|
1
|
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H,
Wang W, Song H, Huang B, Zhu N, et al: Genomic characterisation and
epidemiology of 2019 novel coronavirus: Implications for virus
origins and receptor binding. Lancet. 395:565–574. 2020.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Tan WJ, Zhao X, Ma XJ, Wang W, Niu P, Xu
W, Gao GF and Wu G: A novel coronavirus genome identified in a
cluster of pneumonia cases-Wuhan, China 2019-2020. China CDC
Weekly. 2:61–62. 2020.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Zhou P, Yang XL, Wang XG, Hu B, Zhang L,
Zhang W, Si HR, Zhu Y, Li B, Huang CL, et al: A pneumonia outbreak
associated with a new coronavirus of probable bat origin. Nature.
579:270–273. 2020.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Coronaviridae Study Group of the
International Committee on Taxonomy of Viruses. The species Severe
acute respiratory syndrome-related coronavirus: Classifying
2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 5:536–544.
2020.PubMed/NCBI View Article : Google Scholar
|
|
5
|
World Health Organization (WHO): Novel
coronavirus disease named COVID-19. WHO, Geneva, 2020. urihttps://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happensimplehttps://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen.
Accessed February 11, 2020.
|
|
6
|
Xiang N, Havers F, Chen T, Song Y, Tu W,
Li L, Cao Y, Liu B, Zhou L, Meng L, et al: Use of national
pneumonia surveillance to describe influenza A(H7N9) virus
epidemiology, China, 2004-2013. Emerg Infect Dis. 19:1784–1790.
2013.PubMed/NCBI View Article : Google Scholar
|
|
7
|
European Centre for Disease Prevention and
Control: Risk assessment: Outbreak of acute respiratory syndrome
associated with a novel coronavirus, Wuhan, China. urihttps://www.ecdc.europa.eu/sites/default/files/documents/Risk-assessment-pneumonia-Wuhan-China-22-Jan-2020.pdfsimplehttps://www.ecdc.europa.eu/sites/default/files/documents/Risk-assessment-pneumonia-Wuhan-China-22-Jan-2020.pdf.
Accessed January 22, 2020.
|
|
8
|
Zhu N, Zhang D, Wang W, Li X, Yang B, Song
J, Zhao X, Huang B, Shi W, Lu R, et al: A novel coronavirus from
patients with pneumonia in China, 2019. N Engl J Med. 382:727–733.
2020.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Cohen E: Super spreaders in coronavirus
outbreaks. CNN health, 2020. urihttps://edition.cnn.com/2020/01/23/health/wuhan-virus-super-spreader/index.htmlsimplehttps://edition.cnn.com/2020/01/23/health/wuhan-virus-super-spreader/index.html.
Accessed January 23, 2020.
|
|
10
|
China Centre for Disease Prevention and
Control: Distribution of COVID-19 outbreaks. urihttp://2019ncov.chinacdc.cn/2019-nCoVsimplehttp://2019ncov.chinacdc.cn/2019-nCoV.
|
|
11
|
Chutian Metropolis Daily: Central steering
group: Over 60,000 beds were completed in wuhan in one month,
equivalent to the construction of 60 tertiary hospitals. urihttp://news.cnhubei.com/content/2020-03/06/content_12823832.htmlsimplehttp://news.cnhubei.com/content/2020-03/06/content_12823832.html.
Accessed March 6, 2020.
|
|
12
|
Ren LL, Wang YM, Wu ZQ, Xiang ZC, Guo L,
Xu T, Jiang YZ, Xiong Y, Li YJ, Li XW, et al: Identification of a
novel coronavirus causing severe pneumonia in human: A descriptive
study. Chin Med J (Engl). 133:1015–1024. 2020.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Xu X, Chen P, Wang J, Feng J, Zhou H, Li
X, Zhong W and Hao P: Evolution of the novel coronavirus from the
ongoing Wuhan outbreak and modeling of its spike protein for risk
of human transmission. Sci China Life Sci. 63:457–460.
2020.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S,
Zhang Q, Shi X, Wang Q, Zhang L and Wang X: Structure of the
SARS-CoV-2 spike receptor-binding domain bound to the ACE2
receptor. Nature. 581:215–220. 2020.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara
H, Geng Q, Auerbach A and Li F: Structural basis of receptor
recognition by SARS-CoV-2. Nature. 581:221–224. 2020.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Hoffmann M, Kleine-Weber H, Schroeder S,
Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH,
Nitsche A, et al: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2
and is blocked by a clinically proven protease inhibitor. Cell.
