COVID‑19 and diabetes mellitus: Unraveling the hypotheses that worsen the prognosis (Review)
- Authors:
- Radu Albulescu
- Simona Olimpia Dima
- Ioana Raluca Florea
- Daniela Lixandru
- Andreea Madalina Serban
- Veronica Madalina Aspritoiu
- Cristiana Tanase
- Irinel Popescu
- Sarah Ferber
-
Affiliations: ‘Nicolae Cajal’ Institute, ‘Titu Maiorescu’ University, 004051 Bucharest, Romania, Fundeni Clinical Institute, 022328 Bucharest, Romania - Published online on: October 14, 2020 https://doi.org/10.3892/etm.2020.9324
- Article Number: 194
This article is mentioned in:
Abstract
Cui J, Li F and Shi ZL: Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 17:181–192. 2019.PubMed/NCBI View Article : Google Scholar | |
Hussain A, Bhowmik B and do Vale Moreira NC: COVID-19 and diabetes: Knowledge in progress. Diabetes Res Clin Pract. 162(108142)2020.PubMed/NCBI View Article : Google Scholar | |
Gandhi RT, Lynch JB and Del Rio C: Mild or moderate covid-19. N Engl J Med: Apr 24, 2020 (Epub ahead of print). doi: 10.1056/NEJMcp2009249. | |
Ryan PM and Caplice NM: Is adipose tissue a reservoir for viral spread, immune activation and cytokine amplification in Coronavirus disease 2019. Obesity (Silver Spring). 28:1191–1194. 2020.PubMed/NCBI View Article : Google Scholar | |
Hodgson K, Morris J, Bridson T, Govan B, Rush C and Ketheesan N: Immunological mechanisms contributing to the double burden of diabetes and intracellular bacterial infections. Immunology. 144:171–185. 2015.PubMed/NCBI View Article : Google Scholar | |
Allard R, Leclerc P, Tremblay C and Tannenbaum TN: Diabetes and the severity of pandemic influenza A (H1N1) infection. Diabetes Care. 33:1491–1493. 2010.PubMed/NCBI View Article : Google Scholar | |
Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181:271–280.e8. 2020.PubMed/NCBI View Article : Google Scholar | |
Docea AO, Tsatsakis A, Albulescu D, Cristea O, Zlatian O, Vinceti M, Moschos SA, Tsoukalas D, Goumenou M, Drakoulis N, et al: A new threat from an old enemy: Reemergence of coronavirus (Review). Int J Mol Med. 45:1631–1643. 2020.PubMed/NCBI View Article : Google Scholar | |
Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, et al: Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract. 157(107843)2019.PubMed/NCBI View Article : Google Scholar | |
Guo W, Li M, Dong Y, Zhou H, Zhang Z, Tian C, Qin R, Wang H, Shen Y, Du K, et al: Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev: Mar 31, 2020 (Epub ahead of print). doi: 10.1002/dmrr.3319. | |
Odegaard JI and Chawla A: Connecting type 1 and type 2 diabetes through innate immunity. Cold Spring Harb Perspect Med. 2(a007724)2012.PubMed/NCBI View Article : Google Scholar | |
Wang A, Zhao W, Xu Z and Gu J: Timely blood glucose management for the outbreak of 2019 novel coronavirus disease (COVID-19) is urgently needed. Diabetes Res Clin Pract. 162(108118)2020.PubMed/NCBI View Article : Google Scholar | |
Lovren F, Pan Y, Quan A, Teoh H, Wang G, Shukla PC, Levitt KS, Oudit GY, Al-Omran M, Stewart DJ, et al: Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. Am J Physiol Heart Circ Physiol. 295:H1377–H1384. 2008.PubMed/NCBI View Article : Google Scholar | |
Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR and Katze MG: Into the eye of the cytokine storm. Microbiol Mol Biol Rev. 76:16–32. 2012.PubMed/NCBI View Article : Google Scholar | |
Kern L, Mittenbuhler MJ, Vesting AJ, Ostermann AL, Wunderlich CM and Wunderlich FT: Obesity-induced TNFα and IL-6 signaling: The missing link between obesity and inflammation-driven liver and colorectal cancers. Cancers (Basel). 11(24)2018.PubMed/NCBI View Article : Google Scholar | |
Park WY, Goodman RB, Steinberg KP, Ruzinski JT, Radella F, II Park DR, Pugin J, Skerrett SJ, Hudson LD and Martin TR: Cytokine balance in the lungs of patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 164:1896–1903. 2001.PubMed/NCBI View Article : Google Scholar | |
