|
1
|
Kraut JA and Madias NE: Treatment of acute
metabolic acidosis: A pathophysiologic approach. Nat Rev Nephrol.
8:589–601. 2012.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Putney LK, Denker SP and Barber DL: The
changing face of the Na+/H+ exchanger, NHE1:
Structure, regulation, and cellular actions. Annu Rev Pharmacol
Toxicol. 42:527–552. 2002.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Kondapalli KC, Prasad H and Rao R: An
inside job: How endosomal Na(+)/H(+) exchangers link to autism and
neurological disease. Front Cell Neurosci. 8(172)2014.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Malo ME and Fliegel L: Physiological role
and regulation of the Na+/H+ exchanger. Can J
Physiol Pharmacol. 84:1081–1095. 2006.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Gurney MA, Laubitz D, Ghishan FK and Kiela
PR: Pathophysiology of Intestinal Na+/H+
exchange. Cell Mol Gastroenterol Hepatol. 3:27–40. 2017.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Sardet C, Franchi A and Pouysségur J:
Molecular cloning, primary structure, and expression of the human
growth factor-activatable Na+/H+ antiporter.
Cell. 56:271–280. 1989.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Xu H, Chen H, Li J, Zhao Y and Ghishan FK:
Disruption of NHE8 expression impairs Leydig cell function in the
testes. Am J Physiol Cell Physiol. 308:C330–C338. 2015.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Denker SP and Barber DL: Cell migration
requires both ion translocation and cytoskeletal anchoring by the
Na-H exchanger NHE1. J Cell Biol. 159:1087–1096. 2002.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Orlowski J and Grinstein S: Diversity of
the mammalian sodium/proton exchanger SLC9 gene family. Pflugers
Arch. 447:549–565. 2004.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Zhao H, Carney KE, Falgoust L, Pan JW, Sun
D and Zhang Z: Emerging roles of Na+/H+
exchangers in epilepsy and developmental brain disorders. Prog
Neurobiol. 138-140:19–35. 2016.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Malakooti J, Dahdal RY, Schmidt L, Layden
TJ, Dudeja PK and Ramaswamy K: Molecular cloning, tissue
distribution, and functional expression of the human Na(+)/H(+)
exchanger NHE2. Am J Physiol. 277:G383–G390. 1999.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Loo SY, Chang MK, Chua CS, Kumar AP,
Pervaiz S and Clement MV: NHE-1: A promising target for novel
anti-cancer therapeutics. Curr Pharm Des. 18:1372–1382.
2012.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Kurata T, Rajendran V, Fan S, Ohta T,
Numata M and Fushida S: NHE5 regulates growth factor signaling,
integrin trafficking, and degradation in glioma cells. Clin Exp
Metastasis. 36:527–538. 2019.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Pescosolido MF, Stein DM, Schmidt M, El
Achkar CM, Sabbagh M, Rogg JM, Tantravahi U, McLean RL, Liu JS,
Poduri A, et al: Genetic and phenotypic diversity of NHE6 mutations
in Christianson syndrome. Ann Neurol. 76:581–593. 2014.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Nakamura N, Tanaka S, Teko Y, Mitsui K and
Kanazawa H: Four Na+/H+ exchanger isoforms
are distributed to Golgi and post-Golgi compartments and are
involved in organelle pH regulation. J Biol Chem. 280:1561–1572.
2005.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Ko M, Quiñones-Hinojosa A and Rao R:
Emerging links between endosomal pH and cancer. Cancer Metastasis
Rev: Apr 6, 2020 (Epub ahead of print).
|
|
17
|
Laczkó D, Rosztóczy A, Birkás K, Katona M,
Rakonczay Z Jr, Tiszlavicz L, Róka R, Wittmann T, Hegyi P and
Venglovecz V: Role of ion transporters in the bile acid-induced
esophageal injury. Am J Physiol Gastrointest Liver Physiol.
311:G16–G31. 2016.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Hosogi S, Miyazaki H, Nakajima K, Ashihara
E, Niisato N, Kusuzaki K and Marunaka Y: An inhibitor of Na(+)/H(+)
exchanger (NHE), ethyl isopropyl amiloride (EIPA), diminishes
proliferation of MKN28 human gastric cancer cells by decreasing the
cytosolic Cl(-) concentration via DIDS sensitive pathways. Cell
Physiol Biochem. 30:1241–1253. 2012.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Khan I and Khan K: Uncoupling of Carbonic
Anhydrase from Na H exchanger 1 in Experimental Colitis: A Possible
Mechanistic Link with Na H Exchanger. Biomolecules.
9(700)2019.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Xu H, Li J, Chen H and Ghishan FK: NHE8
Deficiency Promotes Colitis-Associated Cancer in Mice via Expansion
of Lgr5-Expressing Cells. Cell Mol Gastroenterol Hepatol. 7:19–31.
2018.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Magalhães D, Cabral JM, Soares-da-Silva P
and Magro F: Role of epithelial ion transports in inflammatory
bowel disease. Am J Physiol Gastrointest Liver Physiol.
