Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
November-2020 Volume 20 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2020 Volume 20 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Advancing Covid‑19 differentiation with a robust preprocessing and integration of multi‑institutional open‑repository computer tomography datasets for deep learning analysis

  • Authors:
    • Eleftherios Trivizakis
    • Nikos Tsiknakis
    • Evangelia E. Vassalou
    • Georgios Z. Papadakis
    • Demetrios A. Spandidos
    • Dimosthenis Sarigiannis
    • Aristidis Tsatsakis
    • Nikolaos Papanikolaou
    • Apostolos H. Karantanas
    • Kostas Marias
  • View Affiliations / Copyright

    Affiliations: Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece, Department of Medical Imaging, University Hospital of Heraklion, 71110 Heraklion, Greece, Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece, HERACLES Research Center on the Exposome and Health, Centre for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 57001 Thermi, Greece, Department of Forensic Sciences and Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
    Copyright: © Trivizakis et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 78
    |
    Published online on: September 11, 2020
       https://doi.org/10.3892/etm.2020.9210
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The coronavirus pandemic and its unprecedented consequences globally has spurred the interest of the artificial intelligence research community. A plethora of published studies have investigated the role of imaging such as chest X‑rays and computer tomography in coronavirus disease 2019 (COVID‑19) automated diagnosis. Οpen repositories of medical imaging data can play a significant role by promoting cooperation among institutes in a world‑wide scale. However, they may induce limitations related to variable data quality and intrinsic differences due to the wide variety of scanner vendors and imaging parameters. In this study, a state‑of‑the‑art custom U‑Net model is presented with a dice similarity coefficient performance of 99.6% along with a transfer learning VGG‑19 based model for COVID‑19 versus pneumonia differentiation exhibiting an area under curve of 96.1%. The above was significantly improved over the baseline model trained with no segmentation in selected tomographic slices of the same dataset. The presented study highlights the importance of a robust preprocessing protocol for image analysis within a heterogeneous imaging dataset and assesses the potential diagnostic value of the presented COVID‑19 model by comparing its performance to the state of the art.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

World Health Organization (WHO): WHO Coronavirus Disease (COVID-19) Dashboard. WHO, Geneva, 2020. https://covid19.who.int/. Accessed August 1, 2020.

2 

World Health Organization (WHO): Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). WHO, Geneva, 2020. https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf. Accessed February 28, 2020.

3 

Petrakis D, Margină D, Tsarouhas K, Tekos F, Stan M, Nikitovic D, Kouretas D, Spandidos DA and Tsatsakis A: Obesity a risk factor for increased COVID-19 prevalence, severity and lethality (Review). Mol Med Rep. 22:9–19. 2020.PubMed/NCBI View Article : Google Scholar

4 

Docea AO, Tsatsakis A, Albulescu D, Cristea O, Zlatian O, Vinceti M, Moschos SA, Tsoukalas D, Goumenou M, Drakoulis N, et al: A new threat from an old enemy: Re-emergence of coronavirus (Review). Int J Mol Med. 45:1631–1643. 2020.PubMed/NCBI View Article : Google Scholar

5 

Farsalinos K, Niaura R, Le Houezec J, Barbouni A, Tsatsakis A, Kouretas D, Vantarakis A and Poulas K: Editorial: Nicotine and SARS-CoV-2: COVID-19 may be a disease of the nicotinic cholinergic system. Toxicol Rep. 7:658–663. 2020.PubMed/NCBI View Article : Google Scholar

6 

Kostoff RN, Briggs MB, Porter AL, Hernández AF, Abdollahi M, Aschner M and Tsatsakis A: The under-reported role of toxic substance exposures in the COVID-19 pandemic. Food Chem Toxicol: Aug 14, 2020 (Epub ahead of print).

