|
1
|
Cui J, Li F and Shi ZL: Origin and
evolution of pathogenic coronaviruses. Nat Rev Microbiol.
17:181–192. 2019.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Hussain A, Bhowmik B and do Vale Moreira
NC: COVID-19 and diabetes: Knowledge in progress. Diabetes Res Clin
Pract. 162(108142)2020.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Gandhi RT, Lynch JB and Del Rio C: Mild or
moderate covid-19. N Engl J Med: Apr 24, 2020 (Epub ahead of
print). doi: 10.1056/NEJMcp2009249.
|
|
4
|
Ryan PM and Caplice NM: Is adipose tissue
a reservoir for viral spread, immune activation and cytokine
amplification in Coronavirus disease 2019. Obesity (Silver Spring).
28:1191–1194. 2020.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Hodgson K, Morris J, Bridson T, Govan B,
Rush C and Ketheesan N: Immunological mechanisms contributing to
the double burden of diabetes and intracellular bacterial
infections. Immunology. 144:171–185. 2015.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Allard R, Leclerc P, Tremblay C and
Tannenbaum TN: Diabetes and the severity of pandemic influenza A
(H1N1) infection. Diabetes Care. 33:1491–1493. 2010.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Hoffmann M, Kleine-Weber H, Schroeder S,
Kruger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH,
Nitsche A, et al: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2
and is blocked by a clinically proven protease inhibitor. Cell.
181:271–280.e8. 2020.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Docea AO, Tsatsakis A, Albulescu D,
Cristea O, Zlatian O, Vinceti M, Moschos SA, Tsoukalas D, Goumenou
M, Drakoulis N, et al: A new threat from an old enemy: Reemergence
of coronavirus (Review). Int J Mol Med. 45:1631–1643.
2020.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Saeedi P, Petersohn I, Salpea P, Malanda
B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA,
Ogurtsova K, et al: Global and regional diabetes prevalence
estimates for 2019 and projections for 2030 and 2045: Results from
the International Diabetes Federation Diabetes Atlas, 9(th)
edition. Diabetes Res Clin Pract. 157(107843)2019.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Guo W, Li M, Dong Y, Zhou H, Zhang Z, Tian
C, Qin R, Wang H, Shen Y, Du K, et al: Diabetes is a risk factor
for the progression and prognosis of COVID-19. Diabetes Metab Res
Rev: Mar 31, 2020 (Epub ahead of print). doi:
10.1002/dmrr.3319.
|
|
11
|
Odegaard JI and Chawla A: Connecting type
1 and type 2 diabetes through innate immunity. Cold Spring Harb
Perspect Med. 2(a007724)2012.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Wang A, Zhao W, Xu Z and Gu J: Timely
blood glucose management for the outbreak of 2019 novel coronavirus
disease (COVID-19) is urgently needed. Diabetes Res Clin Pract.
162(108118)2020.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Lovren F, Pan Y, Quan A, Teoh H, Wang G,
Shukla PC, Levitt KS, Oudit GY, Al-Omran M, Stewart DJ, et al:
Angiotensin converting enzyme-2 confers endothelial protection and
attenuates atherosclerosis. Am J Physiol Heart Circ Physiol.
295:H1377–H1384. 2008.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Tisoncik JR, Korth MJ, Simmons CP, Farrar
J, Martin TR and Katze MG: Into the eye of the cytokine storm.
Microbiol Mol Biol Rev. 76:16–32. 2012.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Kern L, Mittenbuhler MJ, Vesting AJ,
Ostermann AL, Wunderlich CM and Wunderlich FT: Obesity-induced TNFα
and IL-6 signaling: The missing link between obesity and
inflammation-driven liver and colorectal cancers. Cancers (Basel).
11(24)2018.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Park WY, Goodman RB, Steinberg KP,
Ruzinski JT, Radella F, II Park DR, Pugin J, Skerrett SJ, Hudson LD
and Martin TR: Cytokine balance in the lungs of patients with acute
respiratory distress syndrome. Am J Respir Crit Care Med.
