|
1
|
Berridge MJ, Lipp P and Bootman MD: The
versatility and universality of calcium signalling. Nat Rev Mol
Cell Biol. 1:11–21. 2000.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Clapham DE: Calcium signaling. Cell.
131:1047–1058. 2007.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Kristián T and Siesjö BK: Calcium in
ischemic cell death. Stroke. 29:705–718. 1998.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Berridge MJ, Bootman MD and Roderick HL:
Calcium signalling: Dynamics, homeostasis and remodelling. Nat Rev
Mol Cell Biol. 4:517–529. 2003.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Dong Z, Saikumar P, Weinberg JM and
Venkatachalam MA: Calcium in cell injury and death. Annu Rev
Pathol. 1:405–434. 2006.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Romac JM, Shahid RA, Swain SM, Vigna SR
and Liddle RA: Piezo1 is a mechanically activated ion channel and
mediates pressure induced pancreatitis. Nat Commun.
9(1715)2018.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Criddle DN, McLaughlin E, Murphy JA,
Petersen OH and Sutton R: The pancreas misled: Signals to
pancreatitis. Pancreatology. 7:436–446. 2007.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Lee PJ and Papachristou GI: New insights
into acute pancreatitis. Nat Rev Gastroenterol Hepatol. 16:479–496.
2019.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Karlstad J, Sun Y and Singh BB: Ca(2+)
signaling: An outlook on the characterization of Ca(2+) channels
and their importance in cellular functions. Adv Exp Med Biol.
740:143–157. 2012.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Kinjo TG and Schnetkamp PPM: Ca2+
chemistry, storage and transport in biologic systems: An overview.
Mol Biol Intell Unit, pp1-11, 1970.
|
|
11
|
Foskett JK, White C, Cheung KH and Mak DO:
Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev.
87:593–658. 2007.PubMed/NCBI View Article : Google Scholar
|
|
12
|
He J, Yang X, Guo Y, Zhang F, Wan H, Sun
X, Tuo B and Dong H: Ca2+ signaling in
HCO3- secretion and protection of upper GI
tract. Oncotarget. 8:102681–102689. 2017.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Xie R, Dong X, Wong C, Vallon V, Tang B,
Sun J, Yang S and Dong H: Molecular mechanisms of calcium-sensing
receptor-mediated calcium signaling in the modulation of epithelial
ion transport and bicarbonate secretion. J Biol Chem.
289:34642–34653. 2014.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Abdulnour-Nakhoul S, Nakhoul HN, Kalliny
MI, Gyftopoulos A, Rabon E, Doetjes R, Brown K and Nakhoul NL: Ion
transport mechanisms linked to bicarbonate secretion in the
esophageal submucosal glands. Am J Physiol Regul Integr Comp
Physiol. 301:R83–R96. 2011.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Kiela PR and Ghishan FK: Physiology of
intestinal absorption and secretion. Best Pract Res Clin
Gastroenterol. 30:145–159. 2016.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Bachmann O and Seidler U: News from the
end of the gut-how the highly segmental pattern of colonic
HCO3- transport relates to absorptive
function and mucosal integrity. Biol Pharm Bull. 34:794–802.
2011.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Yang X, Wen G, Tuo B, Zhang F, Wan H, He
J, Yang S and Dong H: Molecular mechanisms of calcium signaling in
the modulation of small intestinal ion transports and bicarbonate
secretion. Oncotarget. 9:3727–3740. 2017.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Tuo B, Wen G, Zhang Y, Liu X, Wang X, Liu
X and Dong H: Involvement of phosphatidylinositol 3-kinase in cAMP-
and cGMP-induced duodenal epithelial CFTR activation in mice. Am J
Physiol Cell Physiol. 297:C503–C515. 2009.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Ahuja M, Jha A, Maléth J, Park S and
Muallem S: cAMP and Ca²+ signaling in secretory
epithelia: Crosstalk and synergism. Cell Calcium. 55:385–393.
2014.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Lee RJ and Foskett JK: cAMP-activated Ca2+
signaling is required for CFTR-mediated serous cell fluid secretion
in porcine and human airways. J Clin Invest. 120:3137–3148.
