|
1
|
Spiegelman BM and Flier JS: Obesity and
the regulation of energy balance. Cell. 104:531–543.
2001.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Haslam DW and James WP: Obesity. Lancet.
366:1197–1209. 2005.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Executive summary of the clinical
guidelines on the identification evaluation and treatment of
overweight and obesity in adults. Arch Intern Med. 158:1855–1867.
1998.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Bray GA, Heisel WE, Afshin A, Jensen MD,
Dietz WH, Long M, Kushner RF, Daniels SR, Wadden TA, Tsai AG, et
al: The science of obesity management: An endocrine society
scientific statement. Endocr Rev. 9:79–132. 2018.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Jin J: JAMA patient page. Specific
medications for weight loss. JAMA. 314(742)2015.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Hill JO and Wyatt HR: Relapse in obesity
treatment: Biology or behavior? Am J Clin Nutr. 69:1064–1065.
1999.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Wang H and Zhai F: Programme and policy
options for preventing obesity in China. Obes Rev. 14 (Suppl
2):S134–S140. 2013.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Ahrens VM, Bellmann-Sickert K and
Beck-Sickinger AG: Peptides and peptide conjugates: Therapeutics on
the upward path. Future Med Chem. 4:1567–1586. 2012.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Fosgerau K and Hoffmann T: Peptide
therapeutics: Current status and future directions. Drug Discov
Today. 20:122–128. 2015.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Greenwood HC, Bloom SR and Murphy KG:
Peptides and their potential role in the treatment of diabetes and
obesity. Rev Diabet Stud. 8:355–368. 2011.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Wan Y, Xue R, Wang Y, Zhang Q, Huang S, Wu
W, Ye H, Zhang Z and Li Y: The effect of neuropeptide Y on
brown-like adipocyte's differentiation and activation. Peptides.
63:126–133. 2015.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Zhang H, Zhang SY, Jiang C, Li Y, Xu G, Xu
MJ and Wang X: Intermedin/adrenomedullin 2 polypeptide promotes
adipose tissue browning and reduces high-fat diet-induced obesity
and insulin resistance in mice. Int J Obes (Lond). 40:852–860.
2016.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Bordicchia M, Liu D, Amri EZ, Ailhaud G,
Dessì-Fulgheri P, Zhang C, Takahashi N, Sarzani R and Collins S:
Cardiac natriuretic peptides act via p38 MAPK to induce the brown
fat thermogenic program in mouse and human adipocytes. J Clin
Invest. 122:1022–1036. 2012.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Lowell BB and Flier JS: Brown adipose
tissue, beta 3-adrenergic receptors, and obesity. Annu Rev Med.
48:307–316. 1997.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Arner P and Kulyté A: MicroRNA regulatory
networks in human adipose tissue and obesity. Nat Rev Endocrinol.
11:276–288. 2015.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Nedergaard J, Bengtsson T and Cannon B:
Unexpected evidence for active brown adipose tissue in adult
humans. Am J Physiol Endocrinol Metab. 293:E444–E452.
2007.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Cypess AM, Lehman S, Williams G, Tal I,
Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, et al:
Identification and importance of brown adipose tissue in adult
humans. N Engl J Med. 360:1509–1517. 2009.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Saito M, Okamatsuogura Y, Matsushita M,
Watanabe K, Yoneshiro T, Nio-Kobayashi J, Iwanaga T, Miyagawa M,
Kameya T, Nakada K, et al: High incidence of metabolically active
brown adipose tissue in healthy adult humans effects of cold
exposure and adiposity. Diabetes. 58:1526–1531. 2009.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Virtanen KA, Lidell ME, Orava J, Heglind
M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ,
Enerbäck S and Nuutila P: Functional brown adipose tissue in
healthy adults. N Engl J Med. 360:1518–1525. 2009.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Orava J, Nuutila P, Lidell ME, Oikonen V,
Noponen T, Viljanen T, Scheinin M, Taittonen M, Niemi T, Enerbäck S
and Virtanen KA: Different metabolic responses of human brown
adipose tissue to activation by cold and insulin. Cell Metab.
14:272–279. 2011.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Cannon B and Nedergaard J: Brown adipose
tissue: Function and physiological significance. Physiol Rev.
