Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
December-2020 Volume 20 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2020 Volume 20 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Mitochondrial dysfunction and pancreatic islet β‑cell failure (Review)

  • Authors:
    • Wenxin Sha
    • Fei Hu
    • Shizhong Bu
  • View Affiliations / Copyright

    Affiliations: Diabetes Research Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
    Copyright: © Sha et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 266
    |
    Published online on: October 27, 2020
       https://doi.org/10.3892/etm.2020.9396
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Pancreatic β‑cells are the only source of insulin in humans. Mitochondria uses pyruvate to produce ATP as an intermediate link between glucose intake and insulin secretion in β‑cells, in a process known as glucose‑stimulated insulin secretion (GSIS). Previous studies have demonstrated that GSIS is negatively regulated by various factors in the mitochondria, including tRNALeu mutations, high p58 expression, reduced nicotinamide nucleotide transhydrogenase activity, abnormal levels of uncoupling proteins and reduced expression levels of transcription factors A, B1 and B2. Additionally, oxidative stress damages mitochondria and impairs antioxidant defense mechanisms, leading to the increased production of reactive oxygen species, which induces β‑cell dysfunction. Inflammation in islets can also damage β‑cell physiology. Inflammatory cytokines trigger the release of cytochrome c from the mitochondria via the NF‑κB pathway. The present review examined the potential factors underlying mitochondrial dysfunction and their association with islet β‑cell failure, which may offer novel insights regarding future strategies for the preservation of mitochondrial function and enhancement of antioxidant activity for individuals with diabetes mellitus.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Schmidt AM: Highlighting diabetes mellitus: The epidemic continues. Arterioscler Thromb Vasc Biol. 38:e1–e8. 2018.PubMed/NCBI View Article : Google Scholar

2 

Wang YJ, Schug J, Won KJ, Liu C, Naji A, Avrahami D, Golson ML and Kaestner KH: Single-cell transcriptomics of the human endocrine pancreas. Diabetes. 65:3028–3038. 2016.PubMed/NCBI View Article : Google Scholar

3 

Lawlor N, George J, Bolisetty M, Kursawe R, Sun L, Sivakamasundari V, Kycia I, Robson P and Stitzel ML: Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes. Genome Res. 27:208–222. 2017.PubMed/NCBI View Article : Google Scholar

4 

Huang Q, Bu S, Yu Y, Guo Z, Ghatnekar G, Bu M, Yang L, Lu B, Feng Z, Liu S and Wang F: Diazoxide prevents diabetes through inhibiting pancreatic beta-cells from apoptosis via Bcl-2/Bax rate and p38-beta mitogen-activated protein kinase. Endocrinology. 148:81–91. 2007.PubMed/NCBI View Article : Google Scholar

5 

International Diabetes Federation. IDF Diabetes Atlas, 8th edition. International Diabetes Federation, Brussels 2017. Available from: urihttp://www.diabetesatlas.orgsimplehttp://www.diabetesatlas.org.

6 

Holman N, Young B and Gadsby R: Current prevalence of type 1 and type 2 diabetes in adults and children in the UK. Diabet Med. 32:1119–1120. 2015.PubMed/NCBI View Article : Google Scholar

7 

Blake R and Trounce IA: Mitochondrial dysfunction and complications associated with diabetes. Biochim Biophys Acta. 1840:1404–1412. 2014.PubMed/NCBI View Article : Google Scholar

8 

Ma RCW: Epidemiology of diabetes and diabetic complications in China. Diabetologia. 61:1249–1260. 2018.PubMed/NCBI View Article : Google Scholar

9 

Ma ZA, Zhao Z and Turk J: Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Exp Diabetes Res. 2012(703538)2012.PubMed/NCBI View Article : Google Scholar

10 

Montgomery MK: Mitochondrial dysfunction and diabetes: Is mitochondrial transfer a friend or foe? Biology (Basel). 8(33)2019.PubMed/NCBI View Article : Google Scholar

11 

van der Bliek AM, Sedensky MM and Morgan PG: Cell biology of the mitochondrion. Genetics. 207:843–871. 2017.PubMed/NCBI View Article : Google Scholar

12 

Henquin JC: Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes. 49:1751–1760. 2000.PubMed/NCBI View Article : Google Scholar

13 

Komatsu M, Takei M, Ishii H and Sato Y: Glucose-stimulated insulin secretion: A newer perspective. J Diabetes Investig. 4:511–516. 2013.PubMed/NCBI View Article : Google Scholar

14 

Kibbey RG, Pongratz RL, Romanelli AJ, Wollheim CB, Cline GW and Shulman GI: Mitochondrial GTP regulates glucose-stimulated insulin secretion. Cell Metab. 5:253–264. 2007.PubMed/NCBI View Article : Google Scholar

15 

Molnar MJ and Kovacs GG: Mitochondrial diseases. Handb Clin Neurol. 145:147–155. 2017.PubMed/NCBI View Article : Google Scholar

16 

Fex M, Nicholas LM, Vishnu N, Medina A, Sharoyko VV, Nicholls DG, Spégel P and Mulder H: The pathogenetic role of β-cell mitochondria in type 2 diabetes. J Endocrinol. 236:R145–R159. 2018.PubMed/NCBI View Article : Google Scholar

