|
1
|
Schmidt AM: Highlighting diabetes
mellitus: The epidemic continues. Arterioscler Thromb Vasc Biol.
38:e1–e8. 2018.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Wang YJ, Schug J, Won KJ, Liu C, Naji A,
Avrahami D, Golson ML and Kaestner KH: Single-cell transcriptomics
of the human endocrine pancreas. Diabetes. 65:3028–3038.
2016.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Lawlor N, George J, Bolisetty M, Kursawe
R, Sun L, Sivakamasundari V, Kycia I, Robson P and Stitzel ML:
Single-cell transcriptomes identify human islet cell signatures and
reveal cell-type-specific expression changes in type 2 diabetes.
Genome Res. 27:208–222. 2017.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Huang Q, Bu S, Yu Y, Guo Z, Ghatnekar G,
Bu M, Yang L, Lu B, Feng Z, Liu S and Wang F: Diazoxide prevents
diabetes through inhibiting pancreatic beta-cells from apoptosis
via Bcl-2/Bax rate and p38-beta mitogen-activated protein kinase.
Endocrinology. 148:81–91. 2007.PubMed/NCBI View Article : Google Scholar
|
|
5
|
International Diabetes Federation. IDF
Diabetes Atlas, 8th edition. International Diabetes Federation,
Brussels 2017. Available from: urihttp://www.diabetesatlas.orgsimplehttp://www.diabetesatlas.org.
|
|
6
|
Holman N, Young B and Gadsby R: Current
prevalence of type 1 and type 2 diabetes in adults and children in
the UK. Diabet Med. 32:1119–1120. 2015.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Blake R and Trounce IA: Mitochondrial
dysfunction and complications associated with diabetes. Biochim
Biophys Acta. 1840:1404–1412. 2014.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Ma RCW: Epidemiology of diabetes and
diabetic complications in China. Diabetologia. 61:1249–1260.
2018.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Ma ZA, Zhao Z and Turk J: Mitochondrial
dysfunction and β-cell failure in type 2 diabetes mellitus. Exp
Diabetes Res. 2012(703538)2012.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Montgomery MK: Mitochondrial dysfunction
and diabetes: Is mitochondrial transfer a friend or foe? Biology
(Basel). 8(33)2019.PubMed/NCBI View Article : Google Scholar
|
|
11
|
van der Bliek AM, Sedensky MM and Morgan
PG: Cell biology of the mitochondrion. Genetics. 207:843–871.
2017.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Henquin JC: Triggering and amplifying
pathways of regulation of insulin secretion by glucose. Diabetes.
49:1751–1760. 2000.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Komatsu M, Takei M, Ishii H and Sato Y:
Glucose-stimulated insulin secretion: A newer perspective. J
Diabetes Investig. 4:511–516. 2013.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Kibbey RG, Pongratz RL, Romanelli AJ,
Wollheim CB, Cline GW and Shulman GI: Mitochondrial GTP regulates
glucose-stimulated insulin secretion. Cell Metab. 5:253–264.
2007.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Molnar MJ and Kovacs GG: Mitochondrial
diseases. Handb Clin Neurol. 145:147–155. 2017.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Fex M, Nicholas LM, Vishnu N, Medina A,
Sharoyko VV, Nicholls DG, Spégel P and Mulder H: The pathogenetic
role of β-cell mitochondria in type 2 diabetes. J Endocrinol.
236:R145–R159. 2018.PubMed/NCBI View Article : Google Scholar
|
|
17
|
O'Sullivan M, Rutland P, Lucas D, Ashton
E, Hendricks S, Rahman S and Bitner-Glindzicz M: Mitochondrial
m.1584A 12S m62A rRNA methylation in families with m.1555A>G
associated hearing loss. Hum Mol Genet. 24:1036–1044.
2015.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Bohnsack MT and Sloan KE: The
mitochondrial epitranscriptome: The roles of RNA modifications in
mitochondrial translation and human disease. Cell Mol Life Sci.
75:241–260. 2018.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Subramanian S, Kalyanaraman B and Migrino
RQ: Mitochondrially targeted antioxidants for the treatment of
cardiovascular diseases. Recent Pat Cardiovasc Drug Discov.
5:54–65. 2010.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Papa S, Martino PL, Capitanio G, Gaballo
A, De Rasmo D, Signorile A and Petruzzella V: The oxidative
phosphorylation system in mammalian mitochondria. Adv Exp Med Biol.