7 

Tsatsakis A, Petrakis D, Nikolouzakis TK, Docea AO, Calina D, Vinceti M, Goumenou M, Kostoff RN, Mamoulakis C, Aschner M, et al: COVID-19, an opportunity to reevaluate the correlation between long-term effects of anthropogenic pollutants on viral epidemic/pandemic events and prevalence. Food Chem Toxicol. 141(111418)2020.PubMed/NCBI View Article : Google Scholar

8 

Xie X, Zhong Z, Zhao W, Zheng C, Wang F and Liu J: Chest CT for typical coronavirus disease 2019 (COVID-19) pneumonia: Relationship to negative RT-PCR testing. Radiology. 296:E41–E45. 2020.PubMed/NCBI View Article : Google Scholar

9 

Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, Tao Q, Sun Z and Xia L: Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: A Report of 1014 cases. Radiology. 296:E32–E40. 2020.PubMed/NCBI View Article : Google Scholar

10 

Fang Y, Zhang H, Xie J, Lin M, Ying L, Pang P and Ji W: Sensitivity of chest CT for COVID-19: comparison to RT-PCR. Radiology. 296:E115–E117. 2020.PubMed/NCBI View Article : Google Scholar

11 

Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, et al: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 395:507–513. 2020.PubMed/NCBI View Article : Google Scholar

12 

Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkerson S, Tural A, et al: Washington State 2019-nCoV Case Investigation Team: First case of 2019 novel coronavirus in the United States. N Engl J Med. 382:929–936. 2020.

13 

Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, et al: Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 323:1061–1069. 2020.PubMed/NCBI View Article : Google Scholar

14 

Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, et al: Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 382:1199–1207. 2020.PubMed/NCBI View Article : Google Scholar

15 

Chung M, Bernheim A, Mei X, Zhang N, Huang M, Zeng X, Cui J, Xu W, Yang Y, Fayad ZA, et al: CT imaging features of 2019 novel coronavirus (2019-NCoV). Radiology. 295:202–207. 2020.PubMed/NCBI View Article : Google Scholar

16 

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 395:497–506. 2020.PubMed/NCBI View Article : Google Scholar

17 

Tsiknakis N, Trivizakis E, Vassalou EE, Papadakis GZ, Spandidos DA, Tsatsakis A, Sánchez-García J, López-González R, Papanikolaou N, Karantanas AH, et al: Interpretable artificial intelligence framework for COVID-19 screening on chest X-rays. Exp Ther Med. 20:727–735. 2020.PubMed/NCBI View Article : Google Scholar

18 

Apostolopoulos ID and Mpesiana TA: Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Phys Eng Sci Med. 43:635–640. 2020.PubMed/NCBI View Article : Google Scholar

19 

Li L, Qin L, Xu Z, Yin Y, Wang X, Kong B, Bai J, Lu Y, Fang Z, Song Q, et al: Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: Evaluation of the diagnostic accuracy. Radiology. 296:E65–E71. 2020.PubMed/NCBI View Article : Google Scholar

20 

Wang S, Zha Y, Li W, Wu Q, Li X, Niu M, Wang M, Qiu X, Li H, Yu H, et al: A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis. Eur Respir J. 56(2000775)2020.PubMed/NCBI View Article : Google Scholar

21 

Zhang K, Liu X, Shen J, Li Z, Sang Y, Wu X, Zha Y, Liang W, Wang C, Wang K, et al: Clinically applicable AI system for accurate diagnosis, quantitative measurements, and prognosis of COVID-19 pneumonia using computed tomography. Cell. 181:1423–1433.e11. 2020.PubMed/NCBI View Article : Google Scholar

22 

Ardakani AA, Kanafi AR, Acharya UR, Khadem N and Mohammadi A: Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks. Comput Biol Med. 121(103795)2020.PubMed/NCBI View Article : Google Scholar

23 

Song Y, Zheng S, Li L, Zhang X, Zhang X, Huang Z, Chen J, Zhao H, Jie Y, Wang R, et al: Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images. medRxiv: doi: https://doi.org/10.1101/2020.02.23.20026930.