2010.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Kallenberg LA: Calcium signalling in
secretory cells. Arch Physiol Biochem. 108:385–390. 2000.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Lee MG, Ohana E, Park HW, Yang D and
Muallem S: Molecular mechanism of pancreatic and salivary gland
fluid and HCO3 secretion. Physiol Rev. 92:39–74. 2012.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Ambudkar IS: Ca²+ signaling and
regulation of fluid secretion in salivary gland acinar cells. Cell
Calcium. 55:297–305. 2014.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Linan-Rico A, Ochoa-Cortes F, Beyder A,
Soghomonyan S, Zuleta-Alarcon A, Coppola V and Christofi FL:
Mechanosensory signaling in enterochromaffin cells and 5-HT
release: Potential implications for gut inflammation. Front
Neurosci. 10(564)2016.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Thiagarajah JR, Donowitz M and Verkman AS:
Secretory diarrhoea: Mechanisms and emerging therapies. Nat Rev
Gastroenterol Hepatol. 12:446–457. 2015.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Chen M, Praetorius J, Zheng W, Xiao F,
Riederer B, Singh AK, Stieger N, Wang J, Shull GE, Aalkjaer C and
Seidler U: The electroneutral
Na+:HCO3⁻ cotransporter NBCn1 is a
major pHi regulator in murine duodenum. J Physiol. 590:3317–3333.
2012.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Frizzell RA and Hanrahan JW: Physiology of
epithelial chloride and fluid secretion. Cold Spring Harb Perspect
Med. 2(a009563)2012.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Quinton PM: Role of epithelial
HCO3- transport in mucin secretion: Lessons
from cystic fibrosis. Am J Physiol Cell Physiol. 299:C1222–C1233.
2010.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Furukawa O, Bi LC, Guth PH, Engel E,
Hirokawa M and Kaunitz JD: NHE3 inhibition activates duodenal
bicarbonate secretion in the rat. Am J Physiol Gastrointest Liver
Physiol. 286:G102–G109. 2004.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Saint-Criq V and Gray MA: Role of CFTR in
epithelial physiology. Cell Mol Life Sci. 74:93–115.
2017.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Yang N, Garcia MA and Quinton PM: Normal
mucus formation requires cAMP-dependent HCO3- secretion and
Ca2+-mediated mucin exocytosis. J Physiol. 591:4581–4593.
2013.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Chávez JC, Hernández-González EO,
Wertheimer E, Visconti PE, Darszon A and Treviño CL: Participation
of the Cl-/HCO(3)-exchangers SLC26A3 and SLC26A6, the Cl- channel
CFTR, and the regulatory factor SLC9A3R1 in mouse sperm
capacitation. Biol Reprod. 86:1–14. 2012.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Hug MJ, Tamada T and Bridges RJ: CFTR and
bicarbonate secretion by [correction of to] epithelial cells. News
Physiol Sci. 18:38–42. 2003.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Binder HJ, Rajendran V, Sadasivan V and
Geibel JP: Bicarbonate secretion: A neglected aspect of colonic ion
transport. J Clin Gastroenterol. 39 (4 Suppl 2):S53–S58.
2005.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Feldman M: Gastric bicarbonate secretion
in humans. Effect of pentagastrin, bethanechol, and
11,16,16-trimethyl prostaglandin E2. J Clin Invest. 72:295–303.
1983.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Fei G, Fang X, Wang GD, Liu S, Wang XY,
Xia Y and Wood JD: Neurogenic mucosal bicarbonate secretion in
guinea pig duodenum. Br J Pharmacol. 168:880–890. 2013.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Rune SJ: pH in the human duodenum. Its
physiological and pathophysiological significance. Digestion.
8:261–268. 1973.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Kuna L, Jakab J, Smolic R, Raguz-Lucic N,
Vcev A and Smolic M: Peptic ulcer disease: A brief review of
conventional therapy and herbal treatment options. J Clin Med.
8(179)2019.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Field M: Intestinal ion transport and the
pathophysiology of diarrhea. J Clin Invest. 111:931–943.
2003.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Gennari FJ and Weise WJ: Acid-base
disturbances in gastrointestinal disease. Clin J Am Soc Nephrol.
3:1861–1868. 2008.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Pratha VS, Hogan DL, Martensson BA,
Bernard J, Zhou R and Isenberg JI: Identification of transport
abnormalities in duodenal mucosa and duodenal enterocytes from
patients with cystic fibrosis. Gastroenterology. 118:1051–1060.
2000.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Xiao F, Li J, Singh AK, Riederer B, Wang
J, Sultan A, Park H, Lee MG, Lamprecht G, Scholte BJ, et al: Rescue
of epithelial HCO3- secretion in murine intestine by apical
membrane expression of the cystic fibrosis transmembrane
conductance regulator mutant F508del. J Physiol. 590:5317–5334.