942:3–37. 2012.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Conley KE: Mitochondria to motion:
Optimizing oxidative phosphorylation to improve exercise
performance. J Exp Biol. 219:243–249. 2016.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Waypa GB, Smith KA and Schumacker PT: O2
sensing, mitochondria and ROS signaling: The fog is lifting. Mol
Aspects Med. 47-48:76–89. 2016.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Angelova PR and Abramov AY: Functional
role of mitochondrial reactive oxygen species in physiology. Free
Radic Biol Med. 100:81–85. 2016.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Kausar S, Wang F and Cui H: The role of
mitochondria in reactive oxygen species generation and its
implications for neurodegenerative diseases. Cells.
7(274)2018.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Akram M: Citric acid cycle and role of its
intermediates in metabolism. Cell Biochem Biophys. 68:475–478.
2014.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Chiabrando D, Mercurio S and Tolosano E:
Heme and erythropoieis: More than a structural role. Haematologica.
99:973–983. 2014.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Moreno-Navarrete JM, Rodríguez A, Ortega
F, Becerril S, Girones J, Sabater-Masdeu M, Latorre J, Ricart W,
Frühbeck G and Fernández-Real JM: Heme biosynthetic pathway is
functionally linked to adipogenesis via mitochondrial respiratory
activity. Obesity (Silver Spring). 25:1723–1733. 2017.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Elustondo P, Martin LA and Karten B:
Mitochondrial cholesterol import. Biochim Biophys Acta Mol Cell
Biol Lipids. 1862:90–101. 2017.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Martin LA, Kennedy BE and Karten B:
Mitochondrial cholesterol: Mechanisms of import and effects on
mitochondrial function. J Bioenerg Biomembr. 48:137–151.
2016.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Bravo-Sagua R, Parra V, López-Crisosto C,
Díaz P, Quest AF and Lavandero S: Calcium transport and signaling
in mitochondria. Compr Physiol. 7:623–634. 2017.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Wang C, Du J, Du S, Liu Y, Li D, Zhu X and
Ni X: Endogenous H2S resists mitochondria-mediated apoptosis in the
adrenal glands via ATP5A1 S-sulfhydration in male mice. Mol Cell
Endocrinol. 474:65–73. 2018.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Yan C, Duanmu X, Zeng L, Liu B and Song Z:
Mitochondrial DNA: Distribution, mutations, and elimination. Cells.
8(379)2019.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Roger AJ, Muñoz-Gómez SA and Kamikawa R:
The origin and diversification of mitochondria. Curr Biol.
27:R1177–R1192. 2017.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Stefano GB, Bjenning C, Wang F, Wang N and
Kream RM: Mitochondrial heteroplasmy. Adv Exp Med Biol.
982:577–594. 2017.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Saneto RP: Genetics of mitochondrial
disease. Adv Genet. 98:63–116. 2017.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Kopinski PK, Janssen KA, Schaefer PM,
Trefely S, Perry CE, Potluri P, Tintos-Hernandez JA, Singh LN,
Karch KR, Campbell SL, et al: Regulation of nuclear epigenome by
mitochondrial DNA heteroplasmy. Proc Natl Acad Sci USA.
116:16028–16035. 2019.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Cotney J, McKay SE and Shadel GS:
Elucidation of separate, but collaborative functions of the rRNA
methyltransferase-related human mitochondrial transcription factors
B1 and B2 in mitochondrial biogenesis reveals new insight into
maternally inherited deafness. Hum Mol Genet. 18:2670–2682.
2009.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Karasik A, Fierke CA and Koutmos M:
Interplay between substrate recognition, 5'end tRNA processing and
methylation activity of human mitochondrial RNase P. RNA.