84:277–359. 2004.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Heath V: Metabolism imaging studies
suggest a role for brown adipose tissue in adult humans. Nat Rev
Endocrinol. 5(411)2009.
|
|
23
|
Young P, Arch JR and Ashwell M: Brown
adipose tissue in the parametrial fat pad of the mouse. FEBS Lett.
167:10–14. 1984.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Cousin B, Cinti S, Morroni M, Raimbault S,
Ricquier D, Pénicaud L and Casteilla L: Occurrence of brown
adipocytes in rat white adipose tissue: Molecular and morphological
characterization. J Cell Sci. 103:931–942. 1992.PubMed/NCBI
|
|
25
|
Wu J, Boström P, Sparks LM, Ye L, Choi JH,
Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, et al:
Beige adipocytes are a distinct type of thermogenic fat cell in
mouse and human. Cell. 150:366–376. 2012.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Chen Y, Pan R and Pfeifer A: Regulation of
brown and beige fat by microRNAs. Pharmacol Ther. 170:1–7.
2017.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Xue B, Rim JS, Hogan JC, Coulter AA, Koza
RA and Kozak LP: Genetic variability affects the development of
brown adipocytes in white fat but not in interscapular brown fat. J
Lipid Res. 48:41–51. 2007.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Hoffmann LS, Larson CJ and Pfeifer A: cGMP
and brown adipose tissue. Handb Exp Pharmacol. 233:283–299.
2016.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Lenz LS, Marx J, Chamulitrat W, Kaiser I,
Gröne HJ, Liebisch G, Schmitz G, Elsing C, Straub BK, Füllekrug J,
et al: Adipocyte-specific inactivation of Acyl-CoA synthetase fatty
acid transport protein 4 (Fatp4) in mice causes adipose hypertrophy
and alterations in metabolism of complex lipids under high fat
diet. J Biol Chem. 286:35578–35587. 2011.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Fukui Y, Masui S, Osada S, Umesono K and
Motojima K: A new thiazolidinedione, NC-2100, which is a weak
PPAR-gamma activator, exhibits potent antidiabetic effects and
induces uncoupling protein 1 in white adipose tissue of KKAy obese
mice. Diabetes. 49:759–767. 2000.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Wilson-Fritch L, Nicoloro S, Chouinard M,
Lazar MA, Chui PC, Leszyk J, Straubhaar J, Czech MP and Corvera S:
Mitochondrial remodeling in adipose tissue associated with obesity
and treatment with rosiglitazone. J Clin Invest. 114:1281–1289.
2004.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Petrovic N, Walden TB, Shabalina IG,
Timmons JA, Cannon B and Nedergaard J: Chronic peroxisome
proliferator-activated receptor gamma (PPARgamma) activation of
epididymally derived white adipocyte cultures reveals a population
of thermogenically competent, UCP1-containing adipocytes
molecularly distinct from classic brown adipocytes. J Biol Chem.
285:7153–7164. 2010.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Hondares E, Mora O, Yubero P, Rodriguez de
la Concepción M, Iglesias R, Giralt M and Villarroya F:
Thiazolidinediones and rexinoids induce peroxisome
proliferator-activated receptor-coactivator (PGC)-1alpha gene
transcription: An autoregulatory loop controls PGC-1alpha
expression in adipocytes via peroxisome proliferator-activated
receptor-gamma coactivation. Endocrinology. 147:2829–2838.
2006.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Zasloff M: Antimicrobial peptides of
multicellular organisms. Nature. 415:389–395. 2002.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Lauressergues D, Couzigou JM, Clemente HS,
Martinez Y, Dunand C, Bécard G and Combier JP: Primary transcripts
of microRNAs encode regulatory peptides. Nature. 520:90–93.
2015.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Szafron LM, Balcerak A, Grzybowska EA,
Pienkowska-Grela B, Felisiak-Golabek A, Podgorska A, Kulesza M,
Nowak N, Pomorski P, Wysocki J, et al: The novel gene CRNDE encodes
a nuclear peptide (CRNDEP) which is overexpressed in highly
proliferating tissues. PLoS One. 10(e0127475)2015.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Matsumoto A, Pasut A, Matsumoto M,
Yamashita R, Fung J, Monteleone E, Saghatelian A, Nakayama KI,
Clohessy JG and Pandolfi PP: mTORC1 and muscle regeneration are
regulated by the LINC00961-encoded SPAR polypeptide. Nature.