17 

O'Sullivan M, Rutland P, Lucas D, Ashton E, Hendricks S, Rahman S and Bitner-Glindzicz M: Mitochondrial m.1584A 12S m62A rRNA methylation in families with m.1555A>G associated hearing loss. Hum Mol Genet. 24:1036–1044. 2015.PubMed/NCBI View Article : Google Scholar

18 

Bohnsack MT and Sloan KE: The mitochondrial epitranscriptome: The roles of RNA modifications in mitochondrial translation and human disease. Cell Mol Life Sci. 75:241–260. 2018.PubMed/NCBI View Article : Google Scholar

19 

Subramanian S, Kalyanaraman B and Migrino RQ: Mitochondrially targeted antioxidants for the treatment of cardiovascular diseases. Recent Pat Cardiovasc Drug Discov. 5:54–65. 2010.PubMed/NCBI View Article : Google Scholar

20 

Papa S, Martino PL, Capitanio G, Gaballo A, De Rasmo D, Signorile A and Petruzzella V: The oxidative phosphorylation system in mammalian mitochondria. Adv Exp Med Biol. 942:3–37. 2012.PubMed/NCBI View Article : Google Scholar

21 

Conley KE: Mitochondria to motion: Optimizing oxidative phosphorylation to improve exercise performance. J Exp Biol. 219:243–249. 2016.PubMed/NCBI View Article : Google Scholar

22 

Waypa GB, Smith KA and Schumacker PT: O2 sensing, mitochondria and ROS signaling: The fog is lifting. Mol Aspects Med. 47-48:76–89. 2016.PubMed/NCBI View Article : Google Scholar

23 

Angelova PR and Abramov AY: Functional role of mitochondrial reactive oxygen species in physiology. Free Radic Biol Med. 100:81–85. 2016.PubMed/NCBI View Article : Google Scholar

24 

Kausar S, Wang F and Cui H: The role of mitochondria in reactive oxygen species generation and its implications for neurodegenerative diseases. Cells. 7(274)2018.PubMed/NCBI View Article : Google Scholar

25 

Akram M: Citric acid cycle and role of its intermediates in metabolism. Cell Biochem Biophys. 68:475–478. 2014.PubMed/NCBI View Article : Google Scholar

26 

Chiabrando D, Mercurio S and Tolosano E: Heme and erythropoieis: More than a structural role. Haematologica. 99:973–983. 2014.PubMed/NCBI View Article : Google Scholar

27 

Moreno-Navarrete JM, Rodríguez A, Ortega F, Becerril S, Girones J, Sabater-Masdeu M, Latorre J, Ricart W, Frühbeck G and Fernández-Real JM: Heme biosynthetic pathway is functionally linked to adipogenesis via mitochondrial respiratory activity. Obesity (Silver Spring). 25:1723–1733. 2017.PubMed/NCBI View Article : Google Scholar

28 

Elustondo P, Martin LA and Karten B: Mitochondrial cholesterol import. Biochim Biophys Acta Mol Cell Biol Lipids. 1862:90–101. 2017.PubMed/NCBI View Article : Google Scholar

29 

Martin LA, Kennedy BE and Karten B: Mitochondrial cholesterol: Mechanisms of import and effects on mitochondrial function. J Bioenerg Biomembr. 48:137–151. 2016.PubMed/NCBI View Article : Google Scholar

30 

Bravo-Sagua R, Parra V, López-Crisosto C, Díaz P, Quest AF and Lavandero S: Calcium transport and signaling in mitochondria. Compr Physiol. 7:623–634. 2017.PubMed/NCBI View Article : Google Scholar

31 

Wang C, Du J, Du S, Liu Y, Li D, Zhu X and Ni X: Endogenous H2S resists mitochondria-mediated apoptosis in the adrenal glands via ATP5A1 S-sulfhydration in male mice. Mol Cell Endocrinol. 474:65–73. 2018.PubMed/NCBI View Article : Google Scholar

32 

Yan C, Duanmu X, Zeng L, Liu B and Song Z: Mitochondrial DNA: Distribution, mutations, and elimination. Cells. 8(379)2019.PubMed/NCBI View Article : Google Scholar

33 

Roger AJ, Muñoz-Gómez SA and Kamikawa R: The origin and diversification of mitochondria. Curr Biol. 27:R1177–R1192. 2017.PubMed/NCBI View Article : Google Scholar

34 

Stefano GB, Bjenning C, Wang F, Wang N and Kream RM: Mitochondrial heteroplasmy. Adv Exp Med Biol. 982:577–594. 2017.PubMed/NCBI View Article : Google Scholar

35 

Saneto RP: Genetics of mitochondrial disease. Adv Genet. 98:63–116. 2017.PubMed/NCBI View Article : Google Scholar

36 

Kopinski PK, Janssen KA, Schaefer PM, Trefely S, Perry CE, Potluri P, Tintos-Hernandez JA, Singh LN, Karch KR, Campbell SL, et al: Regulation of nuclear epigenome by mitochondrial DNA heteroplasmy. Proc Natl Acad Sci USA. 116:16028–16035. 2019.PubMed/NCBI View Article : Google Scholar