181:271–280.e278. 2020.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Wang Q, Zhang Y, Wu L, Niu S, Song C,
Zhang Z, Lu G, Qiao C, Hu Y, Yuen KY, et al: Structural and
functional basis of SARS-CoV-2 entry by using human ACE2. Cell.
181:894–904.e9. 2020.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Ji W, Wang W, Zhao X, Zai J and Li X:
Cross-species transmission of the newly identified coronavirus
2019-nCoV. J Med Virol. 92:433–440. 2020.PubMed/NCBI View Article : Google Scholar
|
|
19
|
South China Agricultural University: Press
conference of scientific research on novel coronavirus pneumonia
outbreak. Guangzhou, 7 February, 2020.
|
|
20
|
Tang XL, Wu CC, Li X, Song YH, Yao XM, Wu
XK, Duan YG, Zhang H, Wng YR, Qian ZH, et al: On the origin and
continuing evolution of SARS-CoV-2. Natl Sci Rev. 7:1012–1023.
2020.
|
|
21
|
Khiali S, Khani E and Entezari-Maleki T: A
comprehensive review on tocilizumab in COVID-19 acute respiratory
distress syndrome. J Clin Pharmacol: June 18, 2020 (Epub ahead of
print).
|
|
22
|
Tay MZ, Poh CM, Rénia L, MacAry PA and Ng
LEP: The trinity of COVID-19: Immunity, inflammation and
intervention. Nat Rev Immunol. 20:363–374. 2020.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Vardhana S and Wolchok J: The many faces
of the anti-COVID immune response. J Exp Med.
217(e20200678)2020.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Lew TW, Kwek TK, Tai D, Earnest A, Loo S,
Singh K, Kwan KM, Chan Y, Yim CF, Bek SL, et al: Acute respiratory
distress syndrome in critically Ill patients with severe acute
respiratory syndrome. JAMA. 290:374–380. 2003.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Drosten C, Seilmaier M, Corman VM,
Hartmann W, Scheible G, Sack S, Guggemos W, Kallies R, Muth D,
Junglen S, et al: Clinical features and virological analysis of a
case of Middle East respiratory syndrome coronavirus infection.
Lancet Infect Dis. 13:745–751. 2013.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Moore B and June C: Cytokine release
syndrome in severe COVID-19. Science. 368:473–474. 2020.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Zhou Y, Fu B, Zheng X, Wang D, Zhao C, Qi
Y, Sun R, Tian Z, Xu X and Wei H: Pathogenic T-cells and
inflammatory monocytes incite inflammatory storms in severe
COVID-19 patients. Natl Sci Rev. 7:998–1002. 2020.
|
|
28
|
Lang F, Lee K, Teijaro J, Becher B and
Hamilton J: GM-CSF-based treatments in COVID-19: Reconciling
opposing therapeutic approaches. Nat Rev Immunol. 20:507–514.
2020.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu
Y, Zhang L, Fan G, Xu J, Gu X, et al: Clinical features of patients
infected with 2019 novel coronavirus in Wuhan, China. Lancet.
395:497–506. 2020.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Blanco-Melo D, Nilsson-Payant B, Liu WC,
Uhl S, Hoagland D, Møller R, Jordan T, Oishi K, Panis M, Sachs D,
et al: Imbalanced host response to SARS-CoV-2 drives development of
COVID-19. Cell. 181:1036–1045.e9. 2020.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Park A and Iwasaki A: Type I and Type III
interferons-induction, signaling, evasion, and application to
combat COVID-19. Cell Host Microbe. 27:870–878. 2020.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Guan W, Ni Z, Hu Y, Liang W, Ou C, He J,
Liu L, Shan H, Lei C, Hui DSC, et al: Clinical characteristics of
coronavirus disease 2019 in China. N Engl J Med. 382:1708–1720.
2020.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Cao X: COVID-19: Immunopathology and its
implications for therapy. Nat Rev Immunol. 20:269–270.
2020.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Chen X, Ling J, Mo P, Zhang Y, Jiang Q, Ma
Z, Cao Q, Hu W, Zou S, Chen L, et al: Restoration of leukomonocyte
counts is associated with viral clearance in COVID-19 hospitalized
patients. medRxiv: urihttps://doi.org/10.1101/2020.03.03.20030437simplehttps://doi.org/10.1101/2020.03.03.20030437.
|
|
35
|
Xu Z, Shi L, Wang Y, Zhang J, Huang L,
Zhang C, Liu S, Zhao P, Liu H, Zhu L, et al: Pathological findings
of COVID-19 associated with acute respiratory distress syndrome.