25:1646–1660. 2019.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Reinhard L, Sridhara S and Hallberg BM:
The MRPP1/MRPP2 complex is a tRNA-maturation platform in human
mitochondria. Nucleic Acids Res. 45:12469–12480. 2017.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Metodiev MD, Thompson K, Alston CL, Morris
AAM, He L, Assouline Z, Rio M, Bahi-Buisson N, Pyle A, Griffin H,
et al: Recessive mutations in TRMT10C cause defects in
mitochondrial RNA processing and multiple respiratory chain
deficiencies. Am J Hum Genet. 98:993–1000. 2016.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Pearce SF, Rorbach J, Van Haute L, D'Souza
AR, Rebelo-Guiomar P, Powell CA, Brierley I, Firth AE and Minczuk
M: Maturation of selected human mitochondrial tRNAs requires
deadenylation. Elife. 6(e27596)2017.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Ricquier D: UCP1, the mitochondrial
uncoupling protein of brown adipocyte: A personal contribution and
a historical perspective. Biochimie. 134:3–8. 2017.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Li Y, Maedler K, Shu L and Haataja L:
UCP-2 and UCP-3 proteins are differentially regulated in pancreatic
beta-cells. PLoS One. 3(e1397)2008.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Pitt MA: Overexpression of uncoupling
protein-2 in cancer: Metabolic and heat changes, inhibition and
effects on drug resistance. Inflammopharmacology. 23:365–369.
2015.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Chan SHH and Chan JYH: Mitochondria and
reactive oxygen species contribute to neurogenic hypertension.
Physiology (Bethesda). 32:308–321. 2017.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Broche B, Ben Fradj S, Aguilar E, Sancerni
T, Bénard M, Makaci F, Berthault C, Scharfmann R, Alves-Guerra MC
and Duvillié B: Mitochondrial protein UCP2 controls pancreas
development. Diabetes. 67:78–84. 2018.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Oelkrug R, Polymeropoulos ET and Jastroch
M: Brown adipose tissue: Physiological function and evolutionary
significance. J Comp Physiol B. 185:587–606. 2015.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Giralt M and Villarroya F: Mitochondrial
uncoupling and the regulation of glucose homeostasis. Curr Diabetes
Rev. 13:386–394. 2017.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Hu M, Lin H, Yang L, Cheng Y and Zhang H:
Interleukin-22 restored mitochondrial damage and impaired
glucose-stimulated insulin secretion through down-regulation of
uncoupling protein-2 in INS-1 cells. J Biochem. 161:433–439.
2017.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Nanayakkara GK, Wang H and Yang X: Proton
leak regulates mitochondrial reactive oxygen species generation in
endothelial cell activation and inflammation-A novel concept. Arch
Biochem Biophys. 662:68–74. 2019.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Rugarli E and Trifunovic A: Is
mitochondrial free radical theory of aging getting old? Biochim
Biophys Acta. 1847:1345–1346. 2015.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Cheeseman KH and Slater TF: An
introduction to free radical biochemistry. Br Med Bull. 49:481–493.
1993.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Brieger K, Schiavone S, Miller FJ Jr and
Krause KH: Reactive oxygen species: From health to disease. Swiss
Med Wkly. 142(w13659)2012.PubMed/NCBI View Article : Google Scholar
|
|
54
|
He L, He T, Farrar S, Ji L, Liu T and Ma
X: Antioxidants maintain cellular redox homeostasis by elimination
of reactive oxygen species. Cell Physiol Biochem. 44:532–553.
2017.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Zorov DB, Juhaszova M and Sollott SJ:
Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS
release. Physiol Rev. 94:909–950. 2014.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Vallabh NA, Romano V and Willoughby CE:
Mitochondrial dysfunction and oxidative stress in corneal disease.
Mitochondrion. 36:103–113. 2017.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Panieri E and Santoro MM: ROS homeostasis
and metabolism: A dangerous liason in cancer cells. Cell Death Dis.
7(e2253)2016.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Loperena R and Harrison DG: Oxidative
stress and hypertensive diseases. Med Clin North Am. 101:169–193.
2017.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Rani V, Deep G, Singh RK, Palle K and
Yadav UC: Oxidative stress and metabolic disorders: Pathogenesis
and therapeutic strategies. Life Sci. 148:183–193. 2016.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Gerber PA and Rutter GA: The role of
oxidative stress and hypoxia in pancreatic beta-cell dysfunction in
diabetes mellitus. Antioxid Redox Signal. 26:501–518.
2017.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Pramanik KC, Boreddy SR and Srivastava SK:
Role of mitochondrial electron transport chain complexes in
capsaicin mediated oxidative stress leading to apoptosis in
pancreatic cancer cells. PLoS One. 6(e20151)2011.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Sena LA and Chandel NS: Physiological
roles of mitochondrial reactive oxygen species. Mol Cell.