541:228–232. 2017.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Jaffe LA and Egbert JR: Regulation of
mammalian oocyte meiosis by intercellular communication within the
ovarian follicle. Annu Rev Physiol. 79:237–260. 2017.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Nguyen AD, Herzog H, Sainsbury A,
Neuropeptide Y and peptide YY: Important regulators of energy
metabolism. Curr Opin Endocrinol Diabetes Obes. 18:56–60.
2011.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Saido TC: Metabolism of amyloid β peptide
and pathogenesis of Alzheimer's disease. Proc Jpn Acad Ser B Phys
Biol Sci. 89:321–339. 2013.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Celik O, Aydin S, Celik N and Yilmaz M:
Peptides: Basic determinants of reproductive functions. Peptides.
72:34–43. 2015.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Cunha C, Panseri S and Gelain F:
Engineering of a 3D nanostructured scaffold made of functionalized
self-assembling peptides and encapsulated neural stem cells.
Methods Mol Biol. 1058:171–182. 2013.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Long M, Zhou J, Li D, Zheng L, Xu Z and
Zhou S: Long-term over-expression of neuropeptide Y in hypothalamic
paraventricular nucleus contributes to adipose tissue insulin
resistance partly via the Y5 receptor. PLoS One.
10(e0126714)2015.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Flier JS and Maratos-Flier E: Leptin's
physiologic role: Does the emperor of energy balance have no
clothes? Cell Metab. 26:24–26. 2017.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Rabbani G, Baig MH, Ahmad K and Choi I:
Protein-protein interactions and their role in various diseases and
their prediction techniques. Curr Protein Pept Sci. 19:948–957.
2018.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Henry S, Bercu NB, Bobo C, Cullin C,
Molinari M and Lecomte S: Interaction of Aβ1-42 peptide or their
variant with model membrane of different composition probed by
infrared nanospectroscopy. Nanoscale. 10:936–940. 2018.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Brink HS, van der Lely AJ, Delhanty PJD,
Huisman M and van der Linden J: Gestational diabetes mellitus and
the ghrelin system. Diabetes Metab. 45:393–395. 2019.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Hoggard N, Haggarty P, Thomas L and Lea
RG: Leptin expression in placental and fetal tissues: Does leptin
have a functional role? Biochem Soc Trans. 29:57–63.
2001.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Picó C, Oliver P, Sánchez J and Palou A:
Gastric leptin: A putative role in the short-term regulation of
food intake. Br J Nutr. 90:735–741. 2003.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Telli G BC, Yersal N, Korkusuz P and
Gumusel B: Effect of intermedin/adrenomedullin2 on the
pulmonary vascular bed in hypoxia-induced pulmonary hypertensive
rats. Life Sci. 192:62–67. 2018.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Gao S, Ghoshal S, Zhang L, Stevens JR,
McCommis KS, Finck BN, Lopaschuk GD and Butler AA: The peptide
hormone adropin regulates signal transduction pathways controlling
hepatic glucose metabolism in a mouse model of diet-induced
obesity. J Biol Chem. 294:13366–13377. 2019.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Klok MD, Jakobsdottir S and Drent ML: The
role of leptin and ghrelin in the regulation of food intake and
body weight in humans: A review. Obes Rev. 8:21–34. 2007.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Montague CT, Farooqi IS, Whitehead JP,
Soos MA, Rau H, Wareham NJ, Sewter CP, Digby JE, Mohammed SN, Hurst
JA, et al: Congenital leptin deficiency is associated with severe
early-onset obesity in humans. Nature. 387:903–908. 1997.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Jeon JY, Steadward RD, Wheeler GD, Bell G,
McCargar L and Harber V: Intact sympathetic nervous system is
required for leptin effects on resting metabolic rate in people
with spinal cord injury. J Clin Endocrinol Metab. 88:402–407.
2003.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Farooqi IS, Keogh JM, Kamath S, Jones S,
Gibson WT, Trussell R, Jebb SA, Lip GY and O'Rahilly S: Partial
leptin deficiency and human adiposity. Nature. 414:34–35.
2001.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Sobhani I, Vissuzaine C, Buyse M,
Kermorgant S, Laigneau JP, Henin D, Bado A and Lewin MJ: Leptin
secretion and leptin receptor in human stomach. Gastroenterology.