Lancet Respir Med. 8:420–422. 2020.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Tian S, Hu W, Niu L, Liu H, Xu H and Xiao
SY: Pulmonary pathology of early-phase 2019 novel coronavirus
(COVID-19) pneumonia in two patients with lung cancer. J Thorac
Oncol. 15:700–704. 2020.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Luo W, Yu H, Gou J, Li X, Sun Y, Li J and
Liu L: Clinical pathology of critical patient with novel
coronavirus pneumonia (COVID-19): Pulmonary fibrosis and vascular
changes including microthrombosis formation. Preprint: doi:
10.13140/RG.2.2.22934.29762.
|
|
38
|
General Office of National Health
Commission: Diagnosis and treatment of novel coronavirus pneumonia
(trial version seventh) (In Chinese). urihttp://www.nhc.gov.cn/yzygj/s7653p/202003/46c9294a7dfe4cef80dc7f5912eb1989/files/ce3e6945832a438eaae415350a8ce964.pdfsimplehttp://www.nhc.gov.cn/yzygj/s7653p/202003/46c9294a7dfe4cef80dc7f5912eb1989/files/ce3e6945832a438eaae415350a8ce964.pdf.
|
|
39
|
Carsana L, Sonzogni A, Nasr A, Rossi R,
Pellegrinelli A, Zerbi P, Rech R, Colombo R, Antinori S, Corbellino
M, et al: Pulmonary post-mortem findings in a series of COVID-19
cases from northern Italy: A two-centre descriptive study. Lancet
Infect Dis. 20:1135–1140. 2020.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Deshmukh V, Motwani D, Kumar A, Kumari C
and Raza K: Histopathological observations in COVID-19: A
systematic review. J Clin Pathol: Aug 18, 2020 (Epub ahead of
print).
|
|
41
|
Docherty A, Harrison E, Green C, Hardwick
H, Pius R, Norman L, Holden K, Read J, Dondelinger F, Carson G, et
al: Features of 20 133 UK patients in hospital with covid-19 using
the ISARIC WHO clinical characterisation protocol: Prospective
observational cohort study. BMJ. 369(m1985)2020.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Li L, Li R, Wu Z, Yang X, Zhao M, Liu J
and Chen D: Therapeutic strategies for critically ill patients with
COVID-19. Ann Intensive Care. 10(45)2020.PubMed/NCBI View Article : Google Scholar
|
|
43
|
The Novel Coronavirus Pneumonia Emergency
Response Epidemiology Team. The epidemiological characteristics of
an outbreak of 2019 novel coronavirus diseases (COVID-19)-China,
2020. China CDC Weekly. 2:113–122. 2020.PubMed/NCBI View Article : Google Scholar
|
|
44
|
China National Medical Products
Administration: Novel Coronavirus detection product is subject to
emergency approval by the China National Medical Products
Administration. urihttps://www.nmpa.gov.cn/zhuanti/yqyjzxd/yqyjxd/20200316153801928.htmlsimplehttps://www.nmpa.gov.cn/zhuanti/yqyjzxd/yqyjxd/20200316153801928.html.
Accessed March 16, 2020.
|
|
45
|
Shi H, Han X, Jiang N, Cao Y, Alwalid O,
Gu J, Fan Y and Zheng C: Radiological findings from 81 patients
with COVID-19 pneumonia in Wuhan, China: A descriptive study.
Lancet Infect Dis. 20:425–434. 2020.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Dong D, Tang Z, Wang S, Hui H, Gong L, Lu
Y, Xue Z, Liao H, Chen F, Yang F, et al: The role of imaging in the
detection and management of COVID-19: A review. IEEE Rev Biomed
Eng: Apr 27, 2020 (Epub ahead of print).
|
|
47
|
Dai W, Zhang H, Yu J, Xu H, Chen H, Luo S,
Zhang H, Liang L, Wu X, Lei Y, et al: CT imaging and differential
diagnosis of COVID-19. Can Assoc Radiol J. 71:195–200.
