doucet HJ, Bennett JT, O'Brien M and Thomas KA: Association of bone mineral density and pediatric fractures. J Pediatr Orthop. 7:424–427. 1987.PubMed/NCBI View Article : Google Scholar

15 

Kemp JP, Morris JA, Medina-Gomez C, Forgetta V, Warrington NM, Youlten SE, Zheng J, Gregson CL, Grundberg E, Trajanoska K, et al: Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis. Nat Gen. 49:1468–1475. 2017.PubMed/NCBI View Article : Google Scholar

16 

Estrada K, Styrkarsdottir U, Evangelou E, Hsu YH, Duncan EL, Ntzani EE, Oei L, Albagha OM, Amin N, Kemp JP, et al: Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet. 44:491–501. 2012.PubMed/NCBI View Article : Google Scholar

17 

Wynne F, Drummond FJ, Daly M, Brown M, Shanahan F, Molloy MG and Quane KA: Suggestive linkage of 2p22-25 and 11q12-13 with low bone mineral density at the lumbar spine in the Irish population. Calcif Tissue Int. 72:651–658. 2003.PubMed/NCBI View Article : Google Scholar

18 

Karasik D, Cupples LA, Hannan MT and Kiel DP: Age, gender, and body mass effects on quantitative trait loci for bone mineral density: the framingham study. Bone. 33:308–316. 2003.PubMed/NCBI View Article : Google Scholar

19 

Wilson SG, Reed PW, Bansal A, Chiano M, Lindersson M, Langdown M, Prince RL, Thompson D, Thompson E, Bailey M, et al: Comparison of genome screens for two independent cohorts provides replication of suggestive linkage of bone mineral density to 3p21 and 1p36. Am J Hum Genet. 72:144–155. 2003.PubMed/NCBI View Article : Google Scholar

20 

Shen H, Zhang YY, Long JR, Xu FH, Liu YZ, Xiao P, Zhao LJ, Xiong DH, Liu YJ, Dvornyk V, et al: A genome-wide linkage scan for bone mineral density in an extended sample: Evidence for linkage on 11q23 and Xq27. J Med Genet. 41:743–751. 2004.PubMed/NCBI View Article : Google Scholar

21 

Li GH, Cheung CL, Xiao SM, Lau KS, Gao Y, Bow CH, Huang QY, Sham PC and Kung A: Identification of QTL genes for BMD variation using both linkage and gene-based association approaches. Hum Genet. 130:539–546. 2011.PubMed/NCBI View Article : Google Scholar

22 

Richards JB, Zheng HF and Spector TD: Genetics of osteoporosis from genome-wide association studies: advances and challenges. Nat Rev Genet. 13:576–588. 2012.PubMed/NCBI View Article : Google Scholar

23 

Goulding A, Cannan R, Williams SM, Gold EJ, Taylor RW and Lewis-Barned NJ: Bone mineral density in girls with forearm fractures. J Bone Miner Res. 13:143–148. 1998.PubMed/NCBI View Article : Google Scholar

24 

Goulding A, Jones IE, Taylor RW, Manning PJ and Williams SM: More broken bones: A 4-year double cohort study of young girls with and without distal forearm fractures. J Bone Miner Res. 15:2011–2018. 2000.PubMed/NCBI View Article : Google Scholar

25 

Statistics Finland: Population development in independent Finland-greying Baby Boomers. https://www.stat.fi/tup/suomi90/joulukuu_en.html. Accessed May 12, 2007.

26 

Järvelin MR, Elliott P, Kleinschmidt I, Martuzzi M, Grundy C, Hartikainen AL and Rantakallio P: Ecological and individual predictors of birthweight in a northern Finland birth cohort 1986. Paediatr Perinat Epidemiol. 11:298–312. 1997.PubMed/NCBI View Article : Google Scholar

27 

Northern Finland Cohorts. University of Oulu. https://www.oulu.fi/nfbc/.

28 

Schierding W, Antony J, Karhunen V, Vääräsmäki M, Franks S, Elliott P, Kajantie E, Sebert S, Blakemore A, Horsfield JA, et al: GWAS on prolonged gestation (post-term birth): Analysis of successive Finnish birth cohorts. J Med Genet. 55:55–63. 2018.PubMed/NCBI View Article : Google Scholar

29 

Finnish Institute for Health and Welfare: Care Register for Health Care. https://thl.fi/en/web/thlfi-en/statistics/information-on-statistics/register-descriptions/care-register-for-health-care.

