|
1
|
Benza RL, Miller DP, Barst RJ, Badesch DB,
Frost AE and McGoon MD: An evaluation of long-term survival from
time of diagnosis in pulmonary arterial hypertension from the
REVEAL Registry. Chest. 142:448–456. 2012.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Hoeper MM, Humbert M, Souza R, Idrees M,
Kawut SM, Sliwa-Hahnle K, Jing ZC and Gibbs JS: A global view of
pulmonary hypertension. Lancet Respir Med. 4:306–322.
2016.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Hoeper MM, Simon R and Gibbs J: The
changing landscape of pulmonary arterial hypertension and
implications for patient care. Eur Respir Rev. 23:450–457.
2014.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Hoeper MM, Ghofrani HA, Grunig E, Klose H,
Olschewski H and Rosenkranz S: Pulmonary hypertension. Dtsch
Arztebl Int. 114:73–84. 2017.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Luna RCP, de Oliveira Y, Lisboa JVC,
Chaves TR, de Araújo TAM, de Sousa EE, Miranda Neto M, Pirola L,
Braga VA and de Brito Alves JL: Insights on the epigenetic
mechanisms underlying pulmonary arterial hypertension. Braz J Med
Biol Res. 51(e7437)2018.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Zhao L, Oliver E, Maratou K, Atanur SS,
Dubois OD, Cotroneo E, Chen CN, Wang L, Arce C, Chabosseau PL, et
al: The zinc transporter ZIP12 regulates the pulmonary vascular
response to chronic hypoxia. Nature. 524:356–360. 2015.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Savai R, Al-Tamari HM, Sedding D,
Kojonazarov B, Muecke C, Teske R, Capecchi MR, Weissmann N,
Grimminger F, Seeger W, et al: Pro-proliferative and inflammatory
signaling converge on FoxO1 transcription factor in pulmonary
hypertension. Nat Med. 20:1289–1300. 2014.PubMed/NCBI View
Article : Google Scholar
|
|
8
|
Shintani M, Yagi H, Nakayama T, Saji T and
Matsuoka R: A new nonsense mutation of SMAD8 associated with
pulmonary arterial hypertension. J Med Genet. 46:331–337.
2009.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Pullamsetti SS, Berghausen EM, Dabral S,
Tretyn A, Butrous E, Savai R, Butrous G, Dahal BK, Brandes RP,
Ghofrani HA, et al: Role of Src tyrosine kinases in experimental
pulmonary hypertension. Arterioscler Thromb Vasc Biol.
32:1354–1365. 2012.PubMed/NCBI View Article : Google Scholar
|
|
10
|
de-Miguel-Díez J, López-de-Andrés A,
Hernandez-Barrera V, Jimenez-Trujillo I, de-Miguel-Yanes JM,
Mendez-Bailón M and Jimenez-Garcia R: National trends and outcomes
of hospitalizations for pulmonary hypertension in Spain
(2001-2014). Int J Cardiol. 263:125–131. 2018.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Anand V, Roy SS, Archer SL, Weir EK, Garg
SK, Duval S and Thenappan T: Trends and outcomes of pulmonary
arterial hypertension-related hospitalizations in the United
States: Analysis of the nationwide inpatient sample database from
2001 through 2012. JAMA Cardiol. 1:1021–1029. 2016.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Hon CC, Ramilowski JA, Harshbarger J,
Bertin N, Rackham OJ, Gough J, Denisenko E, Schmeier S, Poulsen TM,
Severin J, et al: An atlas of human long non-coding RNAs with
accurate 5'ends. Nature. 543:199–204. 2017.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Zhang K, Shi ZM, Chang YN, Hu ZM, Qi HX
and Hong W: The ways of action of long non-coding RNAs in cytoplasm
and nucleus. Gene. 547:1–9. 2014.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Ezkurdia I, Juan D, Rodriguez JM, Frankish
A, Diekhans M, Harrow J, Vazquez J, Valencia A and Tress ML:
Multiple evidence strands suggest that there may be as few as
19,000 human protein-coding genes. Hum Mol Genet. 23:5866–5878.
2014.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Djebali S, Davis CA, Merkel A, Dobin A,
Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F,
et al: Landscape of transcription in human cells. Nature.