37 

Cotney J, McKay SE and Shadel GS: Elucidation of separate, but collaborative functions of the rRNA methyltransferase-related human mitochondrial transcription factors B1 and B2 in mitochondrial biogenesis reveals new insight into maternally inherited deafness. Hum Mol Genet. 18:2670–2682. 2009.PubMed/NCBI View Article : Google Scholar

38 

Karasik A, Fierke CA and Koutmos M: Interplay between substrate recognition, 5'end tRNA processing and methylation activity of human mitochondrial RNase P. RNA. 25:1646–1660. 2019.PubMed/NCBI View Article : Google Scholar

39 

Reinhard L, Sridhara S and Hallberg BM: The MRPP1/MRPP2 complex is a tRNA-maturation platform in human mitochondria. Nucleic Acids Res. 45:12469–12480. 2017.PubMed/NCBI View Article : Google Scholar

40 

Metodiev MD, Thompson K, Alston CL, Morris AAM, He L, Assouline Z, Rio M, Bahi-Buisson N, Pyle A, Griffin H, et al: Recessive mutations in TRMT10C cause defects in mitochondrial RNA processing and multiple respiratory chain deficiencies. Am J Hum Genet. 98:993–1000. 2016.PubMed/NCBI View Article : Google Scholar

41 

Pearce SF, Rorbach J, Van Haute L, D'Souza AR, Rebelo-Guiomar P, Powell CA, Brierley I, Firth AE and Minczuk M: Maturation of selected human mitochondrial tRNAs requires deadenylation. Elife. 6(e27596)2017.PubMed/NCBI View Article : Google Scholar

42 

Ricquier D: UCP1, the mitochondrial uncoupling protein of brown adipocyte: A personal contribution and a historical perspective. Biochimie. 134:3–8. 2017.PubMed/NCBI View Article : Google Scholar

43 

Li Y, Maedler K, Shu L and Haataja L: UCP-2 and UCP-3 proteins are differentially regulated in pancreatic beta-cells. PLoS One. 3(e1397)2008.PubMed/NCBI View Article : Google Scholar

44 

Pitt MA: Overexpression of uncoupling protein-2 in cancer: Metabolic and heat changes, inhibition and effects on drug resistance. Inflammopharmacology. 23:365–369. 2015.PubMed/NCBI View Article : Google Scholar

45 

Chan SHH and Chan JYH: Mitochondria and reactive oxygen species contribute to neurogenic hypertension. Physiology (Bethesda). 32:308–321. 2017.PubMed/NCBI View Article : Google Scholar

46 

Broche B, Ben Fradj S, Aguilar E, Sancerni T, Bénard M, Makaci F, Berthault C, Scharfmann R, Alves-Guerra MC and Duvillié B: Mitochondrial protein UCP2 controls pancreas development. Diabetes. 67:78–84. 2018.PubMed/NCBI View Article : Google Scholar

47 

Oelkrug R, Polymeropoulos ET and Jastroch M: Brown adipose tissue: Physiological function and evolutionary significance. J Comp Physiol B. 185:587–606. 2015.PubMed/NCBI View Article : Google Scholar

48 

Giralt M and Villarroya F: Mitochondrial uncoupling and the regulation of glucose homeostasis. Curr Diabetes Rev. 13:386–394. 2017.PubMed/NCBI View Article : Google Scholar

49 

Hu M, Lin H, Yang L, Cheng Y and Zhang H: Interleukin-22 restored mitochondrial damage and impaired glucose-stimulated insulin secretion through down-regulation of uncoupling protein-2 in INS-1 cells. J Biochem. 161:433–439. 2017.PubMed/NCBI View Article : Google Scholar

50 

Nanayakkara GK, Wang H and Yang X: Proton leak regulates mitochondrial reactive oxygen species generation in endothelial cell activation and inflammation-A novel concept. Arch Biochem Biophys. 662:68–74. 2019.PubMed/NCBI View Article : Google Scholar

51 

Rugarli E and Trifunovic A: Is mitochondrial free radical theory of aging getting old? Biochim Biophys Acta. 1847:1345–1346. 2015.PubMed/NCBI View Article : Google Scholar

52 

Cheeseman KH and Slater TF: An introduction to free radical biochemistry. Br Med Bull. 49:481–493. 1993.PubMed/NCBI View Article : Google Scholar

53 

Brieger K, Schiavone S, Miller FJ Jr and Krause KH: Reactive oxygen species: From health to disease. Swiss Med Wkly. 142(w13659)2012.PubMed/NCBI View Article : Google Scholar

54 

He L, He T, Farrar S, Ji L, Liu T and Ma X: Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem. 44:532–553. 2017.PubMed/NCBI View Article : Google Scholar

55 

Zorov DB, Juhaszova M and Sollott SJ: Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 94:909–950. 2014.PubMed/NCBI View Article : Google Scholar

56 

Vallabh NA, Romano V and Willoughby CE: Mitochondrial dysfunction and oxidative stress in corneal disease. Mitochondrion. 36:103–113. 2017.PubMed/NCBI View Article : Google Scholar