24 

Zheng C, Deng X, Fu Q, Zhou Q, Feng J, Ma H, Liu W and Wang X: Deep learning-based detection for COVID-19 from chest CT using weak label medRxiv: doi: https://doi.org/10.1101/2020.03.12.20027185.

25 

Gozes O, Frid-Adar M, Greenspan H, Browning PD, Zhang H, Ji W, Bernheim A and Siegel E: Rapid AI development cycle for the coronavirus (COVID-19) pandemic: Initial results for automated detection and patient monitoring using deep learning CT image analysis. arXiv:2003.05037.

26 

Shan F, Gao Y, Wang J, Shi W, Shi N, Han M, Xue Z, Shen D and Shi Y: Lung infection quantification of COVID-19 in CT images with deep learning. arXiv:2003.04655.

27 

Kassani SH, Kassasni PH, Wesolowski MJ, Schneider KA and Deters R: Automatic detection of coronavirus disease (COVID-19) in x-ray and CT images: A machine learning-based approach. arXiv:2004.10641.

28 

Hu S, Gao Y, Niu Z, Jiang Y, Li L, Xiao X, Wang M, Fang EF, Menpes-Smith W, Xia J, et al: Weakly supervised deep learning for COVID-19 infection detection and classification from CT images. IEEE Access. 8:118869–118883. 2020.

29 

Chen X, Yao L and Zhang Y: Residual attention U-Net for automated multi-class segmentation of COVID-19 chest CT images. arXiv:2004.05645.

30 

Soares E, Angelov P, Biaso S, Froes MH and Abe DK: SARS-CoV-2 CT-scan dataset: A large dataset of real patients CT scans for SARS-CoV-2 identification. medRxiv: doi: https://doi.org/10.1101/2020.04.24.20078584.

31 

Yang X, He X, Zhao J, Zhang Y, Zhang S and Xie P: COVID-CT-Dataset: A CT scan dataset about COVID-19. arXiv:2003.13865.

32 

Ma J, Ge C, Wang Y, An X, Gao J, Yu Z, Zhang M, Liu X, Deng X, Cao S, et al: COVID-19 CT lung and infection segmentation dataset. Zenodo: http://doi.org/10.5281/zenodo.3757476.

33 

Ronneberger O, Fischer P and Brox T: U-net: Convolutional networks for biomedical image segmentation. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol 9351. Springer Verlag, pp234-241, 2015.

34 

Armato III S, McLennan G, Bidaut L, McNitt-Gray M, Meyer C, Reeves A, Zhao B, Aberle D, Henschke C, Clarke L, et al: The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys. 38:915–931. 2011.PubMed/NCBI View Article : Google Scholar

35 

gitHub: wanwanbeen/ct_lung_segmentation: Robust segmentation of lung and airway in CT scans. https://github.com/wanwanbeen?tab=repositories. Updated November 29, 2017.

36 

Simonyan K and Zisserman A: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556.

37 

Szegedy C, Vanhoucke V, Ioffe S, Shlens J and Wojna Z: Rethinking the inception architecture for computer vision. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, pp2818-2826, 2016.

38 

Zoph B, Vasudevan V, Shlens J and Le QV: Learning transferable architectures for scalable image recognition. arXiv:1707.07012v4.

39 

Huang G, Liu Z, van der Maaten L and Weinberger KQ: Densely connected convolutional networks. arXiv:1608.06993.

40 

Sandler M, Howard A, Zhu M, Zhmoginov A and Chen LC: MobileNetV2: Inverted Residuals and Linear Bottlenecks. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp4510-4520, 2018.

41 

He X, Yang X, Zhang S, Zhao J, Zhang Y, Xing E and Xie P: Sample-Efficient Deep Learning for COVID-19 Diagnosis Based on CT Scans medRxiv: doi: https://doi.org/10.1101/2020.04.13.20063941.