2020.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Wang N, Zhan Y, Zhu L, Hou Z, Liu F, Song
P, Qiu F, Wang X, Zou X, Wan D, et al: Retrospective multicenter
cohort study shows early interferon therapy is associated with
favorable clinical responses in COVID-19 patients. Cell Host
Microbe. 28:455–464.e2. 2020.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Balfour HH Jr: Antiviral drugs. N Engl J
Med. 340:1255–1268. 1999.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Bergman SJ, Ferguson MC and Santanello C:
Interferons as therapeutic agents for infectious diseases. Infect
Dis Clin North Am. 25:819–834. 2011.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Rüther U, Stilz S, Röhl E, Nunnensiek C,
Rassweiler J, Dörr U and Jipp P: Successful interferone-alpha 2 a
therapy for a patient with acute mumps orchitis. Eur Urol.
27:174–176. 1995.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Hayden FG, Kaiser DL and Albrecht JK:
Intranasal recombinant alfa-2b interferon treatment of naturally
occurring common colds. Antimicrob Agents Chemother. 32:224–230.
1988.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Grennan D: Mumps. JAMA.
322(1022)2019.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Loutfy MR, Blatt LM, Siminovitch KA, Ward
S, Wolff B, Lho H, Pham DH, Deif H, LaMere EA, Chang M, et al:
Interferon alfacon-1 plus corticosteroids in severe acute
respiratory syndromea preliminary study. JAMA. 290:3222–3228.
2003.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Zhao Z, Zhang F, Xu M, Huang K, Zhong W,
Cai W, Yin Z, Huang S, Deng Z, Wei M, et al: Description and
clinical treatment of an early outbreak of severe acute respiratory
syndrome (SARS) in Guangzhou, PR China. J Med Microbiol.
52:715–720. 2003.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Stockman LJ, Bellamy R and Garner P: SARS:
Systematic review of treatment effects. PLoS Med.
3(e343)2006.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Peng F, Tu L, Yang Y, Hu P, Wang R, Hu Q,
Cao F, Jiang T, Sun J, Xu G and Chang C: Management and treatment
of COVID-19: The Chinese experience. Can J Cardiol. 36:915–930.
2020.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Chen F, Chan KH, Jiang Y, Kao RY, Lu HT,
Fan KW, Cheng VC, Tsui WH, Hung IF, Lee TS, et al: In vitro
susceptibility of 10 clinical isolates of SARS coronavirus to
selected antiviral compounds. J Clin Virol. 31:69–75.
2004.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Chen N, Zhou M, Dong X, Qu J, Gong F, Han
Y, Qiu Y, Wang J, Liu Y, Wei Y, et al: Epidemiological and clinical
characteristics of 99 cases of 2019 novel coronavirus pneumonia in
Wuhan, China: A descriptive study. Lancet. 395:507–513.
2020.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Cao B, Wang Y, Wen D, Liu W, Wang J, Fan
G, Ruan L, Song B, Cai Y, Wei M, et al: A Trial of
Lopinavir-Ritonavir in adults hospitalized with severe Covid-19. N
Engl J Med. 382:1787–1799. 2020.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Gordon CJ, Tchesnokov EP, Feng JY, Porter
DP and Götte M: The antiviral compound remdesivir potently inhibits
RNA-dependent RNA polymerase from Middle East respiratory syndrome
coronavirus. J Biol Chem. 295:4773–4779. 2020.PubMed/NCBI View Article : Google Scholar
|
|
62
|
de Wit E, Feldmann F, Cronin J, Jordan R,
Okumura A, Thomas T, Scott D, Cihlar T and Feldmann H: Prophylactic
and therapeutic remdesivir (GS-5734) treatment in the rhesus
macaque model of MERS-CoV infection. Proc Natl Acad Sci USA.
117:6771–6776. 2020.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Agostini M, Andres E, Sims A, Graham R,
Sheahan T, Lu X, Smith E, Case J, Feng J, Jordan R, et al:
Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is
mediated by the viral polymerase and the proofreading
exoribonuclease. mBio. 9:e00221–18. 2018.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Sheahan TP, Sims AC, Graham RL, Menachery
VD, Gralinski LE, Case JB, Leist SR, Pyrc K, Feng JY, Trantcheva I,
et al: Broad-spectrum antiviral GS-5734 inhibits both epidemic and
zoonotic coronaviruses. Sci Transl Med. 9(eaal3653)2017.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Holshue ML, DeBolt C, Lindquist S, Lofy
KH, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkerson S, Tural
A, et al: First Case of 2019 Novel Coronavirus in the United
States. N Engl J Med. 382:929–936. 2020.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Grein J, Ohmagari N, Shin D, Diaz G,
Asperges E, Castagna A, Feldt T, Green G, Green ML, Lescure FX, et
al: Compassionate use of remdesivir for patients with severe
Covid-19. N Engl J Med. 382:2327–2336. 2020.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Wang Y, Zhang D, Du G, Du R, Zhao J, Jin
Y, Fu S, Gao L, Cheng Z, Lu Q, et al: Remdesivir in adults with
severe COVID-19: A randomised, double-blind, placebo-controlled,
multicentre trial. Lancet. 395:1569–1578. 2020.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Beigel JH, Tomashek KM and Dodd LE:
Remdesivir for the treatment of Covid-19-preliminary report. N Engl
J Med. 383(994)2020.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Coomes EA and Haghbayan H: Favipiravir, an
antiviral for COVID-19? J Antimicrob Chemother. 75:2013–2014.