489:101–108. 2012.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Bunch H: Gene regulation of mammalian long
non-coding RNA. Mol Genet Genomics. 293:1–15. 2018.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Atianand MK, Caffrey DR and Fitzgerald KA:
Immunobiology of long noncoding RNAs. Annu Rev Immunol. 35:177–198.
2017.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Sun W, Yang Y, Xu C and Guo J: Regulatory
mechanisms of long noncoding RNAs on gene expression in cancers.
Cancer Genet. 216-217:105–110. 2017.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Yoon JH, Abdelmohsen K and Gorospe M:
Functional interactions among microRNAs and long noncoding RNAs.
Semin Cell Dev Biol. 34:9–14. 2014.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Ferdin J, Nishida N, Wu X, Nicoloso MS,
Shah MY, Devlin C, Ling H, Shimizu M, Kumar K, Cortez MA, et al:
HINCUTs in cancer: Hypoxia-induced noncoding ultraconserved
transcripts. Cell Death Differ. 20:1675–1687. 2013.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Bell RD, Long X, Lin M, Bergmann JH, Nanda
V, Cowan SL, Zhou Q, Han Y, Spector DL, Zheng D and Miano JM:
Identification and initial functional characterization of a human
vascular cell-enriched long noncoding RNA. Arterioscler Thromb Vasc
Biol. 34:1249–1259. 2014.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Huarte M: The emerging role of lncRNAs in
cancer. Nat Med. 21:1253–1261. 2015.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Shi X, Sun M, Liu H, Yao Y, Kong R, Chen F
and Song Y: A critical role for the long non-coding RNA GAS5 in
proliferation and apoptosis in non-small-cell lung cancer. Mol
Carcinog. 54 (Suppl 1):E1–E12. 2015.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Zhang Y, Cheng HP, Bao TP, Wang XG and
Tian ZF: Expression of long non-coding RNA NANCI in lung tissues of
neonatal mice with hyperoxia-induced lung injury and its regulatory
effect on NKX2.1. Zhongguo Dang Dai Er Ke Za Zhi. 19:215–221.
2017.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
|
25
|
Gong J, Chen Z, Chen Y, Lv H, Lu H, Yan F,
Li L, Zhang W and Shi J: Long non-coding RNA CASC2 suppresses
pulmonary artery smooth muscle cell proliferation and phenotypic
switch in hypoxia-induced pulmonary hypertension. Respir Res.
20(53)2019.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Liu Y, Sun Z, Zhu J, Xiao B, Dong J and Li
X: LncRNA-TCONS_00034812 in cell proliferation and apoptosis of
pulmonary artery smooth muscle cells and its mechanism. J Cell
Physiol. 233:4801–4814. 2018.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Lund E, Guttinger S, Calado A, Dahlberg JE
and Kutay U: Nuclear export of microRNA precursors. Science.
303:95–98. 2004.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Su Z, Zhi X, Zhang Q, Yang L, Xu H and Xu
Z: LncRNA H19 functions as a competing endogenous RNA to regulate
AQP3 expression by sponging miR-874 in the intestinal barrier. FEBS
Lett. 590:1354–1364. 2016.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Lim LP, Lau NC, Garrett-Engele P, Grimson
A, Schelter JM, Castle J, Bartel DP, Linsley PS and Johnson JM:
Microarray analysis shows that some microRNAs downregulate large
numbers of target mRNAs. Nature. 433:769–773. 2005.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Rothman AM, Arnold ND, Pickworth JA,
Iremonger J, Ciuclan L, Allen RM, Guth-Gundel S, Southwood M,
Morrell NW, Thomas M, et al: MicroRNA-140-5p and SMURF1 regulate
pulmonary arterial hypertension. J Clin Invest. 126:2495–2508.
2016.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Caruso P, Dempsie Y, Stevens HC, McDonald
RA, Long L, Lu R, White K, Mair KM, McClure JD, Southwood M, et al:
A role for miR-145 in pulmonary arterial hypertension: Evidence
from mouse models and patient samples. Circ Res. 111:290–300.
2012.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Schlosser K, White RJ and Stewart DJ:
miR-26a linked to pulmonary hypertension by global assessment of
circulating extracellular microRNAs. Am J Respir Crit Care Med.