118(PA34)2000.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Attele AS, Shi ZQ and Yuan CS: Leptin,
gut, and food intake. Biochem Pharmacol. 63:1579–1583.
2002.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Sobhani I, Buyse M, Goïot H, Weber N,
Laigneau JP, Henin D, Soul JC and Bado A: Vagal stimulation rapidly
increases leptin secretion in human stomach. Gastroenterology.
122:259–263. 2002.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Dodd GT, Decherf S, Loh K, Simonds SE,
Wiede F, Balland E, Merry TL, Münzberg H, Zhang ZY, Kahn BB, et al:
Leptin and insulin act on POMC neurons to promote the browning of
white fat. Cell. 160:88–104. 2015.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Friedman J: The long road to leptin. J
Clin Invest. 126:4727–4734. 2016.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Cui H, López M and Rahmouni K: The
cellular and molecular bases of leptin and ghrelin resistance in
obesity. Nat Rev Endocrinol. 13:338–351. 2017.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Procaccini C, La Rocca C, Carbone F, De
Rosa V, Galgani M and Matarese G: Leptin as immune mediator:
Interaction between neuroendocrine and immune system. Dev Comp
Immunol. 66:120–129. 2017.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Klein S, Horowitz JF, Landt M, Goodrick
SJ, Mohamed-Ali V and Coppack SW: Leptin production during early
starvation in lean and obese women. Am J Physiol Endocrinol Metab.
278:E280–E284. 2000.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Chan JL, Kathleen H, Depaoli AM, Veldhuis
JD and Mantzoros CS: The role of falling leptin levels in the
neuroendocrine and metabolic adaptation to short-term starvation in
healthy men. J Clin Invest. 111:1409–1421. 2003.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Duarte-Neves J, de Almeida LP and Cavadas
C: Neuropeptide Y (NPY) as a therapeutic target for
neurodegenerative diseases. Neurobiol Dis. 95:210–224.
2016.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Lee SJ, Verma S, Simonds SE, Kirigiti MA,
Kievit P, Lindsley SR, Loche A, Smith MS, Cowley MA and Grove KL:
Leptin stimulates neuropeptide Y and cocaine amphetamine-regulated
transcript coexpressing neuronal activity in the dorsomedial
hypothalamus in diet-induced obese mice. J Neurosci.
33:15306–15317. 2013.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Loh K, Herzog H and Shi YC: Regulation of
energy homeostasis by the NPY system. Trends Endocrinol Metab.
26:125–135. 2015.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Shi YC, Lau J, Lin Z, Zhang H, Zhai L,
Sperk G, Heilbronn R, Mietzsch M, Weger S, Huang XF, et al: Arcuate
NPY controls sympathetic output and BAT function via a relay of
tyrosine hydroxylase neurons in the PVN. Cell Metab. 17:236–248.
2013.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Kuo LE, Kitlinska JB, Tilan JU, Li L,
Baker SB, Johnson MD, Lee EW, Burnett MS, Fricke ST, Kvetnansky R,
et al: Neuropeptide Y acts directly in the periphery on fat tissue
and mediates stress-induced obesity and metabolic syndrome. Nat
Med. 13:803–811. 2007.PubMed/NCBI View
Article : Google Scholar
|
|
70
|
Pandey SC: Anxiety and alcohol abuse
disorders: A common role for CREB and its target, the neuropeptide
Y gene. Trends Pharmacol Sci. 24:456–460. 2003.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Meier JJ: GLP-1 receptor agonists for
individualized treatment of type 2 diabetes mellitus. Nat Rev
Endocrinol. 8:728–742. 2012.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Vogel H, Wolf S, Rabasa C,
Rodriguez-Pacheco F, Babaei CS, Stöber F, Goldschmidt J, DiMarchi
RD, Finan B, Tschöp MH, et al: GLP-1 and estrogen conjugate acts in
the supramammillary nucleus to reduce food-reward and body weight.
Neuropharmacology. 110:396–406. 2016.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Baggio LL, Huang Q, Brown TJ and Drucker
DJ: Oxyntomodulin and glucagon-like peptide-1 differentially
regulate murine food intake and energy expenditure.