164:1896–1903. 2001.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Yiu HH, Graham AL and Stengel RF: Dynamics
of a cytokine storm. PLoS One. 7(e45027)2012.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Ruan Q, Yang K, Wang W, Jiang L and Song
J: Clinical predictors of mortality due to COVID-19 based on an
analysis of data of 150 patients from Wuhan, China. Intensive Care
Med. 46:846–848. 2020.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Li W, Moore MJ, Vasilieva N, Sui J, Wong
SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough
TC, et al: Angiotensin-converting enzyme 2 is a functional receptor
for the SARS coronavirus. Nature. 426:450–454. 2003.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Raj VS, Mou H, Smits SL, Dekkers DH,
Muller MA, Dijkman R, Muth D, Demmers JA, Zaki A, Fouchier RA, et
al: Dipeptidyl peptidase 4 is a functional receptor for the
emerging human coronavirus-EMC. Nature. 495:251–254.
2013.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Liu F, Long X, Zhang B, Zhang W, Chen X
and Zhang Z: ACE2 expression in pancreas may cause pancreatic
damage after SARS-CoV-2 infection. Clin Gastroenterol Hepatol.
18:2128–2130.e2. 2020.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Yousif MH, Dhaunsi GS, Makki BM, Qabazard
BA, Akhtar S and Benter IF: Characterization of Angiotensin-(1-7)
effects on the cardiovascular system in an experimental model of
type-1 diabetes. Pharmacol Res. 66:269–275. 2012.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Zhang C, Zhao YX, Zhang YH, Zhu L, Deng
BP, Zhou ZL, Li SY, Lu XT, Song LL, Lei XM, et al:
Angiotensin-converting enzyme 2 attenuates atherosclerotic lesions
by targeting vascular cells. Proc Natl Acad Sci USA.
107:15886–15891. 2010.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Burns KD, Lytvyn Y, Mahmud FH, Daneman D,
Deda L, Dunger DB, Deanfield J, Dalton RN, Elia Y, Har R, et al:
The relationship between urinary renin-angiotensin system markers,
renal function, and blood pressure in adolescents with type 1
diabetes. Am J Physiol Renal Physiol. 312:F335–F342.
2017.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Gutta S, Grobe N, Kumbaji M, Osman H,
Saklayen M, Li G and Elased KM: Increased urinary angiotensin
converting enzyme 2 and neprilysin in patients with type 2
diabetes. Am J Physiol Renal Physiol. 315:F263–F274.
2018.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Wong TP, Ho KY, Ng EK, Debnam ES and Leung
PS: Upregulation of ACE2-ANG-(1-7)-Mas axis in jejunal enterocytes
of type 1 diabetic rats: Implications for glucose transport. Am J
Physiol Endocrinol Metab. 303:E669–E681. 2012.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Bornstein SR, Rubino F, Khunti K, Mingrone
G, Hopkins D, Birkenfeld AL, Boehm B, Amiel S, Holt RI, Skyler JS,
et al: Practical recommendations for the management of diabetes in
patients with COVID-19. Lancet Diabetes Endocrinol. 8:546–550.
2020.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Bindom SM and Lazartigues E: The sweeter
side of ACE2: Physiological evidence for a role in diabetes. Mol
Cell Endocrinol. 302:193–202. 2009.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Maddaloni E and Buzzetti R: Covid-19 and
diabetes mellitus: Unveiling the interaction of two pandemics.
Diabetes Metab Res Rev: Mar 31, 2020 (Epub ahead of print). doi:
10.1002/dmrr.3321.
|
|
30
|
Iwata-Yoshikawa N, Okamura T, Shimizu Y,
Hasegawa H, Takeda M and Nagata N: TMPRSS2 contributes to virus
spread and immunopathology in the airways of murine models after
coronavirus infection. J Virol. 93:e01815–e1818. 2019.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Limburg H, Harbig A, Bestle D, Stein DA,
Moulton HM, Jaeger J, Janga H, Hardes K, Koepke J, Schulte L, et
al: TMPRSS2 is the major activating protease of influenza a virus
in primary human airway cells and influenza B virus in human type
ii pneumocytes. J Virol. 93:e00649–19. 2019.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Iacobellis G: COVID-19 and diabetes: Can
DPP4 inhibition play a role? Diabetes Res Clin Pract.
162(108125)2020.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Ceriello A, Stoian AP and Rizzo M:
COVID-19 and diabetes management: What should be considered?
Diabetes Res Clin Pract. 163(108151)2020.PubMed/NCBI View Article : Google Scholar
|
|
34
|
van der Zanden R, de Vries F, Lalmohamed
A, Driessen JH, de Boer A, Rohde G, Neef C and den Heijer C: Use of
dipeptidyl-peptidase-4 inhibitors and the risk of pneumonia: A
population-based cohort study. PLoS One.