2012.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Ehre C, Ridley C and Thornton DJ: Cystic
fibrosis: An inherited disease affecting mucin-producing organs.
Int J Biochem Cell Biol. 52:136–145. 2014.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Wilschanski M and Novak I: The cystic
fibrosis of exocrine pancreas. Cold Spring Harb Perspect Med.
3(a009746)2013.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Ramos AF, de Fuccio MB, Moretzsohn LD,
Barbosa AJ, Passos Mdo C, Carvalho RS and Coelho LG: Cystic
fibrosis, gastroduodenal inflammation, duodenal ulcer, and H.
pylori infection: The ‘cystic fibrosis paradox’ revisited. J
Cyst Fibros. 12:377–383. 2013.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Kuwahara A: Involvement of the gut
chemosensory system in the regulation of colonic anion secretion.
Biomed Res Int. 2015(403919)2015.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Markadieu N and Delpire E: Physiology and
pathophysiology of SLC12A1/2 transporters. Pflugers Arch.
466:91–105. 2014.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Flores CA, Melvin JE, Figueroa CD and
Sepúlveda FV: Abolition of Ca2+-mediated intestinal anion secretion
and increased stool dehydration in mice lacking the intermediate
conductance Ca2+-dependent K+ channel Kcnn4. J Physiol.
583:705–717. 2007.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Mohammad-Panah R, Ackerley C, Rommens J,
Choudhury M, Wang Y and Bear CE: The chloride channel ClC-4
co-localizes with cystic fibrosis transmembrane conductance
regulator and may mediate chloride flux across the apical membrane
of intestinal epithelia. J Biol Chem. 277:566–574. 2002.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Argenzio RA, Whipp SC and Glock RD:
Pathophysiology of swine dysentery: Colonic transport and
permeability studies. J Infect Dis. 142:676–684. 1980.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Lakhan SE and Kirchgessner A:
Neuroinflammation in inflammatory bowel disease. J
Neuroinflammation. 7(37)2010.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Park HW and Lee MG: Transepithelial
bicarbonate secretion: Lessons from the pancreas. Cold Spring Harb
Perspect Med. 2(a009571)2012.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Kaji I, Akiba Y, Said H, Narimatsu K and
Kaunitz JD: Luminal 5-HT stimulates colonic bicarbonate secretion
in rats. Br J Pharmacol. 172:4655–4670. 2015.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Sugamoto S, Kawauch S, Furukawa O, Mimaki
TH and Takeuchi K: Role of endogenous nitric oxide and
prostaglandin in duodenal bicarbonate response induced by mucosal
acidification in rats. Dig Dis Sci. 46:1208–1216. 2001.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Devor DC, Singh AK, Lambert LC, DeLuca A,
Frizzell RA and Bridges RJ: Bicarbonate and chloride secretion in
Calu-3 human airway epithelial cells. J Gen Physiol. 113:743–760.
1999.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Condliffe SB, Doolan CM and Harvey BJ:
17beta-oestradiol acutely regulates Cl- secretion in rat distal
colonic epithelium. J Physiol. 530:47–54. 2001.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Tuo B, Wen G, Wei J, Liu X, Wang X, Zhang
Y, Wu H, Dong X, Chow JY, Vallon V and Dong H: Estrogen regulation
of duodenal bicarbonate secretion and sex-specific protection of
human duodenum. Gastroenterology. 141:854–863. 2011.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Yang X, Guo Y, He J, Zhang F, Sun X, Yang
S and Dong H: Estrogen and estrogen receptors in the modulation of
gastrointestinal epithelial secretion. Oncotarget. 8:97683–97692.
2017.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Tang L, Peng M, Liu L, Chang W, Binder HJ
and Cheng SX: Calcium-sensing receptor stimulates Cl(-)- and
SCFA-dependent but inhibits cAMP-dependent HCO3(-) secretion in
colon. Am J Physiol Gastrointest Liver Physiol. 308:G874–G883.
2015.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Nathanson NM: Synthesis, trafficking, and
localization of muscarinic acetylcholine receptors. Pharmacol Ther.
119:33–43. 2008.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Gustafsson JK, Lindén SK, Alwan AH,
Scholte BJ, Hansson GC and Sjövall H: Carbachol-induced colonic
mucus formation requires transport via NKCC1, K+
channels and CFTR. Pflugers Arch. 467:1403–1415. 2015.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Billet A and Hanrahan JW: The secret life
of CFTR as a calcium-activated chloride channel. J Physiol.