57 

Panieri E and Santoro MM: ROS homeostasis and metabolism: A dangerous liason in cancer cells. Cell Death Dis. 7(e2253)2016.PubMed/NCBI View Article : Google Scholar

58 

Loperena R and Harrison DG: Oxidative stress and hypertensive diseases. Med Clin North Am. 101:169–193. 2017.PubMed/NCBI View Article : Google Scholar

59 

Rani V, Deep G, Singh RK, Palle K and Yadav UC: Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci. 148:183–193. 2016.PubMed/NCBI View Article : Google Scholar

60 

Gerber PA and Rutter GA: The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxid Redox Signal. 26:501–518. 2017.PubMed/NCBI View Article : Google Scholar

61 

Pramanik KC, Boreddy SR and Srivastava SK: Role of mitochondrial electron transport chain complexes in capsaicin mediated oxidative stress leading to apoptosis in pancreatic cancer cells. PLoS One. 6(e20151)2011.PubMed/NCBI View Article : Google Scholar

62 

Sena LA and Chandel NS: Physiological roles of mitochondrial reactive oxygen species. Mol Cell. 48:158–167. 2012.PubMed/NCBI View Article : Google Scholar

63 

Bugger H, Chen D, Riehle C, Soto J, Theobald HA, Hu XX, Ganesan B, Weimer BC and Abel ED: Tissue-specific remodeling of the mitochondrial proteome in type 1 diabetic akita mice. Diabetes. 58:1986–1997. 2009.PubMed/NCBI View Article : Google Scholar

64 

Makino A, Scott BT and Dillmann WH: Mitochondrial fragmentation and superoxide anion production in coronary endothelial cells from a mouse model of type 1 diabetes. Diabetologia. 53:1783–1794. 2010.PubMed/NCBI View Article : Google Scholar

65 

Broderick TL: ATP production and TCA activity are stimulated by propionyl-L-carnitine in the diabetic rat heart. Drugs R D. 9:83–91. 2008.PubMed/NCBI View Article : Google Scholar

66 

Anello M, Lupi R, Spampinato D, Piro S, Masini M, Boggi U, Del Prato S, Rabuazzo AM, Purrello F and Marchetti P: Functional and morphological alterations of mitochondria in pancreatic beta cells from type 2 diabetic patients. Diabetologia. 48:282–289. 2005.PubMed/NCBI View Article : Google Scholar

67 

Paradies G, Paradies V, Ruggiero FM and Petrosillo G: Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World J Gastroenterol. 20:14205–14218. 2014.PubMed/NCBI View Article : Google Scholar

68 

Musatov A, Carroll CA, Liu YC, Henderson GI, Weintraub ST and Robinson NC: Identification of bovine heart cytochrome c oxidase subunits modified by the lipid peroxidation product 4-hydroxy-2-nonenal. Biochemistry. 41:8212–8220. 2002.PubMed/NCBI View Article : Google Scholar

69 

Sinha K, Das J, Pal PB and Sil PC: Oxidative stress: The mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol. 87:1157–1180. 2013.PubMed/NCBI View Article : Google Scholar

70 

Molina AJ, Wikstrom JD, Stiles L, Las G, Mohamed H, Elorza A, Walzer G, Twig G, Katz S, Corkey BE and Shirihai OS: Mitochondrial networking protects beta-cells from nutrient-induced apoptosis. Diabetes. 58:2303–2315. 2009.PubMed/NCBI View Article : Google Scholar

71 

Morino K, Petersen KF, Dufour S, Befroy D, Frattini J, Shatzkes N, Neschen S, White MF, Bilz S, Sono S, et al: Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest. 115:3587–3593. 2005.PubMed/NCBI View Article : Google Scholar

72 

Petersen KF, Dufour S, Befroy D, Garcia R and Shulman GI: Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 350:664–671. 2004.PubMed/NCBI View Article : Google Scholar

73 

Dan Dunn J, Alvarez LA, Zhang X and Soldati T: Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol. 6:472–485. 2015.PubMed/NCBI View Article : Google Scholar

74 

Kauppila TES, Kauppila JHK and Larsson NG: Mammalian mitochondria and aging: An update. Cell Metab. 25:57–71. 2017.PubMed/NCBI View Article : Google Scholar

75 

Ye X, Sun X, Starovoytov V and Cai Q: Parkin-mediated mitophagy in mutant hAPP neurons and Alzheimer's disease patient brains. Hum Mol Genet. 24:2938–2951. 2015.PubMed/NCBI View Article : Google Scholar

76 

Fivenson EM, Lautrup S, Sun N, Scheibye-Knudsen M, Stevnsner T, Nilsen H, Bohr VA and Fang EF: Mitophagy in neurodegeneration and aging. Neurochem Int. 109:202–209. 2017.PubMed/NCBI View Article : Google Scholar

77 

Choi DS, Kim DK, Kim YK and Gho YS: Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics. 13:1554–1571. 2013.PubMed/NCBI View Article : Google Scholar

78 

Alenquer M and Amorim MJ: Exosome biogenesis, regulation, and function in viral infection. Viruses. 7:5066–5083. 2015.PubMed/NCBI View Article : Google Scholar

79 

Shakeri R, Kheirollahi A and Davoodi J: Apaf-1: Regulation and function in cell death. Biochimie. 135:111–125. 2017.PubMed/NCBI View Article : Google Scholar