10(e0139367)2015.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Gooßen K and Gräber S: Longer term safety
of dipeptidyl peptidase-4 inhibitors in patients with type 2
diabetes mellitus: Systematic review and meta-analysis. Diabetes
Obes Metab. 14:1061–1072. 2012.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Green JB, Bethel MA, Armstrong PW, Buse
JB, Engel SS, Garg J, Josse R, Kaufman KD, Koglin J, Korn S, et al:
Effect of sitagliptin on cardiovascular outcomes in type 2
diabetes. N Engl J Med. 373:232–242. 2015.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Rosenstock J, Perkovic V, Johansen OE,
Cooper ME, Kahn SE, Marx N, Alexander JH, Pencina M, Toto RD,
Wanner C, et al: Effect of Linagliptin vs placebo on major
cardiovascular events in adults with type 2 diabetes and high
cardiovascular and renal risk: The CARMELINA Randomized Clinical
Trial. JAMA. 321:69–79. 2019.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Scirica BM, Bhatt DL, Braunwald E, Steg
PG, Davidson J, Hirshberg B, Ohman P, Frederich R, Wiviott SD,
Hoffman EB, et al: Saxagliptin and cardiovascular outcomes in
patients with type 2 diabetes mellitus. N Engl J Med.
369:1317–1326. 2013.PubMed/NCBI View Article : Google Scholar
|
|
39
|
White WB, Cannon CP, Heller SR, Nissen SE,
Bergenstal RM, Bakris GL, Perez AT, Fleck PR, Mehta CR, Kupfer S,
et al: Alogliptin after acute coronary syndrome in patients with
type 2 diabetes. N Engl J Med. 369:1327–1335. 2013.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Carboni E and Carta AR: Can pioglitazone
be potentially useful therapeutically in treating patients with
COVID-19? Med Hypotheses. 140(109776)2020.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Ferrario CM, Jessup J, Chappell MC,
Averill DB, Brosnihan KB, Tallant EA, Diz DI and Gallagher PE:
Effect of angiotensin- converting enzyme inhibition and angiotensin
II receptor blockers on cardiac angiotensin-converting enzyme 2.
Circulation. 111:2605–2610. 2005.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Wysocki J, Ye M, Soler MJ, Gurley SB, Xiao
HD, Bernstein KE, Coffman TM, Chen S and Batlle D: ACE and ACE2
activity in diabetic mice. Diabetes. 55:2132–2139. 2006.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Romani-Perez M, Outeirino-Iglesias V, Moya
CM, Santisteban P, Gonzalez-Matias LC, Vigo E and Mallo F:
Activation of the GLP-1 Receptor by liraglutide increases ACE2
expression, reversing right ventricle hypertrophy, and improving
the production of SP-A and SP-B in the lungs of type 1 diabetes
rats. Endocrinology. 156:3559–3569. 2015.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Wosten-van Asperen RM, Lutter R, Specht
PA, Moll GN, van Woensel JB, van der Loos CM, van Goor H, Kamilic
J, Florquin S and Bos AP: Acute respiratory distress syndrome leads
to reduced ratio of ACE/ACE2 activities and is prevented by
angiotensin-(1-7) or an angiotensin II receptor antagonist. J
Pathol. 225:618–627. 2011.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Zhang W, Xu YZ, Liu B, Wu R, Yang YY, Xiao
XQ and Zhang X: Pioglitazone upregulates angiotensin converting
enzyme 2 expression in insulin-sensitive tissues in rats with
high-fat diet-induced nonalcoholic steatohepatitis.
ScientificWorldJournal. 2014(603409)2014.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Pfutzner A, Schondorf T, Hanefeld M and
Forst T: High-sensitivity C-reactive protein predicts
cardiovascular risk in diabetic and nondiabetic patients: Effects
of insulin-sensitizing treatment with pioglitazone. J Diabetes Sci
Technol. 4:706–716. 2010.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Drucker DJ: Mechanisms of action and
therapeutic application of glucagon-like peptide-1. Cell Meta.
27:740–756. 2018.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Toki S, Goleniewska K, Reiss S, Zhang J,
Bloodworth MH, Stier MT, Zhou W, Newcomb DC, Ware LB, Stanwood GD,
et al: Glucagon-like peptide 1 signaling inhibits allergen-induced
lung IL-33 release and reduces group 2 innate lymphoid cell
cytokine production in vivo. J Allergy Clin Immunol. 142:1515–1528
e8. 2018.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Viby NE, Isidor MS, Buggeskov KB, Poulsen
SS, Hansen JB and Kissow H: Glucagon-like peptide-1 (GLP-1) reduces
mortality and improves lung function in a model of experimental
obstructive lung disease in female mice. Endocrinology.