48:158–167. 2012.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Bugger H, Chen D, Riehle C, Soto J,
Theobald HA, Hu XX, Ganesan B, Weimer BC and Abel ED:
Tissue-specific remodeling of the mitochondrial proteome in type 1
diabetic akita mice. Diabetes. 58:1986–1997. 2009.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Makino A, Scott BT and Dillmann WH:
Mitochondrial fragmentation and superoxide anion production in
coronary endothelial cells from a mouse model of type 1 diabetes.
Diabetologia. 53:1783–1794. 2010.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Broderick TL: ATP production and TCA
activity are stimulated by propionyl-L-carnitine in the diabetic
rat heart. Drugs R D. 9:83–91. 2008.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Anello M, Lupi R, Spampinato D, Piro S,
Masini M, Boggi U, Del Prato S, Rabuazzo AM, Purrello F and
Marchetti P: Functional and morphological alterations of
mitochondria in pancreatic beta cells from type 2 diabetic
patients. Diabetologia. 48:282–289. 2005.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Paradies G, Paradies V, Ruggiero FM and
Petrosillo G: Oxidative stress, cardiolipin and mitochondrial
dysfunction in nonalcoholic fatty liver disease. World J
Gastroenterol. 20:14205–14218. 2014.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Musatov A, Carroll CA, Liu YC, Henderson
GI, Weintraub ST and Robinson NC: Identification of bovine heart
cytochrome c oxidase subunits modified by the lipid peroxidation
product 4-hydroxy-2-nonenal. Biochemistry. 41:8212–8220.
2002.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Sinha K, Das J, Pal PB and Sil PC:
Oxidative stress: The mitochondria-dependent and
mitochondria-independent pathways of apoptosis. Arch Toxicol.
87:1157–1180. 2013.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Molina AJ, Wikstrom JD, Stiles L, Las G,
Mohamed H, Elorza A, Walzer G, Twig G, Katz S, Corkey BE and
Shirihai OS: Mitochondrial networking protects beta-cells from
nutrient-induced apoptosis. Diabetes. 58:2303–2315. 2009.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Morino K, Petersen KF, Dufour S, Befroy D,
Frattini J, Shatzkes N, Neschen S, White MF, Bilz S, Sono S, et al:
Reduced mitochondrial density and increased IRS-1 serine
phosphorylation in muscle of insulin-resistant offspring of type 2
diabetic parents. J Clin Invest. 115:3587–3593. 2005.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Petersen KF, Dufour S, Befroy D, Garcia R
and Shulman GI: Impaired mitochondrial activity in the
insulin-resistant offspring of patients with type 2 diabetes. N
Engl J Med. 350:664–671. 2004.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Dan Dunn J, Alvarez LA, Zhang X and
Soldati T: Reactive oxygen species and mitochondria: A nexus of
cellular homeostasis. Redox Biol. 6:472–485. 2015.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Kauppila TES, Kauppila JHK and Larsson NG:
Mammalian mitochondria and aging: An update. Cell Metab. 25:57–71.
2017.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Ye X, Sun X, Starovoytov V and Cai Q:
Parkin-mediated mitophagy in mutant hAPP neurons and Alzheimer's
disease patient brains. Hum Mol Genet. 24:2938–2951.
2015.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Fivenson EM, Lautrup S, Sun N,
Scheibye-Knudsen M, Stevnsner T, Nilsen H, Bohr VA and Fang EF:
Mitophagy in neurodegeneration and aging. Neurochem Int.
109:202–209. 2017.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Choi DS, Kim DK, Kim YK and Gho YS:
Proteomics, transcriptomics and lipidomics of exosomes and
ectosomes. Proteomics. 13:1554–1571. 2013.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Alenquer M and Amorim MJ: Exosome
biogenesis, regulation, and function in viral infection. Viruses.
7:5066–5083. 2015.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Shakeri R, Kheirollahi A and Davoodi J:
Apaf-1: Regulation and function in cell death. Biochimie.
135:111–125. 2017.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Thorens B: GLUT2, glucose sensing and
glucose homeostasis. Diabetologia. 58:221–232. 2015.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Nicholls DG: The pancreatic β-cell: A
bioenergetic perspective. Physiol Rev. 96:1385–1447.