30 

Parkkari J, Mattila V, Niemi S and Kannus P: Injury-related deaths among Finnish children, 1971-2001. JAMA. 289:702–703. 2003.PubMed/NCBI View Article : Google Scholar

31 

World Health Organization: Basic tabulation list with alphabetic index. In: International Classification of Diseases Ninth revision. World Health Organization, Switzerland, 1978.

32 

Lander E and Kruglyak L: Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet. 11:241–247. 1995.PubMed/NCBI View Article : Google Scholar

33 

Turner SD: qqman: An R package for visualizing GWAS results using Q-Q and manhattan plots. J Open Source Softw. 3(731)2018. View Article : Google Scholar

34 

Li MJ, Wang P, Liu X, Lim EL, Wang Z, Yeager M, Wong MP, Sham PC, Chanock SJ and Wang J: GWASdb: A database for human genetic variants identified by genome-wide association studies. Nucleic Acids Res. 40(D1047-5104)2012.PubMed/NCBI View Article : Google Scholar

35 

GWAS Catalog. The NHGRI-EBI Catalog of published genome-wide association studies. https://www.ebi.ac.uk/gwas/.

36 

GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science. 348:648–660. 2015.PubMed/NCBI View Article : Google Scholar

37 

Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, Karczewski KJ, Park J, Hitz BC, Weng S, et al: Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 22:1790–1797. 2012.PubMed/NCBI View Article : Google Scholar

38 

Trajanoska K, Morris JA, Oei L, Zheng HF, Evans DM, Kiel DP, Ohlsson C, Richards JB and Rivadeneira F: Assessment of the genetic and clinical determinants of fracture risk: Genome wide association and mendelian randomisation study. BMJ. 362(k3225)2018.PubMed/NCBI View Article : Google Scholar

39 

Medina-Gomez C, Kemp JP, Trajanoska K, Luan J, Chesi A, Ahluwalia TS, Mook-Kanamori DO, Ham A, Hartwig FP, Evans DS, et al: Life-course genome-wide association study meta-analysis of total body BMD and assessment of age-specific effects. Am J Hum Genet. 102:88–102. 2018.PubMed/NCBI View Article : Google Scholar

40 

Asselbergs FW, Guo Y, van Iperen EP, Sivapalaratnam S, Tragante V, Lanktree MB, Lange LA, Almoguera B, Appelman YE, Barnard J, et al: Large-scale gene-centric meta-analysis across 32 studies identifies multiple lipid loci. Am J Hum Genet. 91:823–838. 2012.PubMed/NCBI View Article : Google Scholar

41 

Parviainen R, Auvinen J, Pokka T, Serlo W and Sinikumpu JJ: Maternal smoking during pregnancy is associated with childhood bone fractures in offspring - A birth-cohort study of 6718 children. Bone. 101:202–205. 2017.PubMed/NCBI View Article : Google Scholar

42 

Sinikumpu JJ, Pokka T, Sirnio K, Ruuhela R and Serlo W: Population-based research on the relationship between summer weather and paediatric forearm shaft fractures. Injury. 44:1569–1573. 2013.PubMed/NCBI View Article : Google Scholar

43 

Sinikumpu JJ: Too many unanswered questions in children's forearm shaft fractures: High-standard epidemiological and clinical research in pediatric trauma is warranted. Scand J Surg. 104:137–138. 2015.PubMed/NCBI View Article : Google Scholar

44 

Pan F, Xiao P, Guo Y, Liu YJ, Deng HY, Recker RR and Deng HW: Chromosomal regions 22q13 and 3p25 may harbor quantitative trait loci influencing both age at menarche and bone mineral density. Hum Genet. 123:419–427. 2008.PubMed/NCBI View Article : Google Scholar

45 

Ioannidis JP, Ng MY, Sham PC, Zintzaras E, Lewis CM, Deng HW, Econs MJ, Karasik D, Devoto M, Kammerer CM, et al: Meta-analysis of genome-wide scans provides evidence for sex- and site-specific regulation of bone mass. J Bone Miner Res. 22:173–183. 2007.PubMed/NCBI View Article : Google Scholar