154:4503–4511. 2013.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Kahles F, Meyer C, Mollmann J, Diebold S,
Findeisen HM, Lebherz C, Trautwein C, Koch A, Tacke F, Marx N and
Lehrke M: GLP-1 secretion is increased by inflammatory stimuli in
an IL-6-dependent manner, leading to hyperinsulinemia and blood
glucose lowering. Diabetes. 63:3221–3229. 2014.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Lebherz C, Schlieper G, Mollmann J, Kahles
F, Schwarz M, Brunsing J, Dimkovic N, Koch A, Trautwein C, Flöge J,
et al: GLP-1 levels predict mortality in patients with critical
illness as well as end-stage renal disease. Am J Med.
130:833–841.e3. 2017.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Cameron AR, Morrison VL, Levin D, Mohan M,
Forteath C, Beall C, McNeilly AD, Balfour DJ, Savinko T, Fagerholm
SC, et al: Anti-inflammatory effects of metformin irrespective of
diabetes status. Circ Res. 119:652–665. 2016.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Agarwal D, Schmader KE, Kossenkov AV,
Doyle S, Kurupati R and Ertl HCJ: Immune response to influenza
vaccination in the elderly is altered by chronic medication use.
Immun Ageing. 15(19)2018.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Saenwongsa W, Nithichanon A,
Chittaganpitch M, Buayai K, Kewcharoenwong C, Thumrongwilainet B,
Butta P, Palaga T, Takahashi Y, et al: Metformin-induced
suppression of IFN-alpha via mTORC1 signalling following seasonal
vaccination is associated with impaired antibody responses in type
2 diabetes. Sci Rep. 10(3229)2020.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Deshpande AD, Harris-Hayes M and Schootman
M: Epidemiology of diabetes and diabetes-related complications.
Phys Ther. 88:1254–1264. 2008.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Bojestig M, Arnqvist HJ, Hermansson G,
Karlberg BE and Ludvigsson J: Declining incidence of nephropathy in
insulin- dependent diabetes mellitus. N Engl J Med. 330:15–18.
1994.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Harris MI, Klein R, Welborn TA and Knuiman
MW: Onset of NIDDM occurs at least 4-7 yr before clinical
diagnosis. Diabetes Care. 15:815–819. 1992.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu
Y, Zhang L, Fan G, Xu J, Gu X, et al: Clinical features of patients
infected with 2019 novel coronavirus in Wuhan, China. Lancet.
395:497–506. 2020.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Valizadeh RBA, Mirzazadeh A and Bhaskar
LVKS: Coronavirus-nephropathy; renal involvement in COVID-19. J
Renal Inj Prev. 9(e18)2020.
|
|
60
|
Zhou P, Yang XL, Wang XG, Hu B, Zhang L,
Zhang W, Si HR, Zhu Y, Li B, Huang CL, et al: A pneumonia outbreak
associated with a new coronavirus of probable bat origin. Nature.
579:270–273. 2020.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Faubel S and Edelstein CL: Mechanisms and
mediators of lung injury after acute kidney injury. Nat Rev
Nephrol. 12:48–60. 2016.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Wang H and Ma S: The cytokine storm and
factors determining the sequence and severity of organ dysfunction
in multiple organ dysfunction syndrome. Am J Emerg Med. 26:711–715.
2008.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Arabi YM, Balkhy HH, Hayden FG, Bouchama
A, Luke T, Baillie JK, Al-Omari A, Hajeer AH, Senga M, Denison MR,
et al: Middle East respiratory syndrome. N Engl J Med. 376:584–594.
2017.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Desforges M, Le Coupanec A, Brison E,
Meessen-Pinard M and Talbot PJ: Human respiratory coronaviruses:
Neuroinvasive, neurotropic and potentially neurovirulent pathogens.
Virologie (Montrouge). 18:5–16. 2014.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Mao L, Jin H, Wang M, Hu Y, Chen S, He Q,
Chang J, Hong C, Zhou Y, Wang D, et al: Neurologic manifestations
of hospitalized patients with coronavirus disease 2019 in Wuhan,
China. JAMA Neurol. 77:1–9. 2020.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Maiocchi S, Alwis I, Wu MCL, Yuan Y and
Jackson SP: Thromboinflammatory functions of platelets in
ischemia-reperfusion injury and its dysregulation in diabetes.