2020.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Jacobs M, Aarons E, Bhagani S, Buchanan R,
Cropley I, Hopkins S, Lester R, Martin D, Marshall N, Mepham S, et
al: Post-exposure prophylaxis against Ebola virus disease with
experimental antiviral agents: A case-series of health-care
workers. Lancet Infect Dis. 15:1300–1304. 2015.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Bai CQ, Mu JS, Kargbo D, Song YB, Niu WK,
Nie WM, Kanu A, Liu WW, Wang YP, Dafae F, et al: Clinical and
virological characteristics of ebola virus disease patients treated
with favipiravir (T-705)-Sierra Leone, 2014. Clin Infect Dis.
63:1288–1294. 2016.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Sissoko D, Laouenan C, Folkesson E,
M'Lebing A-B, Beavogui A-H, Baize S, Camara A-M, Maes P, Shepherd
S, Danel C, et al: Experimental treatment with favipiravir for
ebola virus disease (the JIKI trial): A historically controlled,
single-arm proof-of-concept trial in Guinea. PLoS Med.
13(e1001967)2016.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Cai Q, Yang M, Liu D, Chen J, Shu D, Xia
J, Liao X, Gu Y, Cai Q, Yang Y, et al: Experimental treatment with
favipiravir for COVID-19: An open-label control study. Engineering
(Beijing): Mar 18, 2020. (Epub ahead of print).
|
|
74
|
Rainsford KD, Parke AL, Clifford-Rashotte
M and Kean WF: Therapy and pharmacological properties of
hydroxychloroquine and chloroquine in treatment of systemic lupus
erythematosus, rheumatoid arthritis and related diseases.
Inflammopharmacology. 23:231–269. 2015.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Keyaerts E, Vijgen L, Maes P, Neyts J and
Van Ranst M: In vitro inhibition of severe acute respiratory
syndrome coronavirus by chloroquine. Biochem Biophys Res Commun.
323:264–268. 2004.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Wang M, Cao R, Zhang L, Yang X, Liu J, Xu
M, Shi Z, Hu Z, Zhong W and Xiao G: Remdesivir and chloroquine
effectively inhibit the recently emerged novel coronavirus
(2019-nCoV) in vitro. Cell Res. 30:269–271. 2020.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Yao X, Ye F, Zhang M, Cui C, Huang B, Niu
P, Liu X, Zhao L, Dong E, Song C, et al: In vitro antiviral
activity and projection of optimized dosing design of
hydroxychloroquine for the treatment of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 71:732–739.
2020.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H,
Li Y, Hu Z, Zhong W and Wang M: Hydroxychloroquine, a less toxic
derivative of chloroquine, is effective in inhibiting SARS-CoV-2
infection in vitro. Cell Discovery. 6(16)2020.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Multicenter collaboration group of
Department of Science and Technology of Guangdong Province and
Health Commission of Guangdong Province for chloroquine in the
treatment of novel coronavirus pneumonia. Expert consensus on
chloroquine phosphate for the treatment of novel coronavirus
pneumonia. Zhonghua Jie He He Hu Xi Za Zhi. 43:185–188.
2020.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
|
80
|
Kupferschmidt K: Big studies dim hopes for
hydroxychloroquine. Science. 368:1166–1167. 2020.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Tang W, Cao Z, Han M, Wang Z, Chen J, Sun
W, Wu Y, Xiao W, Liu S, Chen E, et al: Hydroxychloroquine in
patients with mainly mild to moderate coronavirus disease 2019:
Open label, randomised controlled trial. BMJ.