Yiu HH, Graham AL and Stengel RF: Dynamics of a cytokine storm. PLoS One. 7(e45027)2012.PubMed/NCBI View Article : Google Scholar | |
Ruan Q, Yang K, Wang W, Jiang L and Song J: Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 46:846–848. 2020.PubMed/NCBI View Article : Google Scholar | |
Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, et al: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 426:450–454. 2003.PubMed/NCBI View Article : Google Scholar | |
Raj VS, Mou H, Smits SL, Dekkers DH, Muller MA, Dijkman R, Muth D, Demmers JA, Zaki A, Fouchier RA, et al: Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 495:251–254. 2013.PubMed/NCBI View Article : Google Scholar | |
Liu F, Long X, Zhang B, Zhang W, Chen X and Zhang Z: ACE2 expression in pancreas may cause pancreatic damage after SARS-CoV-2 infection. Clin Gastroenterol Hepatol. 18:2128–2130.e2. 2020.PubMed/NCBI View Article : Google Scholar | |
Yousif MH, Dhaunsi GS, Makki BM, Qabazard BA, Akhtar S and Benter IF: Characterization of Angiotensin-(1-7) effects on the cardiovascular system in an experimental model of type-1 diabetes. Pharmacol Res. 66:269–275. 2012.PubMed/NCBI View Article : Google Scholar | |
Zhang C, Zhao YX, Zhang YH, Zhu L, Deng BP, Zhou ZL, Li SY, Lu XT, Song LL, Lei XM, et al: Angiotensin-converting enzyme 2 attenuates atherosclerotic lesions by targeting vascular cells. Proc Natl Acad Sci USA. 107:15886–15891. 2010.PubMed/NCBI View Article : Google Scholar | |
Burns KD, Lytvyn Y, Mahmud FH, Daneman D, Deda L, Dunger DB, Deanfield J, Dalton RN, Elia Y, Har R, et al: The relationship between urinary renin-angiotensin system markers, renal function, and blood pressure in adolescents with type 1 diabetes. Am J Physiol Renal Physiol. 312:F335–F342. 2017.PubMed/NCBI View Article : Google Scholar | |
Gutta S, Grobe N, Kumbaji M, Osman H, Saklayen M, Li G and Elased KM: Increased urinary angiotensin converting enzyme 2 and neprilysin in patients with type 2 diabetes. Am J Physiol Renal Physiol. 315:F263–F274. 2018.PubMed/NCBI View Article : Google Scholar | |
Wong TP, Ho KY, Ng EK, Debnam ES and Leung PS: Upregulation of ACE2-ANG-(1-7)-Mas axis in jejunal enterocytes of type 1 diabetic rats: Implications for glucose transport. Am J Physiol Endocrinol Metab. 303:E669–E681. 2012.PubMed/NCBI View Article : Google Scholar | |
Bornstein SR, Rubino F, Khunti K, Mingrone G, Hopkins D, Birkenfeld AL, Boehm B, Amiel S, Holt RI, Skyler JS, et al: Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol. 8:546–550. 2020.PubMed/NCBI View Article : Google Scholar | |
Bindom SM and Lazartigues E: The sweeter side of ACE2: Physiological evidence for a role in diabetes. Mol Cell Endocrinol. 302:193–202. 2009.PubMed/NCBI View Article : Google Scholar | |
Maddaloni E and Buzzetti R: Covid-19 and diabetes mellitus: Unveiling the interaction of two pandemics. Diabetes Metab Res Rev: Mar 31, 2020 (Epub ahead of print). doi: 10.1002/dmrr.3321. | |
Iwata-Yoshikawa N, Okamura T, Shimizu Y, Hasegawa H, Takeda M and Nagata N: TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J Virol. 93:e01815–e1818. 2019.PubMed/NCBI View Article : Google Scholar | |
Limburg H, Harbig A, Bestle D, Stein DA, Moulton HM, Jaeger J, Janga H, Hardes K, Koepke J, Schulte L, et al: TMPRSS2 is the major activating protease of influenza a virus in primary human airway cells and influenza B virus in human type ii pneumocytes. J Virol. 93:e00649–19. 2019.PubMed/NCBI View Article : Google Scholar | |
Iacobellis G: COVID-19 and diabetes: Can DPP4 inhibition play a role? Diabetes Res Clin Pract. 162(108125)2020.PubMed/NCBI View Article : Google Scholar | |
Ceriello A, Stoian AP and Rizzo M: COVID-19 and diabetes management: What should be considered? Diabetes Res Clin Pract. 163(108151)2020.PubMed/NCBI View Article : Google Scholar | |