310:G460–G476. 2016.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Das S, Jayaratne R and Barrett KE: The
role of ion transporters in the pathophysiology of infectious
diarrhea. Cell Mol Gastroenterol Hepatol. 6:33–45. 2018.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Cao L, Yuan Z, Liu M and Stock C:
(Patho-)Physiology of Na+/H+ Exchangers
(NHEs) in the Digestive System. Front Physiol.
10(1566)2020.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Yong W: Image diagnosis of common liver
lesions Image research and medical application(on the column). J
Imaging Res Med Applic, 2018 (In Chinese).
|
|
25
|
Lowry SF and Brennan MF: Abnormal liver
function during parenteral nutrition: Relation to infusion excess.
J Surg Res. 26:300–307. 1979.
|
|
26
|
Laohapitakworn S, Thongbunchoo J,
Nakkrasae LI, Krishnamra N and Charoenphandhu N: Parathyroid
hormone (PTH) rapidly enhances CFTR-mediated
HCO3- secretion in intestinal epithelium-like
Caco-2 monolayer: A novel ion regulatory action of PTH. Am J
Physiol Cell Physiol. 301:C137–C149. 2011.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Xu H, Ghishan FK and Kiela PR: SLC9 Gene
Family: Function, expression, and regulation. Compr Physiol.
8:555–583. 2018.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Kemp G, Young H and Fliegel L: Structure
and function of the human Na+/H+ exchanger
isoform 1. Channels (Austin). 2:329–336. 2008.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Fuster DG and Alexander RT: Traditional
and emerging roles for the SLC9 Na+/H+
exchangers. Pflugers Arch. 466:61–76. 2014.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Stock C and Schwab A: Role of the Na/H
exchanger NHE1 in cell migration. Acta Physiol (Oxf). 187:149–157.
2006.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Fliegel L: Structural and Functional
Changes in the Na(+)/H(+) Exchanger Isoform 1, Induced by Erk1/2
Phosphorylation. Int J Mol Sci. 20(2378)2019.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Fuster DG and Alexander RT: Traditional
and emerging roles for the SLC9 Na+/H+
exchangers. Pflugers Arch. 466:61–76. 2014.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Amith SR and Fliegel L: Regulation of the
Na+/H+ Exchanger (NHE1) in Breast Cancer
Metastasis. Cancer Res. 73:1259–1264. 2013.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Lee CH, Cragoe EJ Jr and Edwards AM:
Control of hepatocyte DNA synthesis by intracellular pH and its
role in the action of tumor promoters. J Cell Physiol. 195:61–69.
2003.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Aharonovitz O, Zaun HC, Balla T, York JD,
Orlowski J and Grinstein S: Intracellular pH regulation by
Na(+)/H(+) exchange requires phosphatidylinositol 4,5-bisphosphate.
J Cell Biol. 150:213–224. 2000.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Ahmed KH, Pelster B and Krumschnabel G:
Signalling pathways involved in hypertonicity- and
acidification-induced activation of Na+/H+
exchange in trout hepatocytes. J Exp Biol. 209:3101–3113.
2006.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Haussinger D: Osmosensing and
osmosignaling in the liver. Wiener medizinische Wochenschrift
(1946). 158:549–552. 2008.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Lang F, Busch GL, Ritter M, Völkl H,
Waldegger S, Gulbins E and Häussinger D: Functional significance of
cell volume regulatory mechanisms. Physiol Rev. 78:247–306.
1998.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Jo AO, Ryskamp DA, Phuong TT, Verkman AS,
Yarishkin O, MacAulay N and Križaj D: TRPV4 and AQP4 channels
synergistically regulate cell volume and calcium homeostasis in
retinal Müller Glia. J Neurosci. 35:13525–13537. 2015.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Lang F, Föller M, Lang K, Lang P, Ritter
M, Vereninov A, Szabo I, Huber SM and Gulbins E: Cell volume
regulatory ion channels in cell proliferation and cell death.
Methods Enzymol. 428:209–225. 2007.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Mongin AA: Volume-regulated anion channel
- a frenemy within the brain. Pflugers Arch. 468:421–441.
2016.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Lang PA, Graf D, Boini KM, Lang KS,
Klingel K, Kandolf R and Lang F: Cell volume, the serum and
glucocorticoid inducible kinase 1 and the liver. Z Gastroenterol.
49:713–719. 2011.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Hoffmann EK, Lambert IH and Pedersen SF:
Physiology of cell volume regulation in vertebrates. Physiol Rev.
89:193–277. 2009.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Häussinger D and Lang F: Cell volume and
hormone action. Trends Pharmacol Sci. 13:371–373. 1992.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Lee MJ: Hormonal regulation of
adipogenesis. Compr Physiol. 7:1151–1195. 2017.PubMed/NCBI View Article : Google Scholar
|
|
46
|
O'Connor McCourt M, Soley M, Hayden LJ and
Hollenberg MD: Receptors for epidermal growth factor (urogastrone)
and insulin in primary cultures of rat hepatocytes maintained in
serum free medium. Biochem Cell Biol. 64:803–810. 1986.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Dykes SS, Steffan JJ and Cardelli JA:
Lysosome trafficking is necessary for EGF-driven invasion and is
regulated by p38 MAPK and Na+/H+ exchangers.