188:1472–1475. 2013.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Lennox KA and Behlke MA: Cellular
localization of long non-coding RNAs affects silencing by RNAi more
than by antisense oligonucleotides. Nucleic Acids Res. 44:863–877.
2016.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Ballantyne MD, McDonald RA and Baker AH:
lncRNA/MicroRNA interactions in the vasculature. Clin Pharmacol
Ther. 99:494–501. 2016.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Al-Rugeebah A, Alanazi M and Parine NR:
MEG3: An oncogenic long non-coding RNA in different cancers. Pathol
Oncol Res. 25:859–874. 2019.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Zhao Y, Zhu Z, Shi S, Wang J and Li N:
Long non-coding RNA MEG3 regulates migration and invasion of lung
cancer stem cells via miR-650/SLC34A2 axis. Biomed Pharmacother.
120(109457)2019.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Guo W, Dong Z, Liu S, Qiao Y, Kuang G, Guo
Y, Shen S and Liang J: Promoter hypermethylation-mediated
downregulation of miR-770 and its host gene MEG3, a long non-coding
RNA, in the development of gastric cardia adenocarcinoma. Mol
Carcinog. 56:1924–1934. 2017.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Xia Y, He Z, Liu B, Wang P and Chen Y:
Downregulation of Meg3 enhances cisplatin resistance of lung cancer
cells through activation of the WNT/β-catenin signaling pathway.
Mol Med Rep. 12:4530–4537. 2015.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Zhou Y, Zhang X and Klibanski A: MEG3
noncoding RNA: A tumor suppressor. J Mol Endocrinol. 48:R45–R53.
2012.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Piccoli MT, Gupta SK, Viereck J,
Foinquinos A, Samolovac S, Kramer FL, Garg A, Remke J, Zimmer K,
Batkai S and Thum T: Inhibition of the cardiac fibroblast-enriched
lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction.
Circ Res. 121:575–583. 2017.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Michalik KM, You X, Manavski Y,
Doddaballapur A, Zörnig M, Braun T, John D, Ponomareva Y, Chen W,
Uchida S, et al: Long noncoding RNA MALAT1 regulates endothelial
cell function and vessel growth. Circ Res. 114:1389–1397.
2014.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Xing Y, Zheng X, Fu Y, Qi J, Li M, Ma M,
Wang S, Li S and Zhu D: Long noncoding RNA-maternally expressed
gene 3 contributes to hypoxic pulmonary hypertension. Mol Ther.
27:2166–2181. 2019.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Zhu B, Gong Y, Yan G, Wang D, Qiao Y, Wang
Q, Liu B, Hou J, Li R and Tang C: Down-regulation of lncRNA MEG3
promotes hypoxia-induced human pulmonary artery smooth muscle cell
proliferation and migration via repressing PTEN by sponging miR-21.
Biochem Biophys Res Commun. 495:2125–2132. 2018.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Sun Z, Nie X, Sun S, Dong S, Yuan C, Li Y,
Xiao B, Jie D and Liu Y: Long non-coding RNA MEG3 downregulation
triggers human pulmonary artery smooth muscle cell proliferation
and migration via the p53 signaling pathway. Cell Physiol Biochem.
42:2569–2581. 2017.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Duboule D: The rise and fall of Hox gene
clusters. Development. 134:2549–2560. 2007.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Gong WJ, Yin JY, Li XP, Fang C, Xiao D,
Zhang W, Zhou HH, Li X and Liu ZQ: Association of
well-characterized lung cancer lncRNA polymorphisms with lung
cancer susceptibility and platinum-based chemotherapy response.
Tumour Biol. 37:8349–8358. 2016.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Zhang H, Liu Y, Yan L, Wang S, Zhang M, Ma
C, Zheng X, Chen H and Zhu D: Long noncoding RNA Hoxaas3
contributes to hypoxia-induced pulmonary artery smooth muscle cell
proliferation. Cardiovasc Res. 115:647–657. 2019.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Golpon HA, Geraci MW, Moore MD, Miller HL,
Miller GJ, Tuder RM and Voelkel NF: HOX genes in human lung:
Altered expression in primary pulmonary hypertension and emphysema.