van der Zanden R, de Vries F, Lalmohamed A, Driessen JH, de Boer A, Rohde G, Neef C and den Heijer C: Use of dipeptidyl-peptidase-4 inhibitors and the risk of pneumonia: A population-based cohort study. PLoS One. 10(e0139367)2015.PubMed/NCBI View Article : Google Scholar | |
Gooßen K and Gräber S: Longer term safety of dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes mellitus: Systematic review and meta-analysis. Diabetes Obes Metab. 14:1061–1072. 2012.PubMed/NCBI View Article : Google Scholar | |
Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J, Josse R, Kaufman KD, Koglin J, Korn S, et al: Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 373:232–242. 2015.PubMed/NCBI View Article : Google Scholar | |
Rosenstock J, Perkovic V, Johansen OE, Cooper ME, Kahn SE, Marx N, Alexander JH, Pencina M, Toto RD, Wanner C, et al: Effect of Linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: The CARMELINA Randomized Clinical Trial. JAMA. 321:69–79. 2019.PubMed/NCBI View Article : Google Scholar | |
Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, Ohman P, Frederich R, Wiviott SD, Hoffman EB, et al: Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 369:1317–1326. 2013.PubMed/NCBI View Article : Google Scholar | |
White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, Perez AT, Fleck PR, Mehta CR, Kupfer S, et al: Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 369:1327–1335. 2013.PubMed/NCBI View Article : Google Scholar | |
Carboni E and Carta AR: Can pioglitazone be potentially useful therapeutically in treating patients with COVID-19? Med Hypotheses. 140(109776)2020.PubMed/NCBI View Article : Google Scholar | |
Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, Diz DI and Gallagher PE: Effect of angiotensin- converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 111:2605–2610. 2005.PubMed/NCBI View Article : Google Scholar | |
Wysocki J, Ye M, Soler MJ, Gurley SB, Xiao HD, Bernstein KE, Coffman TM, Chen S and Batlle D: ACE and ACE2 activity in diabetic mice. Diabetes. 55:2132–2139. 2006.PubMed/NCBI View Article : Google Scholar | |
Romani-Perez M, Outeirino-Iglesias V, Moya CM, Santisteban P, Gonzalez-Matias LC, Vigo E and Mallo F: Activation of the GLP-1 Receptor by liraglutide increases ACE2 expression, reversing right ventricle hypertrophy, and improving the production of SP-A and SP-B in the lungs of type 1 diabetes rats. Endocrinology. 156:3559–3569. 2015.PubMed/NCBI View Article : Google Scholar | |
Wosten-van Asperen RM, Lutter R, Specht PA, Moll GN, van Woensel JB, van der Loos CM, van Goor H, Kamilic J, Florquin S and Bos AP: Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin-(1-7) or an angiotensin II receptor antagonist. J Pathol. 225:618–627. 2011.PubMed/NCBI View Article : Google Scholar | |
Zhang W, Xu YZ, Liu B, Wu R, Yang YY, Xiao XQ and Zhang X: Pioglitazone upregulates angiotensin converting enzyme 2 expression in insulin-sensitive tissues in rats with high-fat diet-induced nonalcoholic steatohepatitis. ScientificWorldJournal. 2014(603409)2014.PubMed/NCBI View Article : Google Scholar | |
Pfutzner A, Schondorf T, Hanefeld M and Forst T: High-sensitivity C-reactive protein predicts cardiovascular risk in diabetic and nondiabetic patients: Effects of insulin-sensitizing treatment with pioglitazone. J Diabetes Sci Technol. 4:706–716. 2010.PubMed/NCBI View Article : Google Scholar | |
Drucker DJ: Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Meta. 27:740–756. 2018.PubMed/NCBI View Article : Google Scholar | |
Toki S, Goleniewska K, Reiss S, Zhang J, Bloodworth MH, Stier MT, Zhou W, Newcomb DC, Ware LB, Stanwood GD, et al: Glucagon-like peptide 1 signaling inhibits allergen-induced lung IL-33 release and reduces group 2 innate lymphoid cell cytokine production in vivo. J Allergy Clin Immunol. 142:1515–1528 e8. 2018.PubMed/NCBI View Article : Google Scholar | |