BMC Cancer. 17(672)2017.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Steffan JJ, Williams BC, Welbourne T and
Cardelli JA: HGF-induced invasion by prostate tumor cells requires
anterograde lysosome trafficking and activity of
Na+-H+ exchangers. J Cell Sci. 123:1151–1159.
2010.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Coaxum SD, Blanton MG, Joyner A, Akter T,
Bell PD, Luttrell LM, Raymond JR Sr, Lee MH, Blichmann PA,
Garnovskaya MN, et al: Epidermal growth factor-induced
proliferation of collecting duct cells from Oak Ridge polycystic
kidney mice involves activation of Na+/H+
exchanger. Am J Physiol Cell Physiol. 307:C554–C560.
2014.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Mead JE and Fausto N: Transforming growth
factor alpha may be a physiological regulator of liver regeneration
by means of an autocrine mechanism. Proc Natl Acad Sci USA.
86:1558–1562. 1989.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Kaneko A, Hayashi N, Tanaka Y, Horimoto M,
Ito T, Sasaki Y, Fusamoto H and Kamada T: Activation of
Na+/H+ exchanger by hepatocyte growth factor
in hepatocytes. Hepatology. 22:629–636. 1995.PubMed/NCBI
|
|
52
|
Goodrich AL and Suchy FJ: Na(+)-H+
exchange in basolateral plasma membrane vesicles from neonatal rat
liver. Am J Physiol. 259:G334–G339. 1990.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Dällenbach A, Marti U and Renner EL:
Hepatocellular Na+/H+ exchange is activated
early, transiently and at a posttranscriptional level during rat
liver regeneration. Hepatology. 19:1290–1301. 1994.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Moule SK and McGivan JD: Epidermal growth
factor and cyclic AMP stimulate Na+/H+
exchange in isolated rat hepatocytes. Eur J Biochem. 187:677–682.
1990.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Love MR, Palee S, Chattipakorn SC and
Chattipakorn N: Effects of electrical stimulation on cell
proliferation and apoptosis. J Cell Physiol. 233:1860–1876.
2018.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Cardoso VG, Gonçalves GL, Costa-Pessoa JM,
Thieme K, Lins BB, Casare FAM, de Ponte MC, Camara NOS and
Oliveira-Souza M: Angiotensin II-induced podocyte apoptosis is
mediated by endoplasmic reticulum stress/PKC-δ/p38 MAPK pathway
activation and trough increased Na+/H+
exchanger isoform 1 activity. BMC Nephrol. 19(179)2018.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Gaitantzi H, Meyer C, Rakoczy P, Thomas M,
Wahl K, Wandrer F, Bantel H, Alborzinia H, Wölfl S, Ehnert S, et
al: Ethanol sensitizes hepatocytes for TGF-β-triggered apoptosis.
Cell Death Dis. 9(51)2018.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Benedetti A, Di Sario A, Svegliati Baroni
G and Jezequel AM: Transforming growth factor beta 1 increases the
number of apoptotic bodies and decreases intracellular pH in
isolated periportal and perivenular rat hepatocytes. Hepatology.
22:1488–1498. 1995.PubMed/NCBI
|
|
59
|
Martínez-Ansó E, Castillo JE, Díez J,
Medina JF and Prieto J: Immunohistochemical detection of
chloride/bicarbonate anion exchangers in human liver. Hepatology.
19:1400–1406. 1994.PubMed/NCBI
|
|
60
|
Marin JJ, Macias RI, Briz O, Banales JM
and Monte MJ: Bile Acids in Physiology, Pathology and Pharmacology.
Curr Drug Metab. 17:4–29. 2015.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Marti U, Elsing C, Renner EL,
Liechti-Gallati S and Reichen J: Differential expression of Na+
H(+)-antiporter mRNA in biliary epithelial cells and in
hepatocytes. J Hepatol. 24:498–502. 1996.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Elsing C, Voss A, Herrmann T, Kaiser I,
Huebner CA and Schlenker T: Oxidative stress reduces
Na+/H+ exchange (NHE) activity in a biliary
epithelial cancer cell line (Mz-Cha-1). Anticancer Res. 31:459–465.