591:5273–5278. 2013.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Jia Y, Mathews CJ and Hanrahan JW:
Phosphorylation by protein kinase C is required for acute
activation of cystic fibrosis transmembrane conductance regulator
by protein kinase A. J Biol Chem. 272:4978–4984. 1997.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Kiela PR and Ghishan FK: Ion transport in
the intestine. Curr Opin Gastroenterol. 25:87–91. 2009.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Shah VS, Ernst S, Tang XX, Karp PH, Parker
CP, Ostedgaard LS and Welsh MJ: Relationships among CFTR
expression, HCO3- secretion, and host defense may inform gene- and
cell-based cystic fibrosis therapies. Proc Natl Acad Sci USA.
113:5382–5387. 2016.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Goodman BE and Percy WH: CFTR in cystic
fibrosis and cholera: From membrane transport to clinical practice.
Adv Physiol Educ. 29:75–82. 2005.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Deachapunya C and O'Grady SM: Regulation
of chloride secretion across porcine endometrial epithelial cells
by prostaglandin E2. J Physiol. 508:31–47. 1998.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Hoffmann EK, Lambert IH and Pedersen SF:
Physiology of cell volume regulation in vertebrates. Physiol Rev.
89:193–277. 2009.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Borowitz D and Gelfond D: Intestinal
complications of cystic fibrosis. Curr Opin Pulm Med. 19:676–680.
2013.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Kelly T and Buxbaum J: Gastrointestinal
manifestations of cystic fibrosis. Dig Dis Sci. 60:1903–1913.
2015.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Lavelle GM, White MM, Browne N, McElvaney
NG and Reeves EP: Animal models of cystic fibrosis pathology:
Phenotypic parallels and divergences. Biomed Res Int.
2016(5258727)2016.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Li C, Dandridge KS, Di A, Marrs KL, Harris
EL, Roy K, Jackson JS, Makarova NV, Fujiwara Y, Farrar PL, et al:
Lysophosphatidic acid inhibits cholera toxin-induced secretory
diarrhea through CFTR-dependent protein interactions. J Exp Med.
202:975–986. 2005.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Rasmussen JE, Sheridan JT, Polk W, Davies
CM and Tarran R: Cigarette smoke-induced Ca2+ release leads to
cystic fibrosis transmembrane conductance regulator (CFTR)
dysfunction. J Biol Chem. 289:7671–7681. 2014.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Patel W, Moore PJ, Sassano MF,
Lopes-Pacheco M, Aleksandrov AA, Amaral MD, Tarran R and Gray MA:
Increases in cytosolic Ca2+ induce dynamin- and
calcineurin-dependent internalisation of CFTR. Cell Mol Life Sci.
76:977–994. 2019.PubMed/NCBI View Article : Google Scholar
|
|
75
|
He J, Yang X, Guo Y, Zhang F, Wan H, Sun
X, Tuo B and Dong H: Ca2+ signaling in HCO3-
secretion and protection of upper GI tract. Oncotarget.
8:102681–102689. 2017.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Caputo A, Caci E, Ferrera L, Pedemonte N,
Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O and
Galietta LJ: TMEM16A, a membrane protein associated with
calcium-dependent chloride channel activity. Science. 322:590–594.
2008.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Zimmermann H: Extracellular ATP and other
nucleotides-ubiquitous triggers of intercellular messenger release.
Purinergic Signal. 12:25–57. 2016.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Beech DJ: Inhibitory effects of histamine
and bradykinin on calcium current in smooth muscle cells isolated
from guinea-pig ileum. J Physiol. 463:565–583. 1993.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Morris AP, Scott JK, Ball JM, Zeng CQ,
O'Neal WK and Estes MK: NSP4 elicits age-dependent diarrhea and
Ca(2+)mediated I(-) influx into intestinal crypts of CF mice. Am J
Physiol. 277:G431–G444. 1999.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Yu K, Zhu J, Qu Z, Cui YY and Hartzell HC:
Activation of the Ano1 (TMEM16A) chloride channel by calcium is not
mediated by calmodulin. J Gen Physiol. 143:253–267. 2014.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Kunzelmann K, Ousingsawat J, Cabrita I,
Doušová T, Bähr A, Janda M, Schreiber R and Benedetto R: TMEM16A in
cystic fibrosis: Activating or inhibiting? Front Pharmacol.