Semin Thromb Hemost. 44:102–113. 2018.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Demirtunc R, Duman D, Basar M, Bilgi M,
Teomete M and Garip T: The relationship between glycemic control
and platelet activity in type 2 diabetes mellitus. J Diabetes
Complications. 23:89–94. 2009.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Angiolillo DJ, Fernandez-Ortiz A, Bernardo
E, Ramirez C, Sabate M, Jimenez-Quevedo P, Hernandez R, Moreno R,
Escaned J, Alfonso F, et al: Platelet function profiles in patients
with type 2 diabetes and coronary artery disease on combined
aspirin and clopidogrel treatment. Diabetes. 54:2430–2435.
2005.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Vaidyula VR, Boden G and Rao AK: Platelet
and monocyte activation by hyperglycemia and hyperinsulinemia in
healthy subjects. Platelets. 17:577–585. 2006.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Schneider DJ: Factors contributing to
increased platelet reactivity in people with diabetes. Diabetes
Care. 32:525–527. 2009.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Fang L, Karakiulakis G and Roth M: Are
patients with hypertension and diabetes mellitus at increased risk
for COVID-19 infection? Lancet Respir Med. 8(e21)2020.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Wan Y, Shang J, Graham R, Baric RS and Li
F: Receptor recognition by the novel coronavirus from Wuhan: An
analysis based on decade-long structural studies of SARS
coronavirus. J Virol. 94:e00127–e00220. 2020.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Hubert HB, Feinleib M, McNamara PM and
Castelli WP: Obesity as an independent risk factor for
cardiovascular disease: A 26-year follow-up of participants in the
Framingham Heart Study. Circulation. 67:968–977. 1983.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Tsai AW, Cushman M, Rosamond WD, Heckbert
SR, Polak JF and Folsom AR: Cardiovascular risk factors and venous
thromboembolism incidence: The longitudinal investigation of
thromboembolism etiology. Arch Intern Med. 162:1182–1189.
2002.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Nicholls JM, Poon LL, Lee KC, Ng WF, Lai
ST, Leung CY, Chu CM, Hui PK, Mak KL, Lim W, et al: Lung pathology
of fatal severe acute respiratory syndrome. Lancet. 361:1773–1778.
2003.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Chen J and Subbarao K: The immunobiology
of SARS*. Annu Rev Immunol. 25:443–472. 2007.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Kalliolias GD and Ivashkiv LB: Overview of
the biology of type I interferons. Arthritis Res Ther. 12 (Suppl
1)(S1)2010.PubMed/NCBI View
Article : Google Scholar
|
|
78
|
Law HK, Cheung CY, Ng HY, Sia SF, Chan YO,
Luk W, Nicholls JM, Peiris JS and Lau YL: Chemokine up-regulation
in SARS-coronavirus-infected, monocyte-derived human dendritic
cells. Blood. 106:2366–2374. 2005.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Okabayashi T, Kariwa H, Yokota S, Iki S,
Indoh T, Yokosawa N, Takashima I, Tsutsumi H and Fujii N: Cytokine
regulation in SARS coronavirus infection compared to other
respiratory virus infections. J Med Virol. 78:417–424.
2006.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Zhang Y, Li J, Zhan Y, Wu L, Yu X, Zhang
W, Ye L, Xu S, Sun R, Wang Y and Lou J: Analysis of serum cytokines
in patients with severe acute respiratory syndrome. Infect Immun.
72:4410–4415. 2004.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Lo AW, Tang NL and To KF: How the SARS
coronavirus causes disease: Host or organism? J Pathol.
208:142–151. 2006.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Choi G, Schultz MJ, Levi M and van der
Poll T: The relationship between inflammation and the coagulation
system. Swiss Med Wkly. 136:139–144. 2006.PubMed/NCBI
|
|
83
|
Bester J and Pretorius E: Effects of
IL-1β, IL-6 and IL-8 on erythrocytes, platelets and clot
viscoelasticity. Sci Rep. 6(32188)2016.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Gupta R, Ghosh A, Singh AK and Misra A:
Clinical considerations for patients with diabetes in times of
COVID-19 epidemic. Diabetes Metab Syndr. 14:211–212.