2011.PubMed/NCBI
|
|
63
|
Hirata K and Nathanson MH: Bile duct
epithelia regulate biliary bicarbonate excretion in normal rat
liver. Gastroenterology. 121:396–406. 2001.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Hübner C, Stremmel W and Elsing C: Sodium,
hydrogen exchange type 1 and bile ductular secretory activity in
the guinea pig. Hepatology. 31:562–571. 2000.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Roussa E, Bertram J, Berge KE, Labori KJ,
Thévenod F and Raeder MG: Differential regulation of vacuolar
H+ -ATPase and Na+/H+ exchanger 3
in rat cholangiocytes after bile duct ligation. Histochem Cell
Biol. 125:419–428. 2006.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Mennone A, Biemesderfer D, Negoianu D,
Yang CL, Abbiati T, Schultheis PJ, Shull GE, Aronson PS and Boyer
JL: Role of sodium/hydrogen exchanger isoform NHE3 in fluid
secretion and absorption in mouse and rat cholangiocytes. Am J
Physiol Gastrointest Liver Physiol. 280:G247–G254. 2001.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Bazzini C, Bottà G, Meyer G, Baroni MD and
Paulmichl M: The presence of NHE1 and NHE3
Na+-H+ exchangers and an apical
cAMP-independent Cl- channel indicate that both
absorptive and secretory functions are present in calf gall bladder
epithelium. Exp Physiol. 86:571–583. 2001.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Narins SC, Park EH, Ramakrishnan R, Garcia
FU, Diven JN, Balin BJ, Hammond CJ, Sodam BR, Smith PR and Abedin
MZ: Functional characterization of Na(+)/H(+) exchangers in primary
cultures of prairie dog gallbladder. J Membr Biol. 197:123–134.
2004.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Chen Y, Wu S, Tian Y and Kong J:
Phosphorylation and subcellular localization of
Na+/H+ exchanger isoform 3 (NHE3) are
associated with altered gallbladder absorptive function after
formation of cholesterol gallstones. J Physiol Biochem. 73:133–139.
2017.
|
|
70
|
Saier MH Jr, Yen MR, Noto K, Tamang DG and
Elkan C: The Transporter Classification Database: Recent advances.
Nucleic Acids Res. 37 (Database):D274–D278. 2009.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Giurgiu DI, Saunders-Kirkwood KD, Roslyn
JJ and Abedin MZ: Sequential changes in biliary lipids and
gallbladder ion transport during gallstone formation. Ann Surg.
225:382–390. 1997.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Li X, Karki P, Lei L, Wang H and Fliegel
L: Na+/H+ exchanger isoform 1 facilitates
cardiomyocyte embryonic stem cell differentiation. Am J Physiol
Heart Circ Physiol. 296:H159–H170. 2009.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Manne V, Handa P and Kowdley KV:
Pathophysiology of Nonalcoholic Fatty Liver Disease/Nonalcoholic
Steatohepatitis. Clin Liver Dis. 22:23–37. 2018.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Baffy G, Brunt EM and Caldwell SH:
Hepatocellular carcinoma in non-alcoholic fatty liver disease: An
emerging menace. J Hepatol. 56:1384–1391. 2012.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Friedman SL, Neuschwander-Tetri BA,
Rinella M and Sanyal AJ: Mechanisms of NAFLD development and
therapeutic strategies. Nat Med. 24:908–922. 2018.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Prasad V, Chirra S, Kohli R and Shull GE:
NHE1 deficiency in liver: Implications for non-alcoholic fatty
liver disease. Biochem Biophys Res Commun. 450:1027–1031.
2014.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Cipriani S, Mencarelli A, Palladino G and
Fiorucci S: FXR activation reverses insulin resistance and lipid
abnormalities and protects against liver steatosis in Zucker
(fa/fa) obese rats. J Lipid Res. 51:771–784. 2010.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Ma Y, Huang Y, Yan L, Gao M and Liu D:
Synthetic FXR agonist GW4064 prevents diet-induced hepatic
steatosis and insulin resistance. Pharm Res. 30:1447–1457.
2013.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Mudaliar S, Henry RR, Sanyal AJ, Morrow L,
Marschall HU, Kipnes M, Adorini L, Sciacca CI, Clopton P, Castelloe
E, et al: Efficacy and safety of the farnesoid X receptor agonist
obeticholic acid in patients with type 2 diabetes and nonalcoholic
fatty liver disease. Gastroenterology. 145:574–82.e1.
2013.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Tully DC, Rucker PV, Chianelli D, Williams
J, Vidal A, Alper PB, Mutnick D, Bursulaya B, Schmeits J, Wu X, et
al: Discovery of tropifexor (LJN452), a highly potent non-bile acid
FXR agonist for the treatment of cholestatic liver diseases and
nonalcoholic steatohepatitis (NASH). J Med Chem. 60:9960–9973.
2017.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Baranowski M, Zabielski P, Blachnio
Zabielska AU, Harasim E, Chabowski A and Gorski J: Insulin
sensitizing effect of LXR agonist T0901317 in high fat fed rats is
associated with restored muscle GLUT4 expression and insulin
stimulated AS160 phosphorylation. Cell Physiol Biochem.
33:1047–1057. 2014.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Ducheix S, Montagner A, Theodorou V,
Ferrier L and Guillou H: The liver X receptor: A master regulator
of the gut-liver axis and a target for non alcoholic fatty liver
disease. Biochem Pharmacol. 86:96–105. 2013.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Griffett K, Solt LA, El-Gendy BD,
Kamenecka TM and Burris TP: A liver-selective LXR inverse agonist
that suppresses hepatic steatosis. ACS Chem Biol. 8:559–567.