10(3)2019.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Zhang F, Wan H, Yang X, He J, Lu C, Yang
S, Tuo B and Dong H: Molecular mechanisms of caffeine-mediated
intestinal epithelial ion transports. Br J Pharmacol.
176:1700–1716. 2019.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Kunzelmann K and Mall M: Electrolyte
transport in the mammalian colon: mechanisms and implications for
disease. Physiol Rev. 82:245–289. 2002.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Berg J, Yang H and Jan LY: Ca2+-activated
Cl- channels at a glance. J Cell Sci. 125:1367–1371.
2012.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Zsembery A, Strazzabosco M and Graf J:
Ca2+-activated Cl- channels can substitute for CFTR in stimulation
of pancreatic duct bicarbonate secretion. FASEB J. 14:2345–2356.
2000.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Berkes J, Viswanathan VK, Savkovic SD and
Hecht G: Intestinal epithelial responses to enteric pathogens:
Effects on the tight junction barrier, ion transport, and
inflammation. Gut. 52:439–451. 2003.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Flemström G and Isenberg JI:
Gastroduodenal mucosal alkaline secretion and mucosal protection.
News Physiol Sci. 16:23–28. 2001.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Simpson JE, Schweinfest CW, Shull GE,
Gawenis LR, Walker NM, Boyle KT, Soleimani M and Clarke LL: PAT-1
(Slc26a6) is the predominant apical membrane Cl-/HCO3- exchanger in
the upper villous epithelium of the murine duodenum. Am J Physiol
Gastrointest Liver Physiol. 292:G1079–G1088. 2007.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Xiao F, Yu Q, Li J, Johansson ME, Singh
AK, Xia W, Riederer B, Engelhardt R, Montrose M, Soleimani M, et
al: Slc26a3 deficiency is associated with loss of colonic HCO3 (-)
secretion, absence of a firm mucus layer and barrier impairment in
mice. Acta Physiol (Oxf). 211:161–175. 2014.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Vidyasagar S, Barmeyer C, Geibel J, Binder
HJ and Rajendran VM: Role of short-chain fatty acids in colonic
HCO(3) secretion. Am J Physiol Gastrointest Liver Physiol.
288:G1217–G1226. 2005.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Vidyasagar S, Rajendran VM and Binder HJ:
Three distinct mechanisms of HCO3- secretion in rat distal colon.
Am J Physiol Cell Physiol. 287:C612–C621. 2004.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Singh AK, Riederer B, Chen M, Xiao F,
Krabbenhöft A, Engelhardt R, Nylander O, Soleimani M and Seidler U:
The switch of intestinal Slc26 exchangers from anion absorptive to
HCOFormula secretory mode is dependent on CFTR anion channel
function. Am J Physiol Cell Physiol. 298:C1057–C1065.
2010.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Singh AK, Liu Y, Riederer B, Engelhardt R,
Thakur BK, Soleimani M and Seidler U: Molecular transport machinery
involved in orchestrating luminal acid-induced duodenal bicarbonate
secretion in vivo. J Physiol. 591:5377–5391. 2013.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Smith A, Contreras C, Ko KH, Chow J, Dong
X, Tuo B, Zhang HH, Chen DB and Dong H: Gender-specific protection
of estrogen against gastric acid-induced duodenal injury:
Stimulation of duodenal mucosal bicarbonate secretion.
Endocrinology. 149:4554–4566. 2008.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Lamprecht G, Hsieh CJ, Lissner S, Nold L,
Heil A, Gaco V, Schäfer J, Turner JR and Gregor M: Intestinal anion
exchanger down-regulated in adenoma (DRA) is inhibited by
intracellular calcium. J Biol Chem. 284:19744–19753.
2009.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Feske S, Giltnane J, Dolmetsch R, Staudt
LM and Rao A: Gene regulation mediated by calcium signals in T
lymphocytes. Nat Immunol. 2:316–324. 2001.PubMed/NCBI View
Article : Google Scholar
|
|
97
|
Rosenberg SS and Spitzer NC: Calcium
signaling in neuronal development. Cold Spring Harb Perspect Biol.