Gastroenterology. 127:546–558. 2004.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Turton MD, O'Shea D, Gunn I, Beak SA,
Edwards CM, Meeran K, Choi SJ, Taylor GM, Heath MM, Lambert PD, et
al: A role for glucagon-like peptide-1 in the central regulation of
feeding. Nature. 379:69–72. 1996.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Perez-Tilve D, Nogueiras R, Mallo F,
Benoit SC and Tschoep M: Gut hormones ghrelin, PYY, and GLP-1 in
the regulation of energy balance [corrected] and metabolism.
Endocrine. 29:61–71. 2006.PubMed/NCBI View Article : Google Scholar
|
|
76
|
El Bekay R, Coín-Aragüez L,
Fernández-García D, Oliva-Olivera W, Bernal-López R,
Clemente-Postigo M, Delgado-Lista J, Diaz-Ruiz A, Guzman-Ruiz R,
Vázquez-Martínez R, et al: Effects of glucagon-like peptide-1 on
the differentiation and metabolism of human adipocytes. Br J
Pharmacol. 173:1820–1834. 2016.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Xu F, Lin B, Zheng X, Chen Z, Cao H, Xu H,
Liang H and Weng J: GLP-1 receptor agonist promotes brown
remodelling in mouse white adipose tissue through SIRT1.
Diabetologia. 59:1059–1069. 2016.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Kojima M, Hosoda H, Date Y, Nakazato M,
Matsuo H and Kangawa K: Ghrelin is a growth-hormone-releasing
acylated peptide from stomach. Nature. 402:656–660. 1999.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Garin MC, Burns CM, Kaul S and Cappola AR:
Clinical review: The human experience with ghrelin administration.
J Clin Endocrinol Metab. 98:1826–1837. 2013.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Yakabi K, Kawashima J and Kato S: Ghrelin
and gastric acid secretion. World J Gastroenterol. 14:6334–6338.
2008.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Tritos NA and Kokkotou EG: The physiology
and potential clinical applications of ghrelin, a novel peptide
hormone. Mayo Clin Proc. 81:653–660. 2006.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Tschöp M, Smiley DL and Heiman ML: Ghrelin
induces adiposity in rodents. Nature. 407:908–913. 2000.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Shaw AM, Irani BG, Moore MC,
Haskell-Luevano C and Millard WJ: Ghrelin-induced food intake and
growth hormone secretion are altered in melanocortin 3 and 4
receptor knockout mice. Peptides. 26:1720–1727. 2005.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Kirchner H, Tong J, Tschöp MH and Pfluger
PT: Ghrelin and PYY in the regulation of energy balance and
metabolism: Lessons from mouse mutants. Am J Physiol Endocrinol
Metab. 298:E909–E919. 2010.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Mihalache L, Gherasim A, Niţă O, Ungureanu
MC, Pădureanu SS, Gavril RS and Arhire LI: Effects of ghrelin in
energy balance and body weight homeostasis. Hormones (Athens).
15:186–196. 2016.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Kitahara A, Takahashi K, Moriya R, Onuma
H, Handa K, Sumitani Y, Tanaka T, Katsuta H, Nishida S, Sakurai T,
et al: Ghrelin augments the expressions and secretions of
proinflammatory adipokines, VEGF120 and MCP-1, in differentiated
3T3-L1 adipocytes. J Cell Physiol. 230:199–209. 2015.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Cummings DE, Purnell JQ, Frayo RS,
Schmidova K, Wisse BE and Weigle DS: A preprandial rise in plasma
ghrelin levels suggests a role in meal initiation in humans.
Diabetes. 50:1714–1719. 2001.PubMed/NCBI View Article : Google Scholar
|
|
88
|
van der Lely AJ, Tschöp M, Heiman ML and
Ghigo E: Biological, physiological, pathophysiological, and
pharmacological aspects of ghrelin. Endocr Rev. 25:426–457.
2004.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Bell D and McDermott BJ: Intermedin
(adrenomedullin-2): A novel counter-regulatory peptide in the
cardiovascular and renal systems. Br J Pharmacol. 153 (Suppl
1):S247–S262. 2008.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Zhang SY, Lv Y, Zhang H, Gao S, Wang T,
Feng J, Wang Y, Liu G, Xu MJ, Wang X and Jiang C: Adrenomedullin 2
improves early obesity-induced adipose insulin resistance by
inhibiting the class II MHC in adipocytes. Diabetes. 65:2342–2355.