2020.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Lixandru D BE, Vîrgolici B, Vîrgolici H,
Alexandru P, Băcanu ME, Gagniuc P, Ionescu-Tîrgovişte C and
Serafinceanu C: Changes in the serum proinflammatory cytokines in
patients with elevated HOMA-IR and type 2 diabetes mellitus.
Farmacia. 63:132–139. 2015.
|
|
86
|
Kalus AA CA and Oleraud JE: Diabetes
mellitus and other endocrine diseases. In: Fitzpatrick's
Dermatology in General Medicine. Goldsmith LA, Katz S, Gilchrest
BA, Paller AS, Leffel DJ and Wolff K (eds.). McGrawHill, New York,
NY, 2012.
|
|
87
|
Popa ML, Popa AC, Tanase C and
Gheorghisan-Galateanu AA: Acanthosis nigricans: To be or not to be
afraid. Oncol Lett. 17:4133–4138. 2019.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Hud JA Jr, Cohen JB, Wagner JM and Cruz PD
Jr: Prevalence and significance of acanthosis nigricans in an adult
obese population. Arch Dermatol. 128:941–944. 1992.PubMed/NCBI
|
|
89
|
Duff M, Demidova O, Blackburn S and
Shubrook J: Cutaneous manifestations of diabetes mellitus. Clin
Diabetes. 33:40–48. 2015.
|
|
90
|
Khalid U, Hansen PR, Gislason GH,
Lindhardsen J, Kristensen SL, Winther SA, Skov L, Torp-Pedersen C
and Ahlehoff O: Psoriasis and new-onset diabetes: A Danish
nationwide cohort study. Diabetes Care. 36:2402–2407.
2013.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Conforti C, Giuffrida R, Dianzani C, Di
Meo N and Zalaudek I: COVID-19 and psoriasis: Is it time to limit
treatment with immunosuppressants? A call for action. Dermatol
Ther: Mar 11, 2020 (Epub ahead of print). doi:
10.1111/dth.13298.
|
|
92
|
Tesch M: Spinal claudication and malum
perforans pedis. Late sequela of ankylosing spondylitis (Bechterew
disease) with cystic lumbosacral arachnopathy. Der Nervenarzt.
65:874–877. 1994.PubMed/NCBI(In German).
|
|
93
|
Begolli Gerqari A, Ferizi M, Halimi S,
Aferdita Daka A, Hapciu S, Begolli I, Begolli M and Gerqari I:
Malum perforans pedis - case report. Sci J Clin Med. 5:29–31.
2016.
|
|
94
|
Spravchikov N, Sizyakov G, Gartsbein M,
Accili D, Tennenbaum T and Wertheimer E: Glucose effects on skin
keratinocytes: Implications for diabetes skin complications.
Diabetes. 50:1627–1635. 2001.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Recalcati S: Cutaneous manifestations in
COVID-19: A first perspective. J Eur Acad Dermatol Venereol.
35:e212–e213. 2020.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Marano G, Vaglio S, Pupella S, Facco G,
Catalano L, Liumbruno GM and Grazzini G: Convalescent plasma: New
evidence for an old therapeutic tool? Blood Transfus. 14:152–157.
2016.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Chen N, Zhou M, Dong X, Qu J, Gong F, Han
Y, Qiu Y, Wang J, Liu Y, Wei Y, et al: Epidemiological and clinical
characteristics of 99 cases of 2019 novel coronavirus pneumonia in
Wuhan, China: A descriptive study. Lancet. 395:507–513.
2020.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Duan K, Liu B, Li C, Zhang H, Yu T, Qu J,
Zhou M, Chen L, Meng S, Hu Y, et al: Effectiveness of convalescent
plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA.
117:9490–9496. 2020.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Calina D, Docea AO, Petrakis D, Egorov AM,
Ishmukhametov AA, Gabibov AG, Shtilman MI, Kostoff R, Carvalho F,
Vinceti M, et al: Towards effective COVID-19 vaccines: Updates,
perspectives and challenges (Review). Int J Mol Med. 46:3–16.
2020.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Kickbusch I and Leung G: Response to the
emerging novel coronavirus outbreak. BMJ. 368(m406)2020.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Sun ML, Yang JM, Sun YP and Su GH:
Inhibitors of RAS might be a good choice for the therapy of
COVID-19 pneumonia. Zhonghua Jie He He Hu Xi Za Zhi. 43:219–222.
2020.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|