2016.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Ježek P and Dlasková A: Dynamic of
mitochondrial network, cristae, and mitochondrial nucleoids in
pancreatic β-cells. Mitochondrion. 49:245–258. 2019.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Mulder H: Transcribing β-cell mitochondria
in health and disease. Mol Metab. 6:1040–1051. 2017.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Kwak SH and Park KS: Role of mitochondrial
DNA variation in the pathogenesis of diabetes mellitus. Front
Biosci (Landmark Ed). 21:1151–1167. 2016.PubMed/NCBI View
Article : Google Scholar
|
|
85
|
Jiang Z, Zhang Y, Yan J, Li F, Geng X, Lu
H, Wei X, Feng Y, Wang C and Jia W: De novo mutation of
m.3243A>G together with m.16093T>C associated with atypical
clinical features in a pedigree with MIDD syndrome. J Diabetes Res.
2019(5184647)2019.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Alves D, Calmeiro ME, Macário C and Silva
R: Family phenotypic heterogeneity caused by mitochondrial DNA
mutation A3243G. Acta Med Port. 30:581–585. 2017.PubMed/NCBI View Article : Google Scholar
|
|
87
|
El-Hattab AW, Emrick LT, Hsu JW,
Chanprasert S, Jahoor F, Scaglia F and Craigen WJ: Glucose
metabolism derangements in adults with the MELAS m.3243A>G
mutation. Mitochondrion. 18:63–69. 2014.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Meimaridou E, Goldsworthy M, Chortis V,
Fragouli E, Foster PA, Arlt W, Cox R and Metherell LA: NNT is a key
regulator of adrenal redox homeostasis and steroidogenesis in male
mice. J Endocrinol. 236:13–28. 2018.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Santos LRB, Muller C, de Souza AH,
Takahashi HK, Spégel P, Sweet IR, Chae H, Mulder H and Jonas JC:
NNT reverse mode of operation mediates glucose control of
mitochondrial NADPH and glutathione redox state in mouse pancreatic
β-cells. Mol Metab. 6:535–547. 2017.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Dutta P, Ma L, Ali Y, Sloot PMA and Zheng
J: Boolean network modeling of β-cell apoptosis and insulin
resistance in type 2 diabetes mellitus. BMC Syst Biol. 13 (Suppl
2)(S36)2019.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Tabebi M, Khabou B, Boukadi H, Ben Hamad
M, Ben Rhouma B, Tounsi S, Maalej A, Kamoun H, Keskes-Ammar L, Abid
M, et al: Association study of apoptosis gene polymorphisms in
mitochondrial diabetes: A potential role in the pathogenicity of
MD. Gene. 639:18–26. 2018.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Zhang J, Liu Y, Yang HW, Xu HY and Meng Y:
Molecular mechanism of beta cell apoptosis induced by p58 in high
glucose medium. Sheng Li Xue Bao. 61:379–385. 2009.(In Chinese).
PubMed/NCBI
|
|
93
|
Han J, Song B, Kim J, Kodali VK, Pottekat
A, Wang M, Hassler J, Wang S, Pennathur S, Back SH, et al:
Antioxidants complement the requirement for protein chaperone
function to maintain β-cell function and glucose homeostasis.
Diabetes. 64:2892–2904. 2015.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Vozza A, Parisi G, De Leonardis F, Lasorsa
FM, Castegna A, Amorese D, Marmo R, Calcagnile VM, Palmieri L,
Ricquier D, et al: UCP2 transports C4 metabolites out of
mitochondria, regulating glucose and glutamine oxidation. Proc Natl
Acad Sci USA. 111:960–965. 2014.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Collins S, Pi J and Yehuda-Shnaidman E:
Uncoupling and reactive oxygen species (ROS)-a double-edged sword
for β-cell function? ‘Moderation in all things’. Best Pract Res
Clin Endocrinol Metab. 26:753–758. 2012.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Emre Y, Hurtaud C, Karaca M, Nubel T,
Zavala F and Ricquier D: Role of uncoupling protein UCP2 in
cell-mediated immunity: How macrophage-mediated insulitis is
accelerated in a model of autoimmune diabetes. Proc Natl Acad Sci
USA. 104:19085–19090. 2007.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Lee SC, Robson-Doucette CA and Wheeler MB:
Uncoupling protein 2 regulates reactive oxygen species formation in
islets and influences susceptibility to diabetogenic action of
streptozotocin. J Endocrinol. 203:33–43. 2009.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Sharoyko VV, Abels M, Sun J, Nicholas LM,
Mollet IG, Stamenkovic JA, Göhring I, Malmgren S, Storm P, Fadista
J, et al: Loss of TFB1M results in mitochondrial dysfunction that
leads to impaired insulin secretion and diabetes. Hum Mol Genet.