42 

Harmon SA, Sanford TH, Xu S, Turkbey EB, Roth H, Xu Z, Yang D, Myronenko A, Anderson V, Amalou A, et al: Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets. Nat Commun. 11(4080)2020.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Trivizakis E, Tsiknakis N, Vassalou EE, Papadakis GZ, Spandidos DA, Sarigiannis D, Tsatsakis A, Papanikolaou N, Karantanas AH, Marias K, Marias K, et al: Advancing Covid‑19 differentiation with a robust preprocessing and integration of multi‑institutional open‑repository computer tomography datasets for deep learning analysis. Exp Ther Med 20: 78, 2020.
APA
Trivizakis, E., Tsiknakis, N., Vassalou, E.E., Papadakis, G.Z., Spandidos, D.A., Sarigiannis, D. ... Marias, K. (2020). Advancing Covid‑19 differentiation with a robust preprocessing and integration of multi‑institutional open‑repository computer tomography datasets for deep learning analysis. Experimental and Therapeutic Medicine, 20, 78. https://doi.org/10.3892/etm.2020.9210
MLA
Trivizakis, E., Tsiknakis, N., Vassalou, E. E., Papadakis, G. Z., Spandidos, D. A., Sarigiannis, D., Tsatsakis, A., Papanikolaou, N., Karantanas, A. H., Marias, K."Advancing Covid‑19 differentiation with a robust preprocessing and integration of multi‑institutional open‑repository computer tomography datasets for deep learning analysis". Experimental and Therapeutic Medicine 20.5 (2020): 78.
Chicago
Trivizakis, E., Tsiknakis, N., Vassalou, E. E., Papadakis, G. Z., Spandidos, D. A., Sarigiannis, D., Tsatsakis, A., Papanikolaou, N., Karantanas, A. H., Marias, K."Advancing Covid‑19 differentiation with a robust preprocessing and integration of multi‑institutional open‑repository computer tomography datasets for deep learning analysis". Experimental and Therapeutic Medicine 20, no. 5 (2020): 78. https://doi.org/10.3892/etm.2020.9210
Copy and paste a formatted citation
x
Spandidos Publications style
Trivizakis E, Tsiknakis N, Vassalou EE, Papadakis GZ, Spandidos DA, Sarigiannis D, Tsatsakis A, Papanikolaou N, Karantanas AH, Marias K, Marias K, et al: Advancing Covid‑19 differentiation with a robust preprocessing and integration of multi‑institutional open‑repository computer tomography datasets for deep learning analysis. Exp Ther Med 20: 78, 2020.
APA
Trivizakis, E., Tsiknakis, N., Vassalou, E.E., Papadakis, G.Z., Spandidos, D.A., Sarigiannis, D. ... Marias, K. (2020). Advancing Covid‑19 differentiation with a robust preprocessing and integration of multi‑institutional open‑repository computer tomography datasets for deep learning analysis. Experimental and Therapeutic Medicine, 20, 78. https://doi.org/10.3892/etm.2020.9210
MLA
Trivizakis, E., Tsiknakis, N., Vassalou, E. E., Papadakis, G. Z., Spandidos, D. A., Sarigiannis, D., Tsatsakis, A., Papanikolaou, N., Karantanas, A. H., Marias, K."Advancing Covid‑19 differentiation with a robust preprocessing and integration of multi‑institutional open‑repository computer tomography datasets for deep learning analysis". Experimental and Therapeutic Medicine 20.5 (2020): 78.
Chicago
Trivizakis, E., Tsiknakis, N., Vassalou, E. E., Papadakis, G. Z., Spandidos, D. A., Sarigiannis, D., Tsatsakis, A., Papanikolaou, N., Karantanas, A. H., Marias, K."Advancing Covid‑19 differentiation with a robust preprocessing and integration of multi‑institutional open‑repository computer tomography datasets for deep learning analysis". Experimental and Therapeutic Medicine 20, no. 5 (2020): 78. https://doi.org/10.3892/etm.2020.9210
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team