2016.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Boström P, Wu J, Jedrychowski MP, Korde A,
Ye L, Lo JC, Rasbach KA, Boström EA, Choi JH, Long JZ, et al: A
PGC1-α-dependent myokine that drives brown-fat-like development of
white fat and thermogenesis. Nature. 481:463–468. 2012.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Metwally M, Bayoumi A, Romero-Gomez M,
Thabet K, John M, Adams LA, Huo X, Aller R, García-Monzón C, Teresa
Arias-Loste M, et al: A polymorphism in the Irisin-encoding gene
(FNDC5) associates with hepatic steatosis by differential miRNA
binding to the 3'UTR. J Hepatol. 70:494–500. 2019.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Moreno-Navarrete JM, Ortega F, Serrano M,
Guerra E, Pardo G, Tinahones F, Ricart W and Fernández-Real JM:
Irisin is expressed and produced by human muscle and adipose tissue
in association with obesity and insulin resistance. J Clin
Endocrinol Metab. 98:E769–E778. 2013.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Pérez-Sotelo D, Roca-Rivada A, Baamonde I,
Baltar J, Castro AI, Domínguez E, Collado M, Casanueva FF and Pardo
M: Lack of adipocyte-Fndc5/Irisin expression and secretion reduces
thermogenesis and enhances adipogenesis. Sci Rep.
7(16289)2017.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Lee P, Linderman JD, Smith S, Brychta RJ,
Wang J, Idelson C, Perron RM, Werner CD, Phan GQ, Kammula US, et
al: Irisin and FGF21 are cold-induced endocrine activators of brown
fat function in humans. Cell Metab. 19:302–309. 2014.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Ghoshal S, Stevens JR, Billon C, Girardet
C, Sitaula S, Leon AS, Rao DC, Skinner JS, Rankinen T, Bouchard C,
et al: Adropin: An endocrine link between the biological clock and
cholesterol homeostasis. Mol Metab. 8:51–64. 2018.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Ganesh Kumar K, Zhang J, Gao S, Rossi J,
McGuinness OP, Halem HH, Culler MD, Mynatt RL and Butler AA:
Adropin deficiency is associated with increased adiposity and
insulin resistance. Obesity (Silver Spring). 20:1394–1402.
2012.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Chen S, Zeng K, Liu QC, Guo Z, Zhang S,
Chen XR, Lin JH, Wen JP, Zhao CF, Lin XH and Gao F: Adropin
deficiency worsens HFD-induced metabolic defects. Cell Death Dis.
8(e3008)2017.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Jasaszwili M, Wojciechowicz T, Billert M,
Strowski MZ, Nowak KW and Skrzypski M: Effects of adropin on
proliferation and differentiation of 3T3-L1 cells and rat primary
preadipocytes. Mol Cell Endocrinol. 496(110532)2019.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Aydin S: Three new players in energy
regulation: Preptin, adropin and irisin. Peptides. 56:94–110.
2014.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Mierzwicka A and Bolanowski M: New
peptides players in metabolic disorders. Postepy Hig Med Dosw
(Online). 70:881–886. 2016.PubMed/NCBI View Article : Google Scholar
|
|
102
|
El-Eshmawy M and Abdel Aal I:
Relationships between preptin and osteocalcin in obese, overweight,
and normal weight adults. Appl Physiol Nutr Metab. 40:218–222.
2015.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Chen X, Zaro JL and Shen WC: Fusion
protein linkers: Property, design and functionality. Adv Drug Deliv
Rev. 65:1357–1369. 2013.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Plamboeck A, Holst JJ, Carr RD and Deacon
CF: Neutral endopeptidase 24.11 and dipeptidyl peptidase IV are
both involved in regulating the metabolic stability of
glucagon-like peptide-1 in vivo. Adv Exp Med Biol. 524:303–312.
2003.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Tomas E, Wood JA, Stanojevic V and Habener
JF: GLP-1-derived nonapeptide GLP-1(28-36)amide inhibits weight
gain and attenuates diabetes and hepatic steatosis in diet-induced
obese mice. Regul Pept. 169:43–48. 2011.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Tomas E, Wood JA, Stanojevic V and Habener
JF: Glucagon-like peptide-1(9-36)amide metabolite inhibits weight
gain and attenuates diabetes and hepatic steatosis in diet-induced
obese mice. Diabetes Obes Metab. 13:26–33. 2011.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Tomas E, Stanojevic V, McManus K, Khatri
A, Everill P, Bachovchin WW and Habener JF: GLP-1(32-36)amide
pentapeptide increases basal energy expenditure and inhibits weight
gain in obese mice. Diabetes. 64:2409–2419. 2015.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Jankovic J: Parkinson disease: Exenatide-a
drug for diabetes and Parkinson disease? Nat Rev Neurol.