Am J Pathol. 158:955–966. 2001.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Leisegang MS, Fork C, Josipovic I, Richter
FM, Preussner J, Hu J, Miller MJ, Epah J, Hofmann P, Günther S, et
al: Long noncoding RNA MANTIS facilitates endothelial angiogenic
function. Circulation. 136:65–79. 2017.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Hathaway CA, Heistad DD, Piegors DJ and
Miller FJ Jr: Regression of atherosclerosis in monkeys reduces
vascular superoxide levels. Circ Res. 90:277–283. 2002.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Katsushima K, Natsume A, Ohka F, Shinjo K,
Hatanaka A, Ichimura N, Sato S, Takahashi S, Kimura H, Totoki Y, et
al: Targeting the Notch-regulated non-coding RNA TUG1 for glioma
treatment. Nat Commun. 7(13616)2016.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Li FP, Lin DQ and Gao LY: LncRNA TUG1
promotes proliferation of vascular smooth muscle cell and
atherosclerosis through regulating miRNA-21/PTEN axis. Eur Rev Med
Pharmacol Sci. 22:7439–7447. 2018.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Xie C, Chen B, Wu B, Guo J and Cao Y:
LncRNA TUG1 promotes cell proliferation and suppresses apoptosis in
osteosarcoma by regulating miR-212-3p/FOXA1 axis. Biomed
Pharmacother. 97:1645–1653. 2018.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Jiang L, Wang W, Li G, Sun C, Ren Z, Sheng
H, Gao H, Wang C and Yu H: High TUG1 expression is associated with
chemotherapy resistance and poor prognosis in esophageal squamous
cell carcinoma. Cancer Chemother Pharmacol. 78:333–339.
2016.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Cai H, Liu X, Zheng J, Xue Y, Ma J, Li Z,
Xi Z, Li Z, Bao M and Liu Y: Long non-coding RNA taurine
upregulated 1 enhances tumor-induced angiogenesis through
inhibiting microRNA-299 in human glioblastoma. Oncogene.
36:318–331. 2017.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Yang L, Liang H, Shen L, Guan Z and Meng
X: LncRNA Tug1 involves in the pulmonary vascular remodeling in
mice with hypoxic pulmonary hypertension via the
microRNA-374c-mediated Foxc1. Life Sci. 237(116769)2019.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Zhang J, Silva T, Yarovinsky T, Manes TD,
Tavakoli S, Nie L, Tellides G, Pober JS, Bender JR and Sadeghi MM:
VEGF blockade inhibits lymphocyte recruitment and ameliorates
immune-mediated vascular remodeling. Circ Res. 107:408–417.
2010.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Wang S, Cao W, Gao S, Nie X, Zheng X, Xing
Y, Chen Y, Bao H and Zhu D: TUG1 regulates pulmonary arterial
smooth muscle cell proliferation in pulmonary arterial
hypertension. Can J Cardiol. 35:1534–1545. 2019.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Ren S, Liu Y, Xu W, Sun Y, Lu J, Wang F,
Wei M, Shen J, Hou J, Gao X, et al: Long noncoding RNA MALAT-1 is a
new potential therapeutic target for castration resistant prostate
cancer. J Urol. 190:2278–2287. 2013.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Qi Y, Ooi HS, Wu J, Chen J, Zhang X, Tan
S, Yu Q, Li YY, Kang Y, Li H, et al: MALAT1 long ncRNA promotes
gastric cancer metastasis by suppressing PCDH10. Oncotarget.
7:12693–12703. 2016.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Brock M, Schuoler C, Leuenberger C,
Bühlmann C, Haider TJ, Vogel J, Ulrich S, Gassmann M, Kohler M and
Huber LC: Analysis of hypoxia-induced noncoding RNAs reveals
metastasis-associated lung adenocarcinoma transcript 1 as an
important regulator of vascular smooth muscle cell proliferation.
Exp Biol Med (Maywood). 242:487–496. 2017.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Potente M, Gerhardt H and Carmeliet P:
Basic and therapeutic aspects of angiogenesis. Cell. 146:873–887.
2011.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Wang D, Xu H, Wu B, Jiang S, Pan H, Wang R
and Chen J: Long noncoding RNA MALAT1 sponges miR1243p.1/KLF5 to
promote pulmonary vascular remodeling and cell cycle progression of
pulmonary artery hypertension. Int J Mol Med. 44:871–884.