2013.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Savage DB, Choi CS, Samuel VT, Liu ZX,
Zhang D, Wang A, Zhang XM, Cline GW, Yu XX, Geisler JG, et al:
Reversal of diet-induced hepatic steatosis and hepatic insulin
resistance by antisense oligonucleotide inhibitors of acetyl-CoA
carboxylases 1 and 2. J Clin Invest. 116:817–824. 2006.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Dewidar B, Meyer C, Dooley S and Meindl
Beinker AN: TGF beta in hepatic stellate cell activation and liver
fibrogenesis-Updated 2019. Cells. 8(1419)2019.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Yang C, Zeisberg M, Mosterman B, Sudhakar
A, Yerramalla U, Holthaus K, Xu L, Eng F, Afdhal N and Kalluri R:
Liver fibrosis: Insights into migration of hepatic stellate cells
in response to extracellular matrix and growth factors.
Gastroenterology. 124:147–159. 2003.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Li J, Zhao YR and Tian Z: Roles of hepatic
stellate cells in acute liver failure: From the perspective of
inflammation and fibrosis. World J Hepatol. 11:412–420.
2019.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Tsuchida T and Friedman SL: Mechanisms of
hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol.
14:397–411. 2017.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Mak KM, Leo MA and Lieber CS: Alcoholic
liver injury in baboons: Transformation of lipocytes to
transitional cells. Gastroenterology. 87:188–200. 1984.PubMed/NCBI
|
|
90
|
Chen Z, Jain A, Liu H, Zhao Z and Cheng K:
Targeted drug delivery to hepatic stellate cells for the treatment
of liver fibrosis. J Pharmacol Exp Ther. 370:695–702.
2019.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Lan T, Kisseleva T and Brenner DA:
Deficiency of NOX1 or NOX4 prevents liver inflammation and fibrosis
in mice through inhibition of hepatic stellate cell activation.
PLoS One. 10(e0129743)2015.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Ou Q, Weng Y, Wang S, Zhao Y, Zhang F,
Zhou J and Wu X: Silybin alleviates hepatic steatosis and fibrosis
in NASH mice by inhibiting oxidative stress and involvement with
the Nf-κB Pathway. Dig Dis Sci. 63:3398–3408. 2018.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Syn WK, Agboola KM, Swiderska M,
Michelotti GA, Liaskou E, Pang H, Xie G, Philips G, Chan IS, Karaca
GF, et al: NKT-associated hedgehog and osteopontin drive
fibrogenesis in non-alcoholic fatty liver disease. Gut.
61:1323–1329. 2012.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Syn WK, Choi SS, Liaskou E, Karaca GF,
Agboola KM, Oo YH, Mi Z, Pereira TA, Zdanowicz M, Malladi P, et al:
Osteopontin is induced by hedgehog pathway activation and promotes
fibrosis progression in nonalcoholic steatohepatitis. Hepatology.
53:106–115. 2011.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Grinstein S, Rotin D and Mason MJ:
Na+/H+ exchange and growth factor-induced
cytosolic pH changes. Role in cellular proliferation. Biochim
Biophys Acta. 988:73–97. 1989.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Di Sario A, Baroni GS, Bendia E,
D'Ambrosio L, Ridolfi F, Marileo JR, Jezequel AM and Benedetti A:
Characterization of ion transport mechanisms regulating
intracellular pH in hepatic stellate cells. Am J Physiol.
273:G39–G48. 1997.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Trappoliere M, Caligiuri A, Schmid M,
Bertolani C, Failli P, Vizzutti F, Novo E, di Manzano C, Marra F,
Loguercio C, et al: Silybin, a component of sylimarin, exerts
anti-inflammatory and anti-fibrogenic effects on human hepatic
stellate cells. J Hepatol. 50:1102–1111. 2009.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Di Sario A, Bendia E, Svegliati Baroni G,
Ridolfi F, Bolognini L, Feliciangeli G, Jezequel AM, Orlandi F and
Benedetti A: Intracellular pathways mediating
Na+/H+ exchange activation by
platelet-derived growth factor in rat hepatic stellate cells.
Gastroenterology. 116:1155–1166. 1999.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Svegliati-Baroni G, Di Sario A, Casini A,
Ferretti G, D'Ambrosio L, Ridolfi F, Bolognini L, Salzano R,
Orlandi F and Benedetti A: The Na+/H+
exchanger modulates the fibrogenic effect of oxidative stress in
rat hepatic stellate cells. J Hepatol. 30:868–875. 1999.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Svegliati Baroni G, D'Ambrosio L, Ferretti
G, Casini A, Di Sario A, Salzano R, Ridolfi F, Saccomanno S,
Jezequel AM and Benedetti A: Fibrogenic effect of oxidative stress
on rat hepatic stellate cells. Hepatology. 27:720–726.
1998.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Häussinger D and Schliess F: Osmotic
induction of signaling cascades: Role in regulation of cell
function. Biochem Biophys Res Commun. 255:551–555. 1999.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Pendergrass WR, Angello JC, Kirschner MD
and Norwood TH: The relationship between the rate of entry into S
phase, concentration of DNA polymerase alpha, and cell volume in
human diploid fibroblast-like monokaryon cells. Exp Cell Res.