13:643–644. 2017.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Bondeson DP and Crews CM: Targeted protein
degradation by small molecules. Annu Rev Pharmacol Toxicol.
57:107–123. 2017.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Demirel HC, Dogan T and Tuncbag N: A
structural perspective on the modulation of protein-protein
interactions with small molecules. Curr Top Med Chem. 18:700–713.
2018.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Svensson KJ, Long JZ, Jedrychowski MP,
Cohen P, Lo JC, Serag S, Kir S, Shinoda K, Tartaglia JA, Rao RR, et
al: A secreted Slit2 fragment regulates adipose tissue
thermogenesis and metabolic function. Cell Metab. 23:454–466.
2016.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Phuong TTT, Walker AE, Henson GD, Machin
DR, Li DY, Donato AJ and Lesniewski LA: Deletion of Robo4 prevents
high-fat diet-induced adipose artery and systemic metabolic
dysfunction. Microcirculation. 26(e12540)2019.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Romere C, Duerrschmid C, Bournat J,
Constable P, Jain M, Xia F, Saha PK, Del Solar M, Zhu B, York B, et
al: Asprosin, a fasting-induced glucogenic protein hormone. Cell.
165:566–579. 2016.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Ricci-Cabello I, Herrera MO and Artacho R:
Possible role of milk-derived bioactive peptides in the treatment
and prevention of metabolic syndrome. Nutr Rev. 70:241–255.
2012.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Capriotti AL, Cavaliere C, Piovesana S,
Samperi R and Laganà A: Recent trends in the analysis of bioactive
peptides in milk and dairy products. Anal Bioanal Chem.
408:2677–2685. 2016.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Sawada Y, Sakamoto Y, Toh M, Ohara N,
Hatanaka Y, Naka A, Kishimoto Y, Kondo K and Iida K: Milk-derived
peptide Val-Pro-Pro (VPP) inhibits obesity-induced adipose
inflammation via an angiotensin-converting enzyme (ACE) dependent
cascade. Mol Nutr Food Res. 59:2502–2510. 2016.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Xu SP, Mao XY, Cheng X and Chen B:
Ameliorating effects of casein glycomacropeptide on obesity induced
by high-fat diet in male sprague-dawley rats. Food Chem Toxicol.
56:1–7. 2013.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Cui X, Li Y, Yang L, You L, Wang X, Shi C,
Ji C and Guo X: Peptidome analysis of human milk from women
delivering macrosomic fetuses reveals multiple means of protection
for infants. Oncotarget. 7:63514–63525. 2016.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Azkargorta M, Escobes I, Iloro I and
Elortza F: Mass spectrometric identification of endogenous
peptides. Methods Mol Biol. 1719:59–70. 2018.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Goldberg AL: Protein degradation and
protection against misfolded or damaged proteins. Nature.
426:895–899. 2003.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Lázaro S, Gamarra D and Val M: Proteolytic
enzymes involved in MHC class I antigen processing: A guerrilla
army that partners with the proteasome. Mol Immunol. 68:72–76.
2015.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Fricker LD: Analysis of mouse brain
peptides using mass spectrometry-based peptidomics: Implications
for novel functions ranging from non-classical neuropeptides to
microproteins. Mol Biosyst. 6:1355–1365. 2010.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Castro LM, Berti DA, Russo LC, Coelho V,
Gozzo FC, Oliveira V and Ferro ES: Similar intracellular peptide
profile of TAP1/β2 microglobulin double-knockout mice and C57BL/6
wild-type mice as revealed by peptidomic analysis. AAPS J.
12:608–616. 2010.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Gelman JS, Juan S, Castro LM, Ferro ES and
Fricker LD: Peptidomic analysis of human cell lines. J Proteome
Res. 10:1583–1592. 2011.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Cunha FM, Berti DA, Ferreira ZS, Klitzke
CF, Markus RP and Ferro ES: Intracellular peptides as natural
regulators of cell signaling. J Biol Chem. 283:24448–24459.