2019.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Zhuo Y, Zeng Q, Zhang P, Li G, Xie Q and
Cheng Y: Functional polymorphism of lncRNA MALAT1 contributes to
pulmonary arterial hypertension susceptibility in Chinese people.
Clin Chem Lab Med. 55:38–46. 2017.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Xiaoguang Z, Meirong L, Jingjing Z,
Ruishen Z, Qing Z and Xiaofeng T: Long noncoding RNA CPS1-IT1
suppresses cell proliferation and metastasis in human lung cancer.
Oncol Res. 25:373–380. 2017.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Zhang Z, Li Z, Wang Y, Wei L and Chen H:
Overexpressed long noncoding RNA CPS1-IT alleviates pulmonary
arterial hypertension in obstructive sleep apnea by reducing
interleukin-1beta expression via HIF1 transcriptional activity. J
Cell Physiol. 234:19715–19727. 2019.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Yu X, Zheng H, Tse G, Zhang L and Wu WKK:
CASC2: An emerging tumour-suppressing long noncoding RNA in human
cancers and melanoma. Cell Prolif. 51(e12506)2018.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Jie W, Guo J, Shen Z, Wang X, Zheng S,
Wang G and Ao Q: Contribution of myocardin in the hypoxia-induced
phenotypic switching of rat pulmonary arterial smooth muscle cells.
Exp Mol Pathol. 89:301–306. 2010.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Zhang W and Liu HT: MAPK signal pathways
in the regulation of cell proliferation in mammalian cells. Cell
Res. 12:9–18. 2002.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Ma C, Liu Y, Wang Y, Zhang C, Yao H, Ma J,
Zhang L, Zhang D, Shen T and Zhu D: Hypoxia activates 15-PGDH and
its metabolite 15-KETE to promote pulmonary artery endothelial
cells proliferation via ERK1/2 signalling. Br J Pharmacol.
171:3352–3363. 2014.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Gibb EA, Brown CJ and Lam WL: The
functional role of long non-coding RNA in human carcinomas. Mol
Cancer. 10(38)2011.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Matouk IJ, Halle D, Gilon M and Hochberg
A: The non-coding RNAs of the H19-IGF2 imprinted loci: A focus on
biological roles and therapeutic potential in lung cancer. J Transl
Med. 13(113)2015.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Matouk IJ, Mezan S, Mizrahi A, Ohana P,
Abu-Lail R, Fellig Y, Degroot N, Galun E and Hochberg A: The
oncofetal H19 RNA connection: Hypoxia, p53 and cancer. Biochim
Biophys Acta. 1803:443–451. 2010.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Su H, Xu X, Yan C, Shi Y, Hu Y, Dong L,
Ying S, Ying K and Zhang R: LncRNA H19 promotes the proliferation
of pulmonary artery smooth muscle cells through AT1R via sponging
let-7b in monocrotaline-induced pulmonary arterial hypertension.
Respir Res. 19(254)2018.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Jin H, Wang Y, Zhou L, Liu L, Zhang P,
Deng W and Yuan Y: Melatonin attenuates hypoxic pulmonary
hypertension by inhibiting the inflammation and the proliferation
of pulmonary arterial smooth muscle cells. J Pineal Res.
57:442–450. 2014.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Wang R, Zhou S, Wu P, Li M, Ding X, Sun L,
Xu X, Zhou X, Zhou L, Cao C and Fei G: Identifying involvement of
H19-miR-675-3p-IGF1R and H19-miR-200a-PDCD4 in treating pulmonary
hypertension with melatonin. Mol Ther Nucleic Acids. 13:44–54.
2018.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Wang ZQ, He CY, Hu L, Shi HP, Li JF, Gu
QL, Su LP, Liu BY, Li C and Zhu Z: Long noncoding RNA UCA1 promotes
tumour metastasis by inducing GRK2 degradation in gastric cancer.
Cancer Lett. 408:10–21. 2017.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Liu X, Huang Z, Qian W, Zhang Q and Sun J:
Silence of lncRNA UCA1 rescues drug resistance of cisplatin to
non-small-cell lung cancer cells. J Cell Biochem. 120:9243–9249.