369(m1849)2020.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Geleris J, Sun Y, Platt J, Zucker J,
Baldwin M, Hripcsak G, Labella A, Manson DK, Kubin C, Barr RG, et
al: Observational study of hydroxychloroquine in hospitalized
patients with Covid-19. N Engl J Med. 382:2411–2418.
2020.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Rosenberg ES, Dufort EM, Udo T,
Wilberschied LA, Kumar J, Tesoriero J, Weinberg P, Kirkwood J, Muse
A, DeHovitz J, et al: Association of treatment with
hydroxychloroquine or azithromycin with in-hospital mortality in
patients with COVID-19 in New York state. JAMA. 323:2493–2502.
2020.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Boulware DR, Pullen MF, Bangdiwala AS,
Pastick KA, Lofgren SM, Okafor EC, Skipper CP, Nascene AA, Nicol
MR, Abassi M, et al: A randomized trial of hydroxychloroquine as
postexposure prophylaxis for Covid-19. N Engl J Med. 383:517–525.
2020.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Fadel R, Morrison Austin R, Vahia A, Smith
ZR, Chaudhry Z, Bhargava P, Miller J, Kenney RM, Alangaden G and
Ramesh MS: Henry Ford COVID-19 Management Task Force: Early short
course corticosteroids in hospitalized patients with COVID-19. Clin
Infect Dis: May 19, 2020 (Epub ahead of print).
|
|
86
|
Shang L, Zhao J, Hu Y, Du R and Cao B: On
the use of corticosteroids for 2019-nCoV pneumonia. Lancet.
395:683–684. 2020.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Yazdanpanah F, Hamblin MR and Rezaei N:
The immune system and COVID-19: Friend or foe? Life Sciences.
256(117900)2020.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Kolilekas L, Loverdos K, Giannakaki S,
Vlassi L, Levounets A, Zervas E and Gaga M: Can steroids reverse
the severe COVID-19 induced ‘cytokine storm’? J Med Virol: Jun 12,
2020 (Epub ahead of print).
|
|
89
|
Taboada M, Caruezo V, Naveira A and
Atanassoff PG: Corticosteroids and the hyper-inflammatory phase of
the COVID-19 disease. J Clin Anesth. 66(109926)2020.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Russell CD, Millar JE and Baillie JK:
Clinical evidence does not support corticosteroid treatment for
2019-nCoV lung injury. Lancet. 395:473–475. 2020.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Li H, Chen C, Hu F, Wang J, Zhao Q, Gale
RP and Liang Y: Impact of corticosteroid therapy on outcomes of
persons with SARS-CoV-2, SARS-CoV, or MERS-CoV infection: A
systematic review and meta-analysis. Leukemia. 34:1503–1511.
2020.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Zha L, Li S, Pan L, Tefsen B, Li Y, French
N, Chen L, Yang G and Villanueva EV: Corticosteroid treatment of
patients with coronavirus disease 2019 (COVID-19). Med J Aust.
212:416–420. 2020.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Chen RC, Tang XP, Tan SY, Liang BL, Wan Z,
Fang JQ and Zhong N: Treatment of severe acute respiratory syndrome
with glucosteroids. Chest. 129:1441–1452. 2006.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Li H, Yang S, Gu L, Zhang Y, Yan X, Liang
Z, Zhang W, Jia H, Chen W, Liu M, et al: Effect of
low-to-moderate-dose corticosteroids on mortality of hospitalized
adolescents and adults with influenza A(H1N1)pdm09 viral pneumonia.
Influenza Other Respir Viruses. 11:345–354. 2017.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Villar J, Ferrando C, Martínez D, Ambrós
A, Muñoz T, Soler JA, Aguilar G, Alba F, González-Higueras E,
Conesa LA, et al: Dexamethasone treatment for the acute respiratory
distress syndrome: A multicentre, randomised controlled trial.