80 

Thorens B: GLUT2, glucose sensing and glucose homeostasis. Diabetologia. 58:221–232. 2015.PubMed/NCBI View Article : Google Scholar

81 

Nicholls DG: The pancreatic β-cell: A bioenergetic perspective. Physiol Rev. 96:1385–1447. 2016.PubMed/NCBI View Article : Google Scholar

82 

Ježek P and Dlasková A: Dynamic of mitochondrial network, cristae, and mitochondrial nucleoids in pancreatic β-cells. Mitochondrion. 49:245–258. 2019.PubMed/NCBI View Article : Google Scholar

83 

Mulder H: Transcribing β-cell mitochondria in health and disease. Mol Metab. 6:1040–1051. 2017.PubMed/NCBI View Article : Google Scholar

84 

Kwak SH and Park KS: Role of mitochondrial DNA variation in the pathogenesis of diabetes mellitus. Front Biosci (Landmark Ed). 21:1151–1167. 2016.PubMed/NCBI View Article : Google Scholar

85 

Jiang Z, Zhang Y, Yan J, Li F, Geng X, Lu H, Wei X, Feng Y, Wang C and Jia W: De novo mutation of m.3243A>G together with m.16093T>C associated with atypical clinical features in a pedigree with MIDD syndrome. J Diabetes Res. 2019(5184647)2019.PubMed/NCBI View Article : Google Scholar

86 

Alves D, Calmeiro ME, Macário C and Silva R: Family phenotypic heterogeneity caused by mitochondrial DNA mutation A3243G. Acta Med Port. 30:581–585. 2017.PubMed/NCBI View Article : Google Scholar

87 

El-Hattab AW, Emrick LT, Hsu JW, Chanprasert S, Jahoor F, Scaglia F and Craigen WJ: Glucose metabolism derangements in adults with the MELAS m.3243A>G mutation. Mitochondrion. 18:63–69. 2014.PubMed/NCBI View Article : Google Scholar

88 

Meimaridou E, Goldsworthy M, Chortis V, Fragouli E, Foster PA, Arlt W, Cox R and Metherell LA: NNT is a key regulator of adrenal redox homeostasis and steroidogenesis in male mice. J Endocrinol. 236:13–28. 2018.PubMed/NCBI View Article : Google Scholar

89 

Santos LRB, Muller C, de Souza AH, Takahashi HK, Spégel P, Sweet IR, Chae H, Mulder H and Jonas JC: NNT reverse mode of operation mediates glucose control of mitochondrial NADPH and glutathione redox state in mouse pancreatic β-cells. Mol Metab. 6:535–547. 2017.PubMed/NCBI View Article : Google Scholar

90 

Dutta P, Ma L, Ali Y, Sloot PMA and Zheng J: Boolean network modeling of β-cell apoptosis and insulin resistance in type 2 diabetes mellitus. BMC Syst Biol. 13 (Suppl 2)(S36)2019.PubMed/NCBI View Article : Google Scholar

91 

Tabebi M, Khabou B, Boukadi H, Ben Hamad M, Ben Rhouma B, Tounsi S, Maalej A, Kamoun H, Keskes-Ammar L, Abid M, et al: Association study of apoptosis gene polymorphisms in mitochondrial diabetes: A potential role in the pathogenicity of MD. Gene. 639:18–26. 2018.PubMed/NCBI View Article : Google Scholar

92 

Zhang J, Liu Y, Yang HW, Xu HY and Meng Y: Molecular mechanism of beta cell apoptosis induced by p58 in high glucose medium. Sheng Li Xue Bao. 61:379–385. 2009.(In Chinese). PubMed/NCBI

93 

Han J, Song B, Kim J, Kodali VK, Pottekat A, Wang M, Hassler J, Wang S, Pennathur S, Back SH, et al: Antioxidants complement the requirement for protein chaperone function to maintain β-cell function and glucose homeostasis. Diabetes. 64:2892–2904. 2015.PubMed/NCBI View Article : Google Scholar

94 

Vozza A, Parisi G, De Leonardis F, Lasorsa FM, Castegna A, Amorese D, Marmo R, Calcagnile VM, Palmieri L, Ricquier D, et al: UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc Natl Acad Sci USA. 111:960–965. 2014.PubMed/NCBI View Article : Google Scholar

95 

Collins S, Pi J and Yehuda-Shnaidman E: Uncoupling and reactive oxygen species (ROS)-a double-edged sword for β-cell function? ‘Moderation in all things’. Best Pract Res Clin Endocrinol Metab. 26:753–758. 2012.PubMed/NCBI View Article : Google Scholar

96 

Emre Y, Hurtaud C, Karaca M, Nubel T, Zavala F and Ricquier D: Role of uncoupling protein UCP2 in cell-mediated immunity: How macrophage-mediated insulitis is accelerated in a model of autoimmune diabetes. Proc Natl Acad Sci USA. 104:19085–19090. 2007.PubMed/NCBI View Article : Google Scholar