2019.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Zhu TT, Sun RL, Yin YL, Quan JP, Song P,
Xu J, Zhang MX and Li P: Long noncoding RNA UCA1 promotes the
proliferation of hypoxic human pulmonary artery smooth muscle
cells. Pflugers Arch. 471:347–355. 2019.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Xing YN, Yang X, Xu XY, Zheng Y, Xu HM,
Takano Y and Zheng H: The altered expression of ING5 protein is
involved in gastric carcinogenesis and subsequent progression. Hum
Pathol. 42:25–35. 2011.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Leung A, Trac C, Jin W, Lanting L, Akbany
A, Sætrom P, Schones DE and Natarajan R: Novel long noncoding RNAs
are regulated by angiotensin II in vascular smooth muscle cells.
Circ Res. 113:266–278. 2013.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Wang H, Qin R and Cheng Y: LncRNA-Ang362
promotes pulmonary arterial hypertension by regulating miR-221 and
miR-222. Shock. 53:723–729. 2019.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Heldin CH and Westermark B: Mechanism of
action and in vivo role of platelet-derived growth factor. Physiol
Rev. 79:1283–1316. 1999.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Chen J, Guo J, Cui X, Dai Y, Tang Z, Qu J,
Raj JU, Hu Q and Gou D: The long noncoding RNA LnRPT is regulated
by PDGF-BB and modulates the proliferation of pulmonary artery
smooth muscle cells. Am J Respir Cell Mol Biol. 58:181–193.
2018.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Baeten JT and Lilly B: Differential
regulation of NOTCH2 and NOTCH3 contribute to their unique
functions in vascular smooth muscle cells. J Biol Chem.
290:16226–16237. 2015.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Li X, Zhang X, Leathers R, Makino A, Huang
C, Parsa P, Macias J, Yuan JX, Jamieson SW and Thistlethwaite PA:
Notch3 signaling promotes the development of pulmonary arterial
hypertension. Nat Med. 15:1289–1297. 2009.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Arunachalam G, Lakshmanan AP, Samuel SM,
Triggle CR and Ding H: Molecular interplay between microRNA-34a and
Sirtuin1 in hyperglycemia-mediated impaired angiogenesis in
endothelial cells: Effects of metformin. J Pharmacol Exp Ther.
356:314–323. 2016.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Dean A, Nilsen M, Loughlin L, Salt IP and
MacLean MR: Metformin reverses development of pulmonary
hypertension via aromatase inhibition. Hypertension. 68:446–454.
2016.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Sun Z, Liu Y, Yu F, Xu Y, Yanli L and Liu
N: Long non-coding RNA and mRNA profile analysis of metformin to
reverse the pulmonary hypertension vascular remodeling induced by
monocrotaline. Biomed Pharmacother. 115(108933)2019.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Lino Cardenas CL, Kessinger CW, Cheng Y,
MacDonald C, MacGillivray T, Ghoshhajra B, Huleihel L, Nuri S, Yeri
AS, Jaffer FA, et al: An HDAC9-MALAT1-BRG1 complex mediates smooth
muscle dysfunction in thoracic aortic aneurysm. Nat Commun.
9(1009)2018.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Ranchoux B, Antigny F, Rucker-Martin C,
Hautefort A, Péchoux C, Bogaard HJ, Dorfmüller P, Remy S, Lecerf F,
Planté S, et al: Endothelial-to-mesenchymal transition in pulmonary
hypertension. Circulation. 131:1006–1018. 2015.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Rabinovitch M, Guignabert C, Humbert M and
Nicolls MR: Inflammation and immunity in the pathogenesis of
pulmonary arterial hypertension. Circ Res. 115:165–175.
2014.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Jackson R, Kroehling L, Khitun A, Bailis
W, Jarret A, York AG, Khan OM, Brewer JR, Skadow MH, Duizer C, et
al: The translation of non-canonical open reading frames controls
mucosal immunity. Nature. 564:434–438. 2018.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Li LJ, Leng RX, Fan YG, Pan HF and Ye DQ:
Translation of noncoding RNAs: Focus on lncRNAs, pri-miRNAs, and
circRNAs. Exp Cell Res. 361:1–8. 2017.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Thenappan T, Ormiston ML, Ryan JJ and
Archer SL: Pulmonary arterial hypertension: Pathogenesis and
clinical management. BMJ. 360(j5492)2018.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Schlosser K, Hanson J, Villeneuve PJ,
Dimitroulakos J, McIntyre L, Pilote L and Stewart D: Assessment of
circulating LncRNAs under physiologic and pathologic conditions in
humans reveals potential limitations as biomarkers. Sci Rep.