192:418–425. 1991.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Vairo G, Cocks BG, Cragoe EJ Jr and
Hamilton JA: Selective suppression of growth factor-induced cell
cycle gene expression by Na+/H+ antiport
inhibitors. J Biol Chem. 267:19043–19046. 1992.PubMed/NCBI
|
|
104
|
Fontecave M, Lepoivre M, Elleingand E,
Gerez C and Guittet O: Resveratrol, a remarkable inhibitor of
ribonucleotide reductase. FEBS Lett. 421:277–279. 1998.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Benedetti A, Di Sario A, Casini A, Ridolfi
F, Bendia E, Pigini P, Tonnini C, D'Ambrosio L, Feliciangeli G,
Macarri G, et al: Inhibition of the NA(+)/H(+) exchanger reduces
rat hepatic stellate cell activity and liver fibrosis: An in vitro
and in vivo study. Gastroenterology. 120:545–556. 2001.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Huang Q, Li J, Zheng J and Wei A: The
carcinogenic role of the Notch signaling pathway in the development
of hepatocellular carcinoma. J Cancer. 10:1570–1579.
2019.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Hardonnière K, Saunier E, Lemarié A,
Fernier M, Gallais I, Héliès-Toussaint C, Mograbi B, Antonio S,
Bénit P, Rustin P, et al: The environmental carcinogen
benzo[a]pyrene induces a Warburg-like metabolic reprogramming
dependent on NHE1 and associated with cell survival. Sci Rep.
6(30776)2016.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Thyfault JP and Rector RS: Exercise
Combats Hepatic Steatosis: Potential Mechanisms and Clinical
Implications. Diabetes. 69:517–524. 2020.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Harguindey S, Polo Orozco J, Alfarouk KO
and Devesa J: Hydrogen ion dynamics of cancer and a new molecular,
biochemical and metabolic approach to the etiopathogenesis and
treatment of brain malignancies. Int J Mol Sci.
20(4278)2019.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Kim SW, Cha MJ, Lee SK, Song BW, Jin X,
Lee JM, Park JH and Lee JD: Curcumin treatment in combination with
glucose restriction inhibits intracellular alkalinization and tumor
growth in hepatoma cells. Int J Mol Sci. 20(2375)2019.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Meima ME, Webb BA, Witkowska HE and Barber
DL: The sodium-hydrogen exchanger NHE1 is an Akt substrate
necessary for actin filament reorganization by growth factors. J
Biol Chem. 284:26666–26675. 2009.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Yang X, Wang D, Dong W, Song Z and Dou K:
Over-expression of Na+/H+ exchanger 1 and its
clinicopathologic significance in hepatocellular carcinoma. Med
Oncol. 27:1109–1113. 2010.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Yang X, Wang D, Dong W, Song Z and Dou K:
Suppression of Na+/H+ exchanger 1 by RNA
interference or amiloride inhibits human hepatoma cell line
SMMC-7721 cell invasion. Med Oncol. 28:385–390. 2011.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Yang X, Wang D, Dong W, Song Z and Dou K:
Inhibition of Na(+)/H(+) exchanger 1 by 5-(N-ethyl-N-isopropyl)
amiloride reduces hypoxia-induced hepatocellular carcinoma invasion
and motility. Cancer Lett. 295:198–204. 2010.PubMed/NCBI View Article : Google Scholar
|
|
115
|
He X, Lee B and Jiang Y: Cell-ECM
Interactions in Tumor Invasion. Adv Exp Med Biol. 936:73–91.
2016.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Stüwe L, Müller M, Fabian A, Waning J,
Mally S, Noël J, Schwab A and Stock C: pH dependence of melanoma
cell migration: Protons extruded by NHE1 dominate protons of the
bulk solution. J Physiol. 585:351–360. 2007.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Reshkin SJ, Cardone RA and Harguindey S: :
Na+-H+ exchanger, pH regulation and cancer.
Recent Patents Anticancer Drug Discov. 8:85–99. 2013.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Keurhorst D, Liashkovich I, Frontzek F,
Nitzlaff S, Hofschröer V, Dreier R and Stock C: MMP3 activity
rather than cortical stiffness determines NHE1-dependent
invasiveness of melanoma cells. Cancer Cell Int.
19(285)2019.PubMed/NCBI View Article : Google Scholar
|
|
119
|
He B, Deng C, Zhang M, Zou D and Xu M:
Reduction of intracellular pH inhibits the expression of VEGF in
K562 cells after targeted inhibition of the
Na+/H+ exchanger. Leuk Res. 31:507–514.
2007.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Apte RS, Chen DS and Ferrara N: VEGF in
Signaling and Disease: Beyond Discovery and Development. Cell.