97 

Lee SC, Robson-Doucette CA and Wheeler MB: Uncoupling protein 2 regulates reactive oxygen species formation in islets and influences susceptibility to diabetogenic action of streptozotocin. J Endocrinol. 203:33–43. 2009.PubMed/NCBI View Article : Google Scholar

98 

Sharoyko VV, Abels M, Sun J, Nicholas LM, Mollet IG, Stamenkovic JA, Göhring I, Malmgren S, Storm P, Fadista J, et al: Loss of TFB1M results in mitochondrial dysfunction that leads to impaired insulin secretion and diabetes. Hum Mol Genet. 23:5733–5749. 2014.PubMed/NCBI View Article : Google Scholar

99 

Nicholas LM, Valtat B, Medina A, Andersson L, Abels M, Mollet IG, Jain D, Eliasson L, Wierup N, Fex M and Mulder H: Mitochondrial transcription factor B2 is essential for mitochondrial and cellular function in pancreatic β-cells. Mol Metab. 6:651–663. 2017.PubMed/NCBI View Article : Google Scholar

100 

Baixauli F, López-Otín C and Mittelbrunn M: Exosomes and autophagy: Coordinated mechanisms for the maintenance of cellular fitness. Front Immunol. 5(403)2014.PubMed/NCBI View Article : Google Scholar

101 

Wong SK, Chin KY, Suhaimi FH, Ahmad F and Ima-Nirwana S: The effects of a modified high-carbohydrate high-fat diet on metabolic syndrome parameters in male rats. Exp Clin Endocrinol Diabetes. 126:205–212. 2018.PubMed/NCBI View Article : Google Scholar

102 

Rutter GA, Pullen TJ, Hodson DJ and Martinez-Sanchez A: Pancreatic β-cell identity, glucose sensing and the control of insulin secretion. Biochem J. 466:203–218. 2015.PubMed/NCBI View Article : Google Scholar

103 

Newsholme P, Cruzat VF, Keane KN, Carlessi R and de Bittencourt PI Jr: Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J. 473:4527–4550. 2016.PubMed/NCBI View Article : Google Scholar

104 

Rehman K and Akash MSH: Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: How are they interlinked? J Cell Biochem. 118:3577–3585. 2017.PubMed/NCBI View Article : Google Scholar

105 

Rharass T, Lemcke H, Lantow M, Kuznetsov SA, Weiss DG and Panáková D: Ca2+-mediated mitochondrial reactive oxygen species metabolism augments Wnt/beta-catenin pathway activation to facilitate cell differentiation. J Biol Chem. 289:27937–27951. 2014.PubMed/NCBI View Article : Google Scholar

106 

Sarre A, Gabrielli J, Vial G, Leverve XM and Assimacopoulos-Jeannet F: Reactive oxygen species are produced at low glucose and contribute to the activation of AMPK in insulin-secreting cells. Free Radic Biol Med. 52:142–150. 2012.PubMed/NCBI View Article : Google Scholar

107 

Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M and Shimomura I: Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 114:1752–1761. 2004.PubMed/NCBI View Article : Google Scholar

108 

Nowotny K, Jung T, Höhn A, Weber D and Grune T: Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules. 5:194–222. 2015.PubMed/NCBI View Article : Google Scholar

109 

Turrens JF: Mitochondrial formation of reactive oxygen species. J Physiol. 552:335–344. 2003.PubMed/NCBI View Article : Google Scholar

110 

Wang J and Wang H: Oxidative stress in pancreatic beta cell regeneration. Oxid Med Cell Longev. 2017(1930261)2017.PubMed/NCBI View Article : Google Scholar

111 

Ivarsson R, Quintens R, Dejonghe S, Tsukamoto K, in 't Veld P, Renström E and Schuit FC: Redox control of exocytosis: Regulatory role of NADPH, thioredoxin, and glutaredoxin. Diabetes. 54:2132–2142. 2005.PubMed/NCBI View Article : Google Scholar

112 

Hopps E, Noto D, Caimi G and Averna MR: A novel component of the metabolic syndrome: The oxidative stress. Nutr Metab Cardiovasc Dis. 20:72–77. 2010.PubMed/NCBI View Article : Google Scholar

113 

Rao R: Oxidative stress-induced disruption of epithelial and endothelial tight junctions. Front Biosci. 13:7210–7226. 2008.PubMed/NCBI View Article : Google Scholar

114 

Newsholme P, Rebelato E, Abdulkader F, Krause M, Carpinelli A and Curi R: Reactive oxygen and nitrogen species generation, antioxidant defenses, and β-cell function: A critical role for amino acids. J Endocrinol. 214:11–20. 2012.PubMed/NCBI View Article : Google Scholar

115 

Fiorentino TV, Prioletta A, Zuo P and Folli F: Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr Pharm Des. 19:5695–5703. 2013.PubMed/NCBI View Article : Google Scholar

116 

Koehler A and Van Noorden CJ: Reduced nicotinamide adenine dinucleotide phosphate and the higher incidence of pollution-induced liver cancer in female flounder. Environ Toxicol Chem. 22:2703–2710. 2003.PubMed/NCBI View Article : Google Scholar