6(36596)2016.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Han B, Bu P, Meng X and Hou X: Microarray
profiling of long non-coding RNAs associated with idiopathic
pulmonary arterial hypertension. Exp Ther Med. 13:2657–2666.
2017.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Viereck J, Kumarswamy R, Foinquinos A,
Xiao K, Avramopoulos P, Kunz M, Dittrich M, Maetzig T, Zimmer K,
Remke J, et al: Long noncoding RNA Chast promotes cardiac
remodeling. Sci Transl Med. 8(326ra322)2016.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Mercer TR and Mattick JS: Structure and
function of long noncoding RNAs in epigenetic regulation. Nat
Struct Mol Biol. 20:300–307. 2013.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Jandl K, Thekkekara Puthenparampil H,
Marsh LM, Hoffmann J, Wilhelm J, Veith C, Sinn K, Klepetko W,
Olschewski H, Olschewski A, et al: Long non-coding RNAs influence
the transcriptome in pulmonary arterial hypertension: The role of
PAXIP1-AS1. J Pathol. 247:357–370. 2019.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Bischoff FC, Werner A, John D, Boeckel JN,
Melissari MT, Grote P, Glaser SF, Demolli S, Uchida S, Michalik KM,
et al: Identification and functional characterization of
hypoxia-induced endoplasmic reticulum stress regulating lncRNA
(HypERlnc) in pericytes. Circ Res. 121:368–375. 2017.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Wang M, Gu S, Liu Y, Yang Y, Yan J, Zhang
X, An X, Gao J, Hu X and Su P: miRNA-PDGFRB/HIF1A-lncRNA CTEPHA1
network plays important roles in the mechanism of chronic
thromboembolic pulmonary hypertension. Int Heart J. 60:924–937.
2019.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Gu S, Li G, Zhang X, Yan J, Gao J, An X,
Liu Y and Su P: Aberrant expression of long noncoding RNAs in
chronic thromboembolic pulmonary hypertension. Mol Med Rep.
11:2631–2643. 2015.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Josipovic I, Fork C, Preussner J, Prior
KK, Iloska D, Vasconez AE, Labocha S, Angioni C, Thomas D,
Ferreirós N, et al: PAFAH1B1 and the lncRNA NONHSAT073641 maintain
an angiogenic phenotype in human endothelial cells. Acta Physiol
(Oxf). 218:13–27. 2016.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Voellenkle C, Garcia-Manteiga JM, Pedrotti
S, Perfetti A, De Toma I, Da Silva D, Maimone B, Greco S, Fasanaro
P, Creo P, et al: Implication of Long noncoding RNAs in the
endothelial cell response to hypoxia revealed by RNA-sequencing.
Sci Rep. 6(24141)2016.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Su Q, Sun Y, Ye Z, Yang H and Li L:
Oxidized low density lipoprotein induces endothelial-to-mesenchymal
transition by stabilizing Snail in human aortic endothelial cells.
Biomed Pharmacother. 106:1720–1726. 2018.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Neumann P, Jaé N, Knau A, Glaser SF,
Fouani Y, Rossbach O, Krüger M, John D, Bindereif A, Grote P, et
al: The lncRNA GATA6-AS epigenetically regulates endothelial gene
expression via interaction with LOXL2. Nat Commun.
9(237)2018.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Lin R, Roychowdhury-Saha M, Black C, Watt
AT, Marcusson EG, Freier SM and Edgington TS: Control of RNA
processing by a large non-coding RNA over-expressed in carcinomas.
FEBS Lett. 585:671–676. 2011.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Rivero Puente A, Asín Marcotegui J,
Reparaz B and Achutegui G: Malignant nephroangiosclerosis. Rev Clin
Esp. 140:251–255. 1976.PubMed/NCBI(In Spanish).
|