3(a004259)2011.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Stiber J, Hawkins A, Zhang ZS, Wang S,
Burch J, Graham V, Ward CC, Seth M, Finch E, Malouf N, et al: STIM1
signalling controls store-operated calcium entry required for
development and contractile function in skeletal muscle. Nat Cell
Biol. 10:688–697. 2008.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Prakriya M and Lewis RS: Store-operated
calcium channels. Physiol Rev. 95:1383–1436. 2015.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Baba Y, Hayashi K, Fujii Y, Mizushima A,
Watarai H, Wakamori M, Numaga T, Mori Y, Iino M, Hikida M and
Kurosaki T: Coupling of STIM1 to store-operated Ca2+ entry through
its constitutive and inducible movement in the endoplasmic
reticulum. Proc Natl Acad Sci USA. 103:16704–16709. 2006.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Barr VA, Bernot KM, Srikanth S, Gwack Y,
Balagopalan L, Regan CK, Helman DJ, Sommers CL, Oh-Hora M, Rao A
and Samelson LE: Dynamic movement of the calcium sensor STIM1 and
the calcium channel Orai1 in activated T-cells: Puncta and distal
caps. Mol Biol Cell. 19:2802–2817. 2008.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Smyth JT, Lemonnier L, Vazquez G, Bird GS
and Putney JW Jr: Dissociation of regulated trafficking of TRPC3
channels to the plasma membrane from their activation by
phospholipase C. J Biol Chem. 281:11712–11720. 2006.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Mercer JC, Dehaven WI, Smyth JT, Wedel B,
Boyles RR, Bird GS and Putney JW Jr: Large store-operated calcium
selective currents due to co-expression of Orai1 or Orai2 with the
intracellular calcium sensor, Stim1. J Biol Chem. 281:24979–24990.
2006.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Lefkimmiatis K, Moyer MP, Curci S and
Hofer AM: ‘cAMP sponge’: A buffer for cyclic adenosine 3',
5'-monophosphate. PLoS One. 4(e7649)2009.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Rao JN, Rathor N, Zou T, Liu L, Xiao L, Yu
TX, Cui YH and Wang JY: STIM1 translocation to the plasma membrane
enhances intestinal epithelial restitution by inducing
TRPC1-mediated Ca2+ signaling after wounding. Am J
Physiol Cell Physiol. 299:C579–C588. 2010.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Onodera K, Pouokam E and Diener M:
STIM1-regulated Ca2+ influx across the apical and the basolateral
membrane in colonic epithelium. J Membr Biol. 246:271–285.
2013.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Smyth JT, DeHaven WI, Bird GS and Putney
JW Jr: Role of the microtubule cytoskeleton in the function of the
store-operated Ca2+ channel activator STIM1. J Cell Sci.
120:3762–3771. 2007.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Seo MD, Enomoto M, Ishiyama N, Stathopulos
PB and Ikura M: Structural insights into endoplasmic reticulum
stored calcium regulation by inositol 1,4,5-trisphosphate and
ryanodine receptors. Biochim Biophys Acta. 1853:1980–1991.
2015.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Putney JW Jr: Capacitative calcium entry
revisited. Cell Calcium. 11:611–624. 1990.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Kocks S, Schultheiss G and Diener M:
Ryanodine receptors and the mediation of Ca2+-dependent anion
secretion across rat colon. Pflugers Arch. 445:390–397.
2002.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Prole DL and Taylor CW: Inositol
1,4,5-trisphosphate receptors and their protein partners as
signalling hubs. J Physiol. 594:2849–2866. 2016.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Lefkimmiatis K, Srikanthan M, Maiellaro I,
Moyer MP, Curci S and Hofer AM: Store-operated cyclic AMP
signalling mediated by STIM1. Nat Cell Biol. 11:433–442.
2009.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Nichols JM, Maiellaro I, Abi-Jaoude J,
Curci S and Hofer AM: ‘Store-operated’ cAMP signaling contributes
to Ca2+-activated Cl- secretion in T84 colonic cells. Am J Physiol
Gastrointest Liver Physiol. 309:G670–G679. 2015.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Julio-Kalajzić F, Villanueva S, Burgos J,
Ojeda M, Cid LP, Jentsch TJ and Sepúlveda FV: K2P TASK-2
and KCNQ1-KCNE3 K+ channels are major players
contributing to intestinal anion and fluid secretion. J Physiol.