Viby NE, Isidor MS, Buggeskov KB, Poulsen SS, Hansen JB and Kissow H: Glucagon-like peptide-1 (GLP-1) reduces mortality and improves lung function in a model of experimental obstructive lung disease in female mice. Endocrinology. 154:4503–4511. 2013.PubMed/NCBI View Article : Google Scholar | |
Kahles F, Meyer C, Mollmann J, Diebold S, Findeisen HM, Lebherz C, Trautwein C, Koch A, Tacke F, Marx N and Lehrke M: GLP-1 secretion is increased by inflammatory stimuli in an IL-6-dependent manner, leading to hyperinsulinemia and blood glucose lowering. Diabetes. 63:3221–3229. 2014.PubMed/NCBI View Article : Google Scholar | |
Lebherz C, Schlieper G, Mollmann J, Kahles F, Schwarz M, Brunsing J, Dimkovic N, Koch A, Trautwein C, Flöge J, et al: GLP-1 levels predict mortality in patients with critical illness as well as end-stage renal disease. Am J Med. 130:833–841.e3. 2017.PubMed/NCBI View Article : Google Scholar | |
Cameron AR, Morrison VL, Levin D, Mohan M, Forteath C, Beall C, McNeilly AD, Balfour DJ, Savinko T, Fagerholm SC, et al: Anti-inflammatory effects of metformin irrespective of diabetes status. Circ Res. 119:652–665. 2016.PubMed/NCBI View Article : Google Scholar | |
Agarwal D, Schmader KE, Kossenkov AV, Doyle S, Kurupati R and Ertl HCJ: Immune response to influenza vaccination in the elderly is altered by chronic medication use. Immun Ageing. 15(19)2018.PubMed/NCBI View Article : Google Scholar | |
Saenwongsa W, Nithichanon A, Chittaganpitch M, Buayai K, Kewcharoenwong C, Thumrongwilainet B, Butta P, Palaga T, Takahashi Y, et al: Metformin-induced suppression of IFN-alpha via mTORC1 signalling following seasonal vaccination is associated with impaired antibody responses in type 2 diabetes. Sci Rep. 10(3229)2020.PubMed/NCBI View Article : Google Scholar | |
Deshpande AD, Harris-Hayes M and Schootman M: Epidemiology of diabetes and diabetes-related complications. Phys Ther. 88:1254–1264. 2008.PubMed/NCBI View Article : Google Scholar | |
Bojestig M, Arnqvist HJ, Hermansson G, Karlberg BE and Ludvigsson J: Declining incidence of nephropathy in insulin- dependent diabetes mellitus. N Engl J Med. 330:15–18. 1994.PubMed/NCBI View Article : Google Scholar | |
Harris MI, Klein R, Welborn TA and Knuiman MW: Onset of NIDDM occurs at least 4-7 yr before clinical diagnosis. Diabetes Care. 15:815–819. 1992.PubMed/NCBI View Article : Google Scholar | |
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 395:497–506. 2020.PubMed/NCBI View Article : Google Scholar | |
Valizadeh RBA, Mirzazadeh A and Bhaskar LVKS: Coronavirus-nephropathy; renal involvement in COVID-19. J Renal Inj Prev. 9(e18)2020. | |
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, et al: A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 579:270–273. 2020.PubMed/NCBI View Article : Google Scholar | |
Faubel S and Edelstein CL: Mechanisms and mediators of lung injury after acute kidney injury. Nat Rev Nephrol. 12:48–60. 2016.PubMed/NCBI View Article : Google Scholar | |
Wang H and Ma S: The cytokine storm and factors determining the sequence and severity of organ dysfunction in multiple organ dysfunction syndrome. Am J Emerg Med. 26:711–715. 2008.PubMed/NCBI View Article : Google Scholar | |
Arabi YM, Balkhy HH, Hayden FG, Bouchama A, Luke T, Baillie JK, Al-Omari A, Hajeer AH, Senga M, Denison MR, et al: Middle East respiratory syndrome. N Engl J Med. 376:584–594. 2017.PubMed/NCBI View Article : Google Scholar | |
Desforges M, Le Coupanec A, Brison E, Meessen-Pinard M and Talbot PJ: Human respiratory coronaviruses: Neuroinvasive, neurotropic and potentially neurovirulent pathogens. Virologie (Montrouge). 18:5–16. 2014.PubMed/NCBI View Article : Google Scholar | |
Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, Chang J, Hong C, Zhou Y, Wang D, et al: Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 77:1–9. 2020.PubMed/NCBI View Article : Google Scholar | |
Maiocchi S, Alwis I, Wu MCL, Yuan Y and Jackson SP: Thromboinflammatory functions of platelets in ischemia-reperfusion injury and its dysregulation in diabetes. Semin Thromb Hemost. 44:102–113. 2018.PubMed/NCBI View Article : Google Scholar | |
Demirtunc R, Duman D, Basar M, Bilgi M, Teomete M and Garip T: The relationship between glycemic control and platelet activity in type 2 diabetes mellitus. J Diabetes Complications. 23:89–94. 2009.PubMed/NCBI View Article : Google Scholar | |
Angiolillo DJ, Fernandez-Ortiz A, Bernardo E, Ramirez C, Sabate M, Jimenez-Quevedo P, Hernandez R, Moreno R, Escaned J, Alfonso F, et al: Platelet function profiles in patients with type 2 diabetes and coronary artery disease on combined aspirin and clopidogrel treatment. Diabetes. 54:2430–2435. 2005.PubMed/NCBI View Article : Google Scholar | |
Vaidyula VR, Boden G and Rao AK: Platelet and monocyte activation by hyperglycemia and hyperinsulinemia in healthy subjects. Platelets. 17:577–585. 2006.PubMed/NCBI View Article : Google Scholar | |
Schneider DJ: Factors contributing to increased platelet reactivity in people with diabetes. Diabetes Care. 32:525–527. 2009.PubMed/NCBI View Article : Google Scholar | |
Fang L, Karakiulakis G and Roth M: Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 8(e21)2020.PubMed/NCBI View Article : Google Scholar | |
Wan Y, Shang J, Graham R, Baric RS and Li F: Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. J Virol. 94:e00127–e00220. 2020.PubMed/NCBI View Article : Google Scholar | |
Hubert HB, Feinleib M, McNamara PM and Castelli WP: Obesity as an independent risk factor for cardiovascular disease: A 26-year follow-up of participants in the Framingham Heart Study. Circulation. 67:968–977. 1983.PubMed/NCBI View Article : Google Scholar | |
Tsai AW, Cushman M, Rosamond WD, Heckbert SR, Polak JF and Folsom AR: Cardiovascular risk factors and venous thromboembolism incidence: The longitudinal investigation of thromboembolism etiology. Arch Intern Med. 162:1182–1189. 2002.PubMed/NCBI View Article : Google Scholar | |
Nicholls JM, Poon LL, Lee KC, Ng WF, Lai ST, Leung CY, Chu CM, Hui PK, Mak KL, Lim W, et al: Lung pathology of fatal severe acute respiratory syndrome. Lancet. 361:1773–1778. 2003.PubMed/NCBI View Article : Google Scholar | |
Chen J and Subbarao K: The immunobiology of SARS*. Annu Rev Immunol. 25:443–472. 2007.PubMed/NCBI View Article : Google Scholar | |
Kalliolias GD and Ivashkiv LB: Overview of the biology of type I interferons. Arthritis Res Ther. 12 (Suppl 1)(S1)2010.PubMed/NCBI View Article : Google Scholar | |
Law HK, Cheung CY, Ng HY, Sia SF, Chan YO, Luk W, Nicholls JM, Peiris JS and Lau YL: Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood. 106:2366–2374. 2005.PubMed/NCBI View Article : Google Scholar | |
Okabayashi T, Kariwa H, Yokota S, Iki S, Indoh T, Yokosawa N, Takashima I, Tsutsumi H and Fujii N: Cytokine regulation in SARS coronavirus infection compared to other respiratory virus infections. J Med Virol. 78:417–424. 2006.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Li J, Zhan Y, Wu L, Yu X, Zhang W, Ye L, Xu S, Sun R, Wang Y and Lou J: Analysis of serum cytokines in patients with severe acute respiratory syndrome. Infect Immun. 72:4410–4415. 2004.PubMed/NCBI View Article : Google Scholar | |
Lo AW, Tang NL and To KF: How the SARS coronavirus causes disease: Host or organism? J Pathol. 208:142–151. 2006.PubMed/NCBI View Article : Google Scholar | |
Choi G, Schultz MJ, Levi M and van der Poll T: The relationship between inflammation and the coagulation system. Swiss Med Wkly. 136:139–144. 2006.PubMed/NCBI | |