117 

Baldewpersad Tewarie NM, Burgers IA, Dawood Y, den Boon HC, den Brok MG, Klunder JH, Koopmans KB, Rademaker E, van den Broek HB, van den Bersselaar SM, et al: NADP+-dependent IDH1 R132 mutation and its relevance for glioma patient survival. Med Hypotheses. 80:728–731. 2013.PubMed/NCBI View Article : Google Scholar

118 

Atai NA, Renkema-Mills NA, Bosman J, Schmidt N, Rijkeboer D, Tigchelaar W, Bosch KS, Troost D, Jonker A, Bleeker FE, et al: Differential activity of NADPH-producing dehydrogenases renders rodents unsuitable models to study IDH1R132 mutation effects in human glioblastoma. J Histochem Cytochem. 59:489–503. 2011.PubMed/NCBI View Article : Google Scholar

119 

Pan HC, Lee CC, Chou KM, Lu SC and Sun CY: Serum levels of uncoupling proteins in patients with differential insulin resistance: A community-based cohort study. Medicine (Baltimore). 96(e8053)2017.PubMed/NCBI View Article : Google Scholar

120 

Brondani LA, Assmann TS, Duarte GC, Gross JL, Canani LH and Crispim D: The role of the uncoupling protein 1 (UCP1) on the development of obesity and type 2 diabetes mellitus. Arq Bras Endocrinol Metabol. 56:215–225. 2012.PubMed/NCBI View Article : Google Scholar

121 

Oelkrug R, Goetze N, Meyer CW and Jastroch M: Antioxidant properties of UCP1 are evolutionarily conserved in mammals and buffer mitochondrial reactive oxygen species. Free Radic Biol Med. 77:210–216. 2014.PubMed/NCBI View Article : Google Scholar

122 

Sreedhar A and Zhao Y: Uncoupling protein 2 and metabolic diseases. Mitochondrion. 34:135–140. 2017.PubMed/NCBI View Article : Google Scholar

123 

Li N, Karaca M and Maechler P: Upregulation of UCP2 in beta-cells confers partial protection against both oxidative stress and glucotoxicity. Redox Biol. 13:541–549. 2017.PubMed/NCBI View Article : Google Scholar

124 

Senese R, Valli V, Moreno M, Lombardi A, Busiello RA, Cioffi F, Silvestri E, Goglia F, Lanni A and de Lange P: Uncoupling protein 3 expression levels influence insulin sensitivity, fatty acid oxidation, and related signaling pathways. Pflugers Arch. 461:153–164. 2011.PubMed/NCBI View Article : Google Scholar

125 

Edwards KS, Ashraf S, Lomax TM, Wiseman JM, Hall ME, Gava FN, Hall JE, Hosler JP and Harmancey R: Uncoupling protein 3 deficiency impairs myocardial fatty acid oxidation and contractile recovery following ischemia/reperfusion. Basic Res Cardiol. 113(47)2018.PubMed/NCBI View Article : Google Scholar

126 

Chan CB and Harper ME: Uncoupling proteins: Role in insulin resistance and insulin insufficiency. Curr Diabetes Rev. 2:271–283. 2006.PubMed/NCBI View Article : Google Scholar

127 

Jena NR: DNA damage by reactive species: Mechanisms, mutation and repair. J Biosci. 37:503–517. 2012.PubMed/NCBI View Article : Google Scholar

128 

Borchert A, Kalms J, Roth SR, Rademacher M, Schmidt A, Holzhutter HG, Kuhn H and Scheerer P: Crystal structure and functional characterization of selenocysteine-containing glutathione peroxidase 4 suggests an alternative mechanism of peroxide reduction. Biochim Biophys Acta Mol Cell Biol Lipids. 1863:1095–1107. 2018.PubMed/NCBI View Article : Google Scholar

129 

Jung CH and Choi KM: Impact of high-carbohydrate diet on metabolic parameters in patients with type 2 diabetes. Nutrients. 9(322)2017.PubMed/NCBI View Article : Google Scholar

130 

Li C, Deng X, Xie X, Liu Y, Friedmann Angeli JP and Lai L: Activation of glutathione peroxidase 4 as a novel anti-inflammatory strategy. Front Pharmacol. 9(1120)2018.PubMed/NCBI View Article : Google Scholar

131 

Lillig CH and Holmgren A: Thioredoxin and related molecules-from biology to health and disease. Antioxid Redox Signal. 9:25–47. 2007.PubMed/NCBI View Article : Google Scholar

132 

Eguchi K and Nagai R: Islet inflammation in type 2 diabetes and physiology. J Clin Invest. 127:14–23. 2017.PubMed/NCBI View Article : Google Scholar

133 

Margaryan S, Witkowicz A, Partyka A, Yepiskoposyan L, Manukyan G and Karabon L: The mRNA expression levels of uncoupling proteins 1 and 2 in mononuclear cells from patients with metabolic disorders: Obesity and type 2 diabetes mellitus. Postepy Hig Med Dosw (Online). 71:895–900. 2017.PubMed/NCBI View Article : Google Scholar

134 

Dalmas E, Venteclef N, Caer C, Poitou C, Cremer I, Aron-Wisnewsky J, Lacroix-Desmazes S, Bayry J, Kaveri SV, Clément K, et al: T cell-derived IL-22 amplifies IL-1β-driven inflammation in human adipose tissue: Relevance to obesity and type 2 diabetes. Diabetes. 63:1966–1977. 2014.PubMed/NCBI View Article : Google Scholar

135 

Oh H, Park SH, Kang MK, Kim YH, Lee EJ, Kim DY, Kim SI, Oh S, Lim SS and Kang YH: Asaronic acid attenuates macrophage activation toward M1 phenotype through inhibition of NF-κB pathway and JAK-STAT signaling in glucose-loaded murine macrophages. J Agric Food Chem, 2019.