Lancet Respir Med. 8:267–276. 2020.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Zhao JP, Hu Y, Du RH, Chen ZS, Jin Y, Zhou
M, J Z, Qu JM and B C: Expert consensus on the use of
corticosteroid in patients with 2019-nCoV pneumonia. Zhonghua Jie
He He Hu Xi Za Zhi. 43(E007)2020.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
|
97
|
Gimeno J, Mestres-Truyol J, Ojeda-Montes
MJ, Macip G, Saldivar-Espinoza B, Cereto-Massagué A, Pujadas G and
Garcia-Vallvé S: Prediction of novel inhibitors of the main
protease (M-pro) of SARS-CoV-2 through consensus Docking and drug
reposition. Int J Mol Sci. 21(3793)2020.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Burmester GR, Feist E, Sleeman MA, Wang B,
White B and Magrini F: Mavrilimumab, a human monoclonal antibody
targeting GM-CSF receptor-α, in subjects with rheumatoid arthritis:
A randomised, double-blind, placebo-controlled, phase I,
first-in-human study. Ann Rheum Dis. 70:1542–1549. 2011.PubMed/NCBI View Article : Google Scholar
|
|
99
|
De Luca G, Cavalli G, Campochiaro C,
Della-Torre E, Angelillo P, Tomelleri A, Boffini N, Tentori S,
Mette F, Farina N, et al: GM-CSF blockade with mavrilimumab in
severe COVID-19 pneumonia and systemic hyperinflammation: A
single-centre, prospective cohort study. Lancet Rheumatol.
2:e465–e473. 2020.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Vijayvargiya P, Esquer Garrigos Z,
Castillo Almeida NE, Gurram PR, Stevens RW and Razonable RR:
Treatment considerations for COVID-19: A critical review of the
evidence (or Lack Thereof). Mayo Clin Proc. 95:1454–1466.
2020.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Temesgen Z, Assi M, Shweta FNU, Vergidis
P, Rizza SA, Bauer PR, Pickering BW, Razonable RR, Libertin CR,
Burger CD, et al: GM-CSF neutralization with lenzilumab in severe
COVID-19 pneumonia: A case-control study. Mayo Clin Proc, 2020.
|
|
102
|
Temesgen Z, Assi M, Vergidis P, Rizza SA,
Bauer PR, Pickering BW, Razonable RR, Libertin CR, Burger CD,
Orenstein R, et al: First clinical use of lenzilumab to neutralize
GM-CSF in patients with severe COVID-19 pneumonia. medRxiv
2020.2006.2008.20125369, 2020.
|
|
103
|
Alijotas-Reig J, Esteve-Valverde E,
Belizna C, Selva-O'Callaghan A, Pardos-Gea J, Quintana A, Mekinian
A, Anunciacion-Llunell A and Miró-Mur F: Immunomodulatory therapy
for the management of severe COVID-19. Beyond the anti-viral
therapy: A comprehensive review. Autoimmun Rev.
19(102569)2020.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Garbers C, Heink S, Korn T and Rose-John
S: Interleukin-6: Designing specific therapeutics for a complex
cytokine. Nat Rev Drug Discov. 17:395–412. 2018.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Pfäfflin A and Schleicher E: Inflammation
markers in point-of-care testing (POCT). Anal Bioanal Chem.
393:1473–1480. 2009.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Bloos F and Reinhart K: Rapid diagnosis of
sepsis. Virulence. 5:154–160. 2014.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Ma L, Zhang H, Yin Y, Guo W, Ma Y, Wang Y,
Shu C and Dong L: Role of interleukin-6 to differentiate sepsis
from non-infectious systemic inflammatory response syndrome.
Cytokine. 88:126–135. 2016.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Xu X, Han M, Li T, Sun W, Wang D, Fu B,
Zhou Y, Zheng X, Yang Y, Li X, et al: Effective treatment of severe
COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA.
117:10970–10975. 2020.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Taylor PC, Keystone EC, van der Heijde D,
Weinblatt ME, del Carmen Morales L, Reyes Gonzaga J, Yakushin S,
Ishii T, Emoto K, Beattie S, et al: Baricitinib versus Placebo or
Adalimumab in Rheumatoid Arthritis. N Engl J Med. 376:652–662.
2017.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Bronte V, Ugel S, Tinazzi E, Vella A, De
Sanctis F, Canè S, Batani V, Trovato R, Fiore A, Petrova V, et al:
Baricitinib restrains the immune dysregulation in severe COVID-19
patients. J Clin Invest: 141772, 2020. Doi: 10.1172/JCI141772.
(Online ahead of print).
|
|
111
|
Stebbing J, Phelan A, Griffin I, Tucker C,
Oechsle O, Smith D and Richardson P: COVID-19: Combining antiviral
and anti-inflammatory treatments. Lancet Infect Dis. 20:400–402.
2020.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Jorgensen SCJ, Ly Tse C, Burry L and
Dresser LD: Baricitinib: A review of pharmacology, safety and
emerging clinical experience in COVID-19. Pharmacotherapy.