Bester J and Pretorius E: Effects of IL-1β, IL-6 and IL-8 on erythrocytes, platelets and clot viscoelasticity. Sci Rep. 6(32188)2016.PubMed/NCBI View Article : Google Scholar | |
Gupta R, Ghosh A, Singh AK and Misra A: Clinical considerations for patients with diabetes in times of COVID-19 epidemic. Diabetes Metab Syndr. 14:211–212. 2020.PubMed/NCBI View Article : Google Scholar | |
Lixandru D BE, Vîrgolici B, Vîrgolici H, Alexandru P, Băcanu ME, Gagniuc P, Ionescu-Tîrgovişte C and Serafinceanu C: Changes in the serum proinflammatory cytokines in patients with elevated HOMA-IR and type 2 diabetes mellitus. Farmacia. 63:132–139. 2015. | |
Kalus AA CA and Oleraud JE: Diabetes mellitus and other endocrine diseases. In: Fitzpatrick's Dermatology in General Medicine. Goldsmith LA, Katz S, Gilchrest BA, Paller AS, Leffel DJ and Wolff K (eds.). McGrawHill, New York, NY, 2012. | |
Popa ML, Popa AC, Tanase C and Gheorghisan-Galateanu AA: Acanthosis nigricans: To be or not to be afraid. Oncol Lett. 17:4133–4138. 2019.PubMed/NCBI View Article : Google Scholar | |
Hud JA Jr, Cohen JB, Wagner JM and Cruz PD Jr: Prevalence and significance of acanthosis nigricans in an adult obese population. Arch Dermatol. 128:941–944. 1992.PubMed/NCBI | |
Duff M, Demidova O, Blackburn S and Shubrook J: Cutaneous manifestations of diabetes mellitus. Clin Diabetes. 33:40–48. 2015. | |
Khalid U, Hansen PR, Gislason GH, Lindhardsen J, Kristensen SL, Winther SA, Skov L, Torp-Pedersen C and Ahlehoff O: Psoriasis and new-onset diabetes: A Danish nationwide cohort study. Diabetes Care. 36:2402–2407. 2013.PubMed/NCBI View Article : Google Scholar | |
Conforti C, Giuffrida R, Dianzani C, Di Meo N and Zalaudek I: COVID-19 and psoriasis: Is it time to limit treatment with immunosuppressants? A call for action. Dermatol Ther: Mar 11, 2020 (Epub ahead of print). doi: 10.1111/dth.13298. | |
Tesch M: Spinal claudication and malum perforans pedis. Late sequela of ankylosing spondylitis (Bechterew disease) with cystic lumbosacral arachnopathy. Der Nervenarzt. 65:874–877. 1994.PubMed/NCBI(In German). | |
Begolli Gerqari A, Ferizi M, Halimi S, Aferdita Daka A, Hapciu S, Begolli I, Begolli M and Gerqari I: Malum perforans pedis - case report. Sci J Clin Med. 5:29–31. 2016. | |
Spravchikov N, Sizyakov G, Gartsbein M, Accili D, Tennenbaum T and Wertheimer E: Glucose effects on skin keratinocytes: Implications for diabetes skin complications. Diabetes. 50:1627–1635. 2001.PubMed/NCBI View Article : Google Scholar | |
Recalcati S: Cutaneous manifestations in COVID-19: A first perspective. J Eur Acad Dermatol Venereol. 35:e212–e213. 2020.PubMed/NCBI View Article : Google Scholar | |
Marano G, Vaglio S, Pupella S, Facco G, Catalano L, Liumbruno GM and Grazzini G: Convalescent plasma: New evidence for an old therapeutic tool? Blood Transfus. 14:152–157. 2016.PubMed/NCBI View Article : Google Scholar | |
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, et al: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 395:507–513. 2020.PubMed/NCBI View Article : Google Scholar | |
Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, Zhou M, Chen L, Meng S, Hu Y, et al: Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA. 117:9490–9496. 2020.PubMed/NCBI View Article : Google Scholar | |
Calina D, Docea AO, Petrakis D, Egorov AM, Ishmukhametov AA, Gabibov AG, Shtilman MI, Kostoff R, Carvalho F, Vinceti M, et al: Towards effective COVID-19 vaccines: Updates, perspectives and challenges (Review). Int J Mol Med. 46:3–16. 2020.PubMed/NCBI View Article : Google Scholar | |
Kickbusch I and Leung G: Response to the emerging novel coronavirus outbreak. BMJ. 368(m406)2020.PubMed/NCBI View Article : Google Scholar | |
Sun ML, Yang JM, Sun YP and Su GH: Inhibitors of RAS might be a good choice for the therapy of COVID-19 pneumonia. Zhonghua Jie He He Hu Xi Za Zhi. 43:219–222. 2020.PubMed/NCBI View Article : Google Scholar : (In Chinese). |