23:5733–5749. 2014.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Nicholas LM, Valtat B, Medina A, Andersson
L, Abels M, Mollet IG, Jain D, Eliasson L, Wierup N, Fex M and
Mulder H: Mitochondrial transcription factor B2 is essential for
mitochondrial and cellular function in pancreatic β-cells. Mol
Metab. 6:651–663. 2017.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Baixauli F, López-Otín C and Mittelbrunn
M: Exosomes and autophagy: Coordinated mechanisms for the
maintenance of cellular fitness. Front Immunol.
5(403)2014.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Wong SK, Chin KY, Suhaimi FH, Ahmad F and
Ima-Nirwana S: The effects of a modified high-carbohydrate high-fat
diet on metabolic syndrome parameters in male rats. Exp Clin
Endocrinol Diabetes. 126:205–212. 2018.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Rutter GA, Pullen TJ, Hodson DJ and
Martinez-Sanchez A: Pancreatic β-cell identity, glucose sensing and
the control of insulin secretion. Biochem J. 466:203–218.
2015.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Newsholme P, Cruzat VF, Keane KN, Carlessi
R and de Bittencourt PI Jr: Molecular mechanisms of ROS production
and oxidative stress in diabetes. Biochem J. 473:4527–4550.
2016.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Rehman K and Akash MSH: Mechanism of
generation of oxidative stress and pathophysiology of type 2
diabetes mellitus: How are they interlinked? J Cell Biochem.
118:3577–3585. 2017.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Rharass T, Lemcke H, Lantow M, Kuznetsov
SA, Weiss DG and Panáková D: Ca2+-mediated mitochondrial reactive
oxygen species metabolism augments Wnt/beta-catenin pathway
activation to facilitate cell differentiation. J Biol Chem.
289:27937–27951. 2014.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Sarre A, Gabrielli J, Vial G, Leverve XM
and Assimacopoulos-Jeannet F: Reactive oxygen species are produced
at low glucose and contribute to the activation of AMPK in
insulin-secreting cells. Free Radic Biol Med. 52:142–150.
2012.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Furukawa S, Fujita T, Shimabukuro M, Iwaki
M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M and
Shimomura I: Increased oxidative stress in obesity and its impact
on metabolic syndrome. J Clin Invest. 114:1752–1761.
2004.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Nowotny K, Jung T, Höhn A, Weber D and
Grune T: Advanced glycation end products and oxidative stress in
type 2 diabetes mellitus. Biomolecules. 5:194–222. 2015.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Turrens JF: Mitochondrial formation of
reactive oxygen species. J Physiol. 552:335–344. 2003.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Wang J and Wang H: Oxidative stress in
pancreatic beta cell regeneration. Oxid Med Cell Longev.
2017(1930261)2017.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Ivarsson R, Quintens R, Dejonghe S,
Tsukamoto K, in 't Veld P, Renström E and Schuit FC: Redox control
of exocytosis: Regulatory role of NADPH, thioredoxin, and
glutaredoxin. Diabetes. 54:2132–2142. 2005.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Hopps E, Noto D, Caimi G and Averna MR: A
novel component of the metabolic syndrome: The oxidative stress.
Nutr Metab Cardiovasc Dis. 20:72–77. 2010.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Rao R: Oxidative stress-induced disruption
of epithelial and endothelial tight junctions. Front Biosci.
13:7210–7226. 2008.PubMed/NCBI View
Article : Google Scholar
|
|
114
|
Newsholme P, Rebelato E, Abdulkader F,
Krause M, Carpinelli A and Curi R: Reactive oxygen and nitrogen
species generation, antioxidant defenses, and β-cell function: A
critical role for amino acids. J Endocrinol. 214:11–20.
2012.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Fiorentino TV, Prioletta A, Zuo P and
Folli F: Hyperglycemia-induced oxidative stress and its role in
diabetes mellitus related cardiovascular diseases. Curr Pharm Des.
19:5695–5703. 2013.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Koehler A and Van Noorden CJ: Reduced
nicotinamide adenine dinucleotide phosphate and the higher
incidence of pollution-induced liver cancer in female flounder.
Environ Toxicol Chem. 22:2703–2710. 2003.PubMed/NCBI View
Article : Google Scholar
|
|
117
|
Baldewpersad Tewarie NM, Burgers IA,