136 

Wang Y, Shan B, Liang Y, Wei H and Yuan J: Parkin regulates NF-κB by mediating site-specific ubiquitination of RIPK1. Cell Death Dis. 9(732)2018.PubMed/NCBI View Article : Google Scholar

137 

Kim DH, Lee JC, Kim S, Oh SH, Lee MK, Kim KW and Lee MS: Inhibition of autoimmune diabetes by TLR2 tolerance. J Immunol. 187:5211–5220. 2011.PubMed/NCBI View Article : Google Scholar

138 

Tan Q, Majewska-Szczepanik M, Zhang X, Szczepanik M, Zhou Z, Wong FS and Wen L: IRAK-M deficiency promotes the development of type 1 diabetes in NOD mice. Diabetes. 63:2761–2775. 2014.PubMed/NCBI View Article : Google Scholar

139 

QiNan W, XiaGuang G, XiaoTian L, WuQuan D, Ling Z and Bing C: Par-4/NF-κB mediates the apoptosis of islet β cells induced by glucolipotoxicity. J Diabetes Res. 2016(4692478)2016.PubMed/NCBI View Article : Google Scholar

140 

Cnop M, Toivonen S, Igoillo-Esteve M and Salpea P: Endoplasmic reticulum stress and eIF2α phosphorylation: The Achilles heel of pancreatic β cells. Mol Metab. 6:1024–1039. 2017.PubMed/NCBI View Article : Google Scholar

141 

Sauter NS, Thienel C, Plutino Y, Kampe K, Dror E, Traub S, Timper K, Bédat B, Pattou F, Kerr-Conte J, et al: Angiotensin II induces interleukin-1β-mediated islet inflammation and β-cell dysfunction independently of vasoconstrictive effects. Diabetes. 64:1273–1283. 2015.PubMed/NCBI View Article : Google Scholar

142 

Dinarello CA, Donath MY and Mandrup-Poulsen T: Role of IL-1beta in type 2 diabetes. Curr Opin Endocrinol Diabetes Obes. 17:314–321. 2010.PubMed/NCBI View Article : Google Scholar

143 

Carrasco-Pozo C, Tan KN Gotteland M and Borges K: Sulforaphane protects against high cholesterol-induced mitochondrial bioenergetics impairments, inflammation, and oxidative stress and preserves pancreatic β-cells function. Oxid Med Cell Longev. 2017(3839756)2017.PubMed/NCBI View Article : Google Scholar

144 

Donath MY and Shoelson SE: Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 11:98–107. 2011.PubMed/NCBI View Article : Google Scholar

145 

Gomes BF and Accardo CM: Immunoinflammatory mediators in the pathogenesis of diabetes mellitus. Einstein (Sao Paulo). 17(eRB4596)2019.PubMed/NCBI View Article : Google Scholar : (In En, Portuguese).

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Sha W, Hu F and Bu S: Mitochondrial dysfunction and pancreatic islet β‑cell failure (Review). Exp Ther Med 20: 266, 2020.
APA
Sha, W., Hu, F., & Bu, S. (2020). Mitochondrial dysfunction and pancreatic islet β‑cell failure (Review). Experimental and Therapeutic Medicine, 20, 266. https://doi.org/10.3892/etm.2020.9396
MLA
Sha, W., Hu, F., Bu, S."Mitochondrial dysfunction and pancreatic islet β‑cell failure (Review)". Experimental and Therapeutic Medicine 20.6 (2020): 266.
Chicago
Sha, W., Hu, F., Bu, S."Mitochondrial dysfunction and pancreatic islet β‑cell failure (Review)". Experimental and Therapeutic Medicine 20, no. 6 (2020): 266. https://doi.org/10.3892/etm.2020.9396
Copy and paste a formatted citation
x
Spandidos Publications style
Sha W, Hu F and Bu S: Mitochondrial dysfunction and pancreatic islet β‑cell failure (Review). Exp Ther Med 20: 266, 2020.
APA
Sha, W., Hu, F., & Bu, S. (2020). Mitochondrial dysfunction and pancreatic islet β‑cell failure (Review). Experimental and Therapeutic Medicine, 20, 266. https://doi.org/10.3892/etm.2020.9396
MLA
Sha, W., Hu, F., Bu, S."Mitochondrial dysfunction and pancreatic islet β‑cell failure (Review)". Experimental and Therapeutic Medicine 20.6 (2020): 266.
Chicago
Sha, W., Hu, F., Bu, S."Mitochondrial dysfunction and pancreatic islet β‑cell failure (Review)". Experimental and Therapeutic Medicine 20, no. 6 (2020): 266. https://doi.org/10.3892/etm.2020.9396
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team