176:1248–1264. 2019.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Alfarouk KO: Tumor metabolism, cancer cell
transporters, and microenvironmental resistance. J Enzyme Inhib Med
Chem. 31:859–866. 2016.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Gilkes DM, Semenza GL and Wirtz D: Hypoxia
and the extracellular matrix: Drivers of tumour metastasis. Nat Rev
Cancer. 14:430–439. 2014.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Vaupel P, Kallinowski F and Okunieff P:
Blood flow, oxygen and nutrient supply, and metabolic
microenvironment of human tumors: A review. Cancer Res.
49:6449–6465. 1989.PubMed/NCBI
|
|
124
|
Sun Y, Liu WZ, Liu T, Feng X, Yang N and
Zhou HF: Signaling pathway of MAPK/ERK in cell proliferation,
differentiation, migration, senescence and apoptosis. J Recept
Signal Transduct Res. 35:600–604. 2015.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Chen LC, Shibu MA, Liu CJ, Han CK, Ju DT,
Chen PY, Viswanadha VP, Lai CH, Kuo WW and Huang CY: ERK1/2
mediates the lipopolysaccharide-induced upregulation of FGF-2, uPA,
MMP-2, MMP-9 and cellular migration in cardiac fibroblasts. Chem
Biol Interact. 306:62–69. 2019.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Wang JC, Chen SY, Wang M, Ko JL, Wu CL,
Chen CC, Lin HW and Chang YY: Nickel-induced VEGF expression via
regulation of Akt, ERK1/2, NFκB, and AMPK pathways in H460 cells.
Environ Toxicol. 34:652–658. 2019.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Yang X, Wang D, Dong W, Song Z and Dou K:
Expression and modulation of Na(+) /H(+) exchanger 1 gene in
hepatocellular carcinoma: A potential therapeutic target. J
Gastroenterol Hepatol. 26:364–370. 2011.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Xu J, Ji B, Wen G, Yang Y, Jin H, Liu X,
Xie R, Song W, Song P, Dong H, et al: Na+/H+
exchanger 1, Na+/Ca2+ exchanger 1 and
calmodulin complex regulates interleukin 6-mediated cellular
behavior of human hepatocellular carcinoma. Carcinogenesis.
37:290–300. 2016.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Huc L, Sparfel L, Rissel M,
Dimanche-Boitrel MT, Guillouzo A, Fardel O and Lagadic-Gossmann D:
Identification of Na+/H+ exchange as a new
target for toxic polycyclic aromatic hydrocarbons. FASEB J.
18:344–346. 2004.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Hardonnière K, Saunier E, Lemarié A,
Fernier M, Gallais I, Héliès-Toussaint C, Mograbi B, Antonio S,
Bénit P, Rustin P, et al: The environmental carcinogen
benzo[a]pyrene induces a Warburg-like metabolic reprogramming
dependent on NHE1 and associated with cell survival. Sci Rep.
6(30776)2016.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Dendelé B, Tekpli X, Hardonnière K, Holme
JA, Debure L, Catheline D, Arlt VM, Nagy E, Phillips DH, Ovrebø S,
et al: Protective action of n-3 fatty acids on
benzo[a]pyrene-induced apoptosis through the plasma membrane
remodeling-dependent NHE1 pathway. Chem Biol Interact. 207:41–51.
2014.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Wang J, Tian L, Khan MN, Zhang L, Chen Q,
Zhao Y, Yan Q, Fu L and Liu J: Ginsenoside Rg3 sensitizes hypoxic
lung cancer cells to cisplatin via blocking of NF-κB mediated
epithelial-mesenchymal transition and stemness. Cancer Lett.
415:73–85. 2018.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Zhang C, Liu L, Yu Y, Chen B, Tang C and
Li X: Antitumor effects of ginsenoside Rg3 on human hepatocellular
carcinoma cells. Mol Med Rep. 5:1295–1298. 2012.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Zhou B, Wang J and Yan Z: Ginsenoside Rg3
attenuates hepatoma VEGF overexpression after hepatic artery
embolization in an orthotopic transplantation hepatocellular
carcinoma rat model. OncoTargets Ther. 7:1945–1954. 2014.PubMed/NCBI View Article : Google Scholar
|
|
135
|
Zhou B, Yan Z, Liu R, Shi P, Qian S, Qu X,
Zhu L, Zhang W and Wang J: Prospective Study of Transcatheter
Arterial Chemoembolization (TACE) with Ginsenoside Rg3 versus TACE
Alone for the Treatment of Patients with Advanced Hepatocellular
Carcinoma. Radiology. 280:630–639. 2016.PubMed/NCBI View Article : Google Scholar
|
|
136
|
Li X, Tsauo J, Geng C, Zhao H, Lei X and
Li X: Ginsenoside Rg3 Decreases NHE1 Expression via Inhibiting
EGF-EGFR-ERK1/2-HIF-1 [Formula: see text] Pathway in Hepatocellular
Carcinoma: A Novel Antitumor Mechanism. Am J Chin Med.