596:393–407. 2018.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Assaha DVM, Ueda A, Saneoka H, Al-Yahyai R
and Yaish MW: The role of Na+ and K+
transporters in salt stress adaptation in glycophytes. Front
Physiol. 8(509)2017.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Wang J, Haanes KA and Novak I: Purinergic
regulation of CFTR and Ca(2+)-activated Cl(-) channels and K(+)
channels in human pancreatic duct epithelium. Am J Physiol Cell
Physiol. 304:C673–C684. 2013.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Joiner WJ, Basavappa S, Vidyasagar S,
Nehrke K, Krishnan S, Binder HJ, Boulpaep EL and Rajendran VM:
Active K+ secretion through multiple KCa-type channels and
regulation by IKCa channels in rat proximal colon. Am J Physiol
Gastrointest Liver Physiol. 285:G185–G196. 2003.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Thompson-Vest N, Shimizu Y, Hunne B and
Furness JB: The distribution of intermediate-conductance,
calcium-activated, potassium (IK) channels in epithelial cells. J
Anat. 208:219–229. 2006.PubMed/NCBI View Article : Google Scholar
|
|
119
|
McNamara B, Winter DC, Cuffe JE,
O'Sullivan GC and Harvey BJ: Basolateral K+ channel involvement in
forskolin-activated chloride secretion in human colon. J Physiol.
519:251–260. 1999.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Du C, Chen S, Wan H, Chen L, Li L, Guo H,
Tuo B and Dong H: Different functional roles for K+
channel subtypes in regulating small intestinal glucose and ion
transport. Biol Open. 8(bio042200)2019.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Dong H, Smith A, Hovaida M and Chow JY:
Role of Ca2+-activated K+ channels in duodenal mucosal ion
transport and bicarbonate secretion. Am J Physiol Gastrointest
Liver Physiol. 291:G1120–G1128. 2006.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Ottolia M and Philipson KD: NCX1:
Mechanism of transport. Adv Exp Med Biol. 961:49–54.
2013.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Brini M and Carafoli E: The plasma
membrane Ca2+ ATPase and the plasma membrane sodium calcium
exchanger cooperate in the regulation of cell calcium. Cold Spring
Harb Perspect Biol. 3(a004168)2011.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Lee SY and Kim JH: Mechanisms underlying
presynaptic Ca2+ transient and vesicular glutamate release at a CNS
nerve terminal during in vitro ischaemia. J Physiol. 593:2793–2806.
2015.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Liao QS, Du Q, Lou J, Xu JY and Xie R:
Roles of Na+/Ca2+ exchanger 1 in digestive
system physiology and pathophysiology. World J Gastroenterol.
25:287–299. 2019.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Seip G, Schultheiss G, Kocks SL and Diener
M: Interaction between store-operated non-selective cation channels
and the Na(+)-Ca(2+) exchanger during secretion in the rat colon.
Exp Physiol. 86:461–468. 2001.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Dong H, Sellers ZM, Smith A, Chow JY and
Barrett KE: Na(+)/Ca(2+) exchange regulates Ca(2+)-dependent
duodenal mucosal ion transport and HCO(3)(-) secretion in mice. Am
J Physiol Gastrointest Liver Physiol. 288:G457–G465.
2005.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Narayanan M, Reddy KM and Marsicano E:
Peptic ulcer disease and Helicobacter pylori infection. Mo
Med. 115:219–224. 2018.PubMed/NCBI
|
|
129
|
Iijima K, Kanno T, Koike T and Shimosegawa
T: Helicobacter pylori-negative, non-steroidal
anti-inflammatory drug: Negative idiopathic ulcers in Asia. World J
Gastroenterol. 20:706–713. 2014.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Goderska K, Agudo Pena S and Alarcon T:
Helicobacter pylori treatment: Antibiotics or probiotics.
Appl Microbiol Biotechnol. 102:1–7. 2018.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Phan J, Benhammou JN and Pisegna JR:
Gastric hypersecretory states: Investigation and management. Curr
Treat Options Gastroenterol. 13:386–397. 2015.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Mejia A and Kraft WK: Acid peptic
diseases: Pharmacological approach to treatment. Expert Rev Clin
Pharmacol. 2:295–314. 2009.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Garcia MA, Yang N and Quinton PM: Normal
mouse intestinal mucus release requires cystic fibrosis
transmembrane regulator-dependent bicarbonate secretion. J Clin
Invest. 119:2613–2622. 2009.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Allen A and Flemström G: Gastroduodenal
mucus bicarbonate barrier: Protection against acid and pepsin. Am J
Physiol Cell Physiol. 288:C1–C19. 2005.PubMed/NCBI View Article : Google Scholar
|
|
135
|
Barkas F, Liberopoulos E, Kei A and Elisaf
M: Electrolyte and acid-base disorders in inflammatory bowel
disease. Ann Gastroenterol. 26:23–28. 2013.PubMed/NCBI
|
|
136
|
Hwang SJ, Basma N, Sanders KM and Ward SM:
Effects of new-generation inhibitors of the calcium-activated
chloride channel anoctamin 1 on slow waves in the gastrointestinal
tract. Br J Pharmacol. 173:1339–1349. 2016.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Findling R, Frishman W, Javed MT, Heffer S
and Brandt L: Calcium channel blockers and the gastrointestinal
tract. Am J Ther. 3:383–408. 1996.PubMed/NCBI View Article : Google Scholar
|
|
138
|
Zhang YZ and Li YY: Inflammatory bowel
disease: Pathogenesis. World J Gastroenterol. 20:91–99.