40:843–856. 2020.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Richardson P, Griffin I, Tucker C, Smith
D, Oechsle O, Phelan A, Rawling M, Savory E and Stebbing J:
Baricitinib as potential treatment for 2019-nCoV acute respiratory
disease. Lancet. 395:e30–e31. 2020.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Cantini F, Niccoli L, Matarrese D,
Nicastri E, Stobbione P and Goletti D: Baricitinib therapy in
COVID-19: A pilot study on safety and clinical impact. J Infect.
81:318–356. 2020.PubMed/NCBI View Article : Google Scholar
|
|
115
|
National Institute of Allergy and
Infectious Diseases: Adaptive COVID-19 Treatment Trial 2.
urihttp://ClinicalTrials.govsimpleClinicalTrials.gov
Identifier: NCT04401579. urihttps://clinicaltrials.gov/ct2/show/NCT04401579?cond=ACTT-2&draw=2&rank=1simplehttps://clinicaltrials.gov/ct2/show/NCT04401579?cond=ACTT-2&draw=2&rank=1.
Last Updated August 13, 2020.
|
|
116
|
National Institute of Allergy and
Infectious Diseases: Adaptive COVID-19 treatment trial (ACTT).
urihttp://ClinicalTrials.govsimpleClinicalTrials.gov
Identifier: NCT04280705. urihttps://clinicaltrials.gov/ct2/show/study/NCT04280705simplehttps://clinicaltrials.gov/ct2/show/study/NCT04280705.
|
|
117
|
Wu R, Wang L, Kuo HD, Shannar A, Peter R,
Chou PJ, Li S, Hudlikar R, Liu X, Liu Z, et al: An update on
current therapeutic drugs treating COVID-19. Curr Pharmacol.
Rep:1–15. 2020.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Roback JD and Guarner J: Convalescent
plasma to treat COVID-19: Possibilities and challenges. JAMA.
323:1561–1562. 2020.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan
J, Wang F, Li D, Yang M, Xing L, et al: Treatment of 5 critically
ill patients with COVID-19 with convalescent plasma. JAMA.
323:1582–1589. 2020.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Xia X, Li K, Wu L, Wang Z, Zhu M, Huang B,
Li J, Wang Z, Wu W, Wu M, et al: Improved clinical symptoms and
mortality among patients with severe or critical COVID-19 after
convalescent plasma transfusion. Blood. 136:755–759.
2020.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Hegerova L, Gooley TA, Sweerus KA, Maree
C, Bailey N, Bailey M, Dunleavy V, Patel K, Alcorn K, Haley R, et
al: Use of convalescent plasma in hospitalized patients with
Covid-19: Case series. Blood. 136:759–762. 2020.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Duan K, Liu B, Li C, Zhang H, Yu T, Qu J,
Zhou M, Chen L, Meng S, Hu Y, et al: Effectiveness of convalescent
plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA.
117:9490–9496. 2020.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Li L, Zhang W, Hu Y, Tong X, Zheng S, Yang
J, Kong Y, Ren L, Wei Q, Mei H, et al: Effect of convalescent
plasma therapy on time to clinical improvement in patients with
severe and life-threatening COVID-19: A randomized clinical trial.
JAMA. 324:460–470. 2020.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Sharpe HR, Gilbride C, Allen E,
Belij-Rammerstorfer S, Bissett C, Ewer K and Lambe T: The early
landscape of coronavirus disease 2019 vaccine development in the UK
and rest of the world. Immunology. 160:223–232. 2020.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Callaway E: The race for coronavirus
vaccines: A graphical guide. Nature. 580:576–577. 2020.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M,
Li Y, Zhu L, Wang N, Lv Z, et al: Development of an inactivated
vaccine candidate for SARS-CoV-2. Science. 369:77–81.
2020.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Wang H, Zhang Y, Huang B, Deng W, Quan Y,
Wang W, Xu W, Zhao Y, Li N, Zhang J, et al: Development of an
inactivated vaccine candidate, BBIBP-CorV, with potent protection
against SARS-CoV-2. Cell. 182:713–721.e9. 2020.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Zhu FC, Li YH, Guan XH, Hou LH, Wang WJ,
Li JX, Wu SP, Wang BS, Wang Z, Wang L, et al: Safety, tolerability,
and immunogenicity of a recombinant adenovirus type-5 vectored
COVID-19 vaccine: A dose-escalation, open-label, non-randomised,
first-in-human trial. Lancet. 395:1845–1854. 2020.PubMed/NCBI View Article : Google Scholar
|