46:1915–1931. 2018.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Kloeckner R, Ruckes C, Kronfeld K, Wörns
MA, Weinmann A, Galle PR, Lang H, Otto G, Eichhorn W,
Schreckenberger M, et al: Selective internal radiotherapy (SIRT)
versus transarterial chemoembolization (TACE) for the treatment of
intrahepatic cholangiocellular carcinoma (CCC): study protocol for
a randomized controlled trial. Trials. 15(311)2014.PubMed/NCBI View Article : Google Scholar
|
|
138
|
Uchida D, Takaki A, Ishikawa H, Tomono Y,
Kato H, Tsutsumi K, Tamaki N, Maruyama T, Tomofuji T, Tsuzaki R, et
al: Oxidative stress balance is dysregulated and represents an
additional target for treating cholangiocarcinoma. Free Radic Res.
50:732–743. 2016.PubMed/NCBI View Article : Google Scholar
|
|
139
|
Grek A and Arasi L: Acute liver failure.
AACN Adv Crit Care. 27:420–429. 2016.PubMed/NCBI View Article : Google Scholar
|
|
140
|
Ezquerro S, Mocha F, Frühbeck G,
Guzmán-Ruiz R, Valentí V, Mugueta C, Becerril S, Catalán V,
Gómez-Ambrosi J, Silva C, et al: Ghrelin Reduces TNF-α-Induced
Human Hepatocyte Apoptosis, Autophagy, and Pyroptosis: Role in
Obesity-Associated NAFLD. J Clin Endocrinol Metab. 104:21–37.
2019.PubMed/NCBI View Article : Google Scholar
|
|
141
|
Liu Z, Wang S, Zhou H, Yang Y and Zhang M:
Na+/H+ exchanger mediates TNF-alpha-induced
hepatocyte apoptosis via the calpain-dependent degradation of
Bcl-xL. J Gastroenterol Hepatol. 24:879–885. 2009.PubMed/NCBI View Article : Google Scholar
|
|
142
|
Alexander RT, Dimke H and Cordat E:
Proximal tubular NHEs: Sodium, protons and calcium? Am J Physiol
Renal Physiol. 305:F229–F236. 2013.PubMed/NCBI View Article : Google Scholar
|
|
143
|
Shi M, Zhang T, Sun L, Luo Y, Liu DH, Xie
ST, Song XY, Wang GF, Chen XL, Zhou BC and Zhang YZ: Calpain, Atg5
and Bak play important roles in the crosstalk between apoptosis and
autophagy induced by influx of extracellular calcium. Apoptosis.
18:435–451. 2013.PubMed/NCBI View Article : Google Scholar
|
|
144
|
Huang C, Wang J, Chen Z, Wang Y and Zhang
W: 2-phenylethynesulfonamide Prevents Induction of Pro-inflammatory
Factors and Attenuates LPS-induced Liver Injury by Targeting
NHE1-Hsp70 Complex in Mice. PLoS One. 8(e67582)2013.PubMed/NCBI View Article : Google Scholar
|
|
145
|
Ceccarelli S, Panera N, Mina M, Gnani D,
De Stefanis C, Crudele A, Rychlicki C, Petrini S, Bruscalupi G,
Agostinelli L, et al: LPS-induced TNF-α factor mediates
pro-inflammatory and pro-fibrogenic pattern in non-alcoholic fatty
liver disease. Oncotarget. 6:41434–41452. 2015.PubMed/NCBI View Article : Google Scholar
|
|
146
|
Liu CL, Zhang X, Liu J, Wang Y, Sukhova
GK, Wojtkiewicz GR, Liu T, Tang R, Achilefu S, Nahrendorf M, et al:
Na+-H+ exchanger 1 determines atherosclerotic
lesion acidification and promotes atherogenesis. Nat Commun.
10(3978)2019.PubMed/NCBI View Article : Google Scholar
|
|
147
|
Guan X, Hasan MN, Begum G, Kohanbash G,
Carney KE, Pigott VM, Persson AI, Castro MG, Jia W and Sun D:
Blockade of Na/H exchanger stimulates glioma tumor immunogenicity
and enhances combinatorial TMZ and anti-PD-1 therapy. Cell Death
Dis. 9(1010)2018.PubMed/NCBI View Article : Google Scholar
|
|
148
|
Rotstein OD, Houston K and Grinstein S:
Control of cytoplasmic pH by Na+/H+ exchange
in rat peritoneal macrophages activated with phorbol ester. FEBS
Lett. 215:223–227. 1987.PubMed/NCBI View Article : Google Scholar
|
|
149
|
Ye Y, Jia X, Bajaj M and Birnbaum Y:
Dapagliflozin Attenuates Na+/H+ Exchanger-1
in Cardiofibroblasts via AMPK Activation. Cardiovasc Drugs Ther.
32:553–558. 2018.PubMed/NCBI View Article : Google Scholar
|
|
150
|
Ryuichi O, Masafumi M and Hiroshi K:
Localization, ion transport activity, and physiological function of
mammalian organellar NHEs. Seikagaku. J Jpn Biochem Soc.
82:2010.PubMed/NCBI(In Japanese).
|
|
151
|
Karmazyn M: Pharmacology and clinical
assessment of cariporide for the treatment coronary artery
diseases. Expert Opin Investig Drugs. 9:1099–1108. 2000.PubMed/NCBI View Article : Google Scholar
|