46 

Brunkow ME, Gardner JC, Van NJ, Paeper BW, Kovacevich BR, Proll S, Skonier JE, Zhao L, Sabo PJ, Fu Y, et al: Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet. 68:577–589. 2001.PubMed/NCBI View Article : Google Scholar

47 

Chesi A, Mitchell JA, Kalkwarf HJ, Bradfield JP, Lappe JM, McCormack SE, Gilsanz V, Oberfield SE, Hakonarson H, Shepherd JA, et al: A trans-ethnic genome-wide association study identifies gender-specific loci influencing pediatric aBMD and BMC at the distal radius. Hum Mol Genet. 24:5053–5059. 2015.PubMed/NCBI View Article : Google Scholar

48 

Gene Page. https://www.gtexportal.org/home/gene/PROSER2. Accessed March 5, 2019.

49 

The Human Protein Atlas. https://www.proteinatlas.org/ENSG00000148426-PROSER2/tissue. Accessed March 5, 2019.

50 

GEO Gene Expression Omnibus Profile. https://www.ncbi.nlm.nih.gov/geoprofiles/94126705. Accessed March 5, 2019.

51 

GEO Gene Expression Omnibus Profile. https://www.ncbi.nlm.nih.gov/geoprofiles/35462505. Accessed March 5, 2019.

52 

Dierks T, Schmidt B, Borissenko LV, Peng J, Preusser A, Mariappan M and von Figura K: Multiple sulfatase deficiency is caused by mutations in the gene encoding the human Cα-formylglycine generating enzyme Cell. 113:435–444. 2003.PubMed/NCBI View Article : Google Scholar

53 

Appel MJ and Bertozzi CR: Formylglycine, a post-translationally generated residue with unique catalytic capabilities and biotechnology applications. ACS Chem Biol. 10:72–84. 2015.PubMed/NCBI View Article : Google Scholar

54 

Diez-Roux G and Ballabio A: Sulfatases and human disease. Annu Rev Genomics Hum Genet. 6:355–379. 2005.PubMed/NCBI View Article : Google Scholar

55 

GeneCards Human Gene Database. uriwww.genecards.org/cgi-bin/carddisp.pl?gene=SETMARhttps://www.genecards.org/cgi-bin/carddisp.pl?gene=SETMAR Accessed March 5, 2019.

56 

Mandal CC: High Cholesterol deteriorates bone health: New insights into molecular mechanisms. Front Endocrinol (Lausanne). 6(165)2015.PubMed/NCBI View Article : Google Scholar

57 

Ghosh-Choudhury N, Mandal CC and Choudhury GG: Statin-induced Ras activation integrates the phosphatidylinositol 3-kinase signal to Akt and MAPK for bone morphogenetic protein-2 expression in osteoblast differentiation. J Biol Chem. 282:4983–4993. 2007.PubMed/NCBI View Article : Google Scholar

58 

Lim HH: Effect of serum cholesterol on bone mineral density in normal-weight children and adolescents. J Pediatr Endocrinol Metab. 28:1313–1319. 2015.PubMed/NCBI View Article : Google Scholar

59 

Lisignoli G, Codeluppi K, Todoerti K, Manferdini C, Piacentini A, Zini N, Grassi F, Cattini L, Piva R, Rizzoli V, et al: Gene array profile identifies collagen type XV as a novel human osteoblast-secreted matrix protein. J Cell Physiol. 220:401–409. 2009.PubMed/NCBI View Article : Google Scholar

60 

Matsushita M, Kitoh H, Kaneko H, Mishima K, Kadono I, Ishiguro N and Nishimura G: A novel SOX9 H169Q mutation in a family with overlapping phenotype of mild campomelic dysplasia and small patella syndrome. Am J Med Genet. 161A:2528–2534. 2013.PubMed/NCBI View Article : Google Scholar

61 

GeneCards Human Gene Database. https://www.genecards.org/cgi-bin/carddisp.pl?gene=VRK1. Accessed March 5, 2019.