2014.PubMed/NCBI View Article : Google Scholar
|
|
139
|
Tanoue T, Umesaki Y and Honda K: Immune
responses to gut microbiota-commensals and pathogens. Gut Microbes.
1:224–233. 2010.PubMed/NCBI View Article : Google Scholar
|
|
140
|
Ghishan FK and Kiela PR: Epithelial
transport in inflammatory bowel diseases. Inflamm Bowel Dis.
20:1099–1109. 2014.PubMed/NCBI View Article : Google Scholar
|
|
141
|
Lau KS, Nakashima O, Aalund GR, Hogarth L,
Ujiie K, Yuen J and Star RA: TNF-alpha and IFN-gamma induce
expression of nitric oxide synthase in cultured rat medullary
interstitial cells. Am J Physiol. 269:F212–F217. 1995.PubMed/NCBI View Article : Google Scholar
|
|
142
|
Das S, Jayaratne R and Barrett KE: The
role of ion transporters in the pathophysiology of infectious
diarrhea. Cell Mol Gastroenterol Hepatol. 6:33–45. 2018.PubMed/NCBI View Article : Google Scholar
|
|
143
|
Manoharan P, Coon S, Baseler W, Sundaram
S, Kekuda R and Sundaram U: Prostaglandins, not the leukotrienes,
regulate Cl(-)/HCO(3)(-) exchange (DRA, SLC26A3) in villus cells in
the chronically inflamed rabbit ileum. Biochim Biophys Acta.
1828:179–186. 2013.PubMed/NCBI View Article : Google Scholar
|
|
144
|
Yang D, Shcheynikov N, Zeng W, Ohana E, So
I, Ando H, Mizutani A, Mikoshiba K and Muallem S: IRBIT coordinates
epithelial fluid and HCO3- secretion by stimulating the
transporters pNBC1 and CFTR in the murine pancreatic duct. J Clin
Invest. 119:193–202. 2009.PubMed/NCBI View Article : Google Scholar
|
|
145
|
Lohi H, Kujala M, Kerkelä E,
Saarialho-Kere U, Kestilä M and Kere J: Mapping of five new
putative anion transporter genes in human and characterization of
SLC26A6, a candidate gene for pancreatic anion exchanger. Genomics.
70:102–112. 2000.PubMed/NCBI View Article : Google Scholar
|
|
146
|
Anbazhagan AN, Priyamvada S, Alrefai WA
and Dudeja PK: Pathophysiology of IBD associated diarrhea. Tissue
Barriers. 6(e1463897)2018.PubMed/NCBI View Article : Google Scholar
|
|
147
|
Priyamvada S, Gomes R, Gill RK, Saksena S,
Alrefai WA and Dudeja PK: Mechanisms underlying dysregulation of
electrolyte absorption in inflammatory bowel disease-associated
diarrhea. Inflamm Bowel Dis. 21:2926–2935. 2015.PubMed/NCBI View Article : Google Scholar
|
|
148
|
Priyamvada S, Anbazhagan AN, Gujral T,
Borthakur A, Saksena S, Gill RK, Alrefai WA and Dudeja PK:
All-trans-retinoic acid increases SLC26A3 DRA (Down-regulated in
Adenoma) expression in intestinal epithelial cells via HNF-1β. J
Biol Chem. 290:15066–15077. 2015.PubMed/NCBI View Article : Google Scholar
|
|
149
|
Seidler U and Nikolovska K: Slc26 Family
of anion transporters in the gastrointestinal tract: Expression,
function, regulation, and role in disease. Compr Physiol.
9:839–872. 2019.PubMed/NCBI View Article : Google Scholar
|