2008.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Haynes CM, Yang Y, Blais SP, Neubert TA
and Ron D: The matrix peptide exporter HAF-1 signals a
mitochondrial UPR by activating the transcription factor ZC376.7 in
C. elegans. Mol Cell. 37:529–540. 2010.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Berti DA, Russo LC, Castro LM, Cruz L,
Gozzo FC, Heimann JC, Lima FB, Oliveira AC, Andreotti S, Prada PO,
et al: Identification of intracellular peptides in rat adipose
tissue: Insights into insulin resistance. Proteomics. 12:2668–2681.
2012.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Liu Y, Luo B, Shi R, Wang J, Liu Z, Liu W,
Wang S and Zhang Z: Nonerythropoietic erythropoietin-derived
peptide suppresses adipogenesis, inflammation, obesity and insulin
resistance. Sci Rep. 5(15134)2015.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Sodhi K, Maxwell K, Yan Y, Liu J, Chaudhry
MA, Getty M, Xie Z, Abraham NG and Shapiro JI: pNaKtide inhibits
Na/K-ATPase reactive oxygen species amplification and attenuates
adipogenesis. Sci Adv. 1(e1500781)2015.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Ogden CL, Carroll MD, Kit BK and Flegal
KM: Prevalence of childhood and adult obesity in the United States,
2011-2012. JAMA. 311:806–814. 2014.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Ferro ES, Rioli V, Castro LM and Fricker
LD: Intracellular peptides: From discovery to function. EuPA Open
Proteom. 3:143–151. 2014.
|
|
132
|
Forner F, Kumar C, Luber CA, Fromme T,
Klingenspor M and Mann M: Proteome differences between brown and
white fat mitochondria reveal specialized metabolic functions. Cell
Metab. 10:324–335. 2009.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Iepsen EW, Torekov SS and Holst JJ:
Therapies for inter-relating diabetes and obesity-GLP-1 and
obesity. Expert Opin Pharmacother. 15:2487–2500. 2014.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Desilets AR, Dhakal-Karki S and Dunican
KC: Role of metformin for weight management in patients without
type 2 diabetes. Ann Pharmacother. 42:817–826. 2008.PubMed/NCBI View Article : Google Scholar
|
|
135
|
Gao Y, Wang X, Huang F, Cui X, Li Y, Wang
X, Cao Y, Xu P, Xie K, Tang R, et al: Identification and
characterization of metformin on peptidomic profiling in human
visceral adipocytes. J Cell Biochem. 119:1866–1878. 2018.PubMed/NCBI View Article : Google Scholar
|
|
136
|
Lee C, Zeng J, Drew BG, Sallam T,
Martin-Montalvo A, Wan J, Kim SJ, Mehta H, Hevener AL, de Cabo R
and Cohen P: The mitochondrial-derived peptide MOTS-c promotes
metabolic homeostasis and reduces obesity and insulin resistance.
Cell Metab. 21:443–454. 2015.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Bessesen DH and Van Gaal LF: Progress and
challenges in anti-obesity pharmacotherapy. Lancet Diabetes
Endocrinol. 6:237–248. 2018.PubMed/NCBI View Article : Google Scholar
|
|
138
|
Iwasaki Y, Sendo M, Dezaki K, Hira T, Sato
T, Nakata M, Goswami C, Aoki R, Arai T, Kumari P, et al: GLP-1
release and vagal afferent activation mediate the beneficial
metabolic and chronotherapeutic effects of D-allulose. Nat Commun.
9(113)2018.PubMed/NCBI View Article : Google Scholar
|
|
139
|
Jones B, Bloom SR, Buenaventura T, Tomas A
and Rutter GA: Control of insulin secretion by GLP-1. Peptides.
100:75–84. 2018.PubMed/NCBI View Article : Google Scholar
|
|
140
|
Carter A, Hendrikse J, Lee N, Yücel M,
Verdejo-Garcia A, Andrews ZB and Hall W: The neurobiology of ‘food
addiction’ and its implications for obesity treatment and policy.
Annu Rev Nutr. 36:105–128. 2016.PubMed/NCBI View Article : Google Scholar
|
|
141
|
Rebello CJ and Greenway FL: Obesity
medications in development. Expert Opin Investig Drugs. 29:63–71.
2020.PubMed/NCBI View Article : Google Scholar
|