62 

Sijaona A, Luukko K, Kvinnsland IH and Kettunen P: Expression patterns of Sema3F, PlexinA4, -A3, Neuropilin1 and -2 in the postnatal mouse molar suggest roles in tooth innervation and organogenesis. Acta Odontol Scand. 70:140–148. 2012.PubMed/NCBI View Article : Google Scholar

63 

Javaid MK and Cooper C: Prenatal and childhood influences on osteoporosis. Best Pract Res Clin Endocrinol Metab. 16:349–367. 2002.PubMed/NCBI View Article : Google Scholar

64 

Godfrey K, Walker-Bone K, Robinson S, Taylor P, Shore S, Wheeler T and Cooper C: Neonatal bone mass: Influence of parental birthweight, maternal smoking, body composition, and activity during pregnancy. J Bone Miner Res. 16:1694–1703. 2001.PubMed/NCBI View Article : Google Scholar

65 

Guo NW, Lin CL, Lin CW, Huang MT, Chang WL, Lu TH and Lin CJ: Fracture risk and correlating factors of a pediatric population with attention deficit hyperactivity disorder: A nationwide matched study. J Pediatr Orthop B. 25:369–74. 2016.PubMed/NCBI View Article : Google Scholar

66 

Lehtonen-Veromaa M, Möttönen T, Irjala K, Kärkkäinen M, Lamberg-Allardt C, Hakola P and Viikari J: Vitamin D intake is low and hypovitaminosis D common in healthy 9- to 15-year-old Finnish girls. Eur J Clin Nutr. 53:746–751. 1999.PubMed/NCBI View Article : Google Scholar

67 

Hallman N, Hultin H and Visakorpi JK: Prophylactic use of vitamin d in Finland. Duodecim. 80(185-9)1964.(In Swedish). PubMed/NCBI

68 

Ministry of Social Affairs and Health. Maternity and child health clinics. https://stm.fi/en/maternity-and-child-health-clinics.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Parviainen R, Skarp S, Korhonen L, Serlo W, Männikkö M and Sinikumpu J: A single genetic locus associated with pediatric fractures: A genome-wide association study on 3,230 patients. Exp Ther Med 20: 1716-1724, 2020.
APA
Parviainen, R., Skarp, S., Korhonen, L., Serlo, W., Männikkö, M., & Sinikumpu, J. (2020). A single genetic locus associated with pediatric fractures: A genome-wide association study on 3,230 patients. Experimental and Therapeutic Medicine, 20, 1716-1724. https://doi.org/10.3892/etm.2020.8885
MLA
Parviainen, R., Skarp, S., Korhonen, L., Serlo, W., Männikkö, M., Sinikumpu, J."A single genetic locus associated with pediatric fractures: A genome-wide association study on 3,230 patients". Experimental and Therapeutic Medicine 20.2 (2020): 1716-1724.
Chicago
Parviainen, R., Skarp, S., Korhonen, L., Serlo, W., Männikkö, M., Sinikumpu, J."A single genetic locus associated with pediatric fractures: A genome-wide association study on 3,230 patients". Experimental and Therapeutic Medicine 20, no. 2 (2020): 1716-1724. https://doi.org/10.3892/etm.2020.8885
Copy and paste a formatted citation
x
Spandidos Publications style
Parviainen R, Skarp S, Korhonen L, Serlo W, Männikkö M and Sinikumpu J: A single genetic locus associated with pediatric fractures: A genome-wide association study on 3,230 patients. Exp Ther Med 20: 1716-1724, 2020.
APA
Parviainen, R., Skarp, S., Korhonen, L., Serlo, W., Männikkö, M., & Sinikumpu, J. (2020). A single genetic locus associated with pediatric fractures: A genome-wide association study on 3,230 patients. Experimental and Therapeutic Medicine, 20, 1716-1724. https://doi.org/10.3892/etm.2020.8885
MLA
Parviainen, R., Skarp, S., Korhonen, L., Serlo, W., Männikkö, M., Sinikumpu, J."A single genetic locus associated with pediatric fractures: A genome-wide association study on 3,230 patients". Experimental and Therapeutic Medicine 20.2 (2020): 1716-1724.
Chicago
Parviainen, R., Skarp, S., Korhonen, L., Serlo, W., Männikkö, M., Sinikumpu, J."A single genetic locus associated with pediatric fractures: A genome-wide association study on 3,230 patients". Experimental and Therapeutic Medicine 20, no. 2 (2020): 1716-1724. https://doi.org/10.3892/etm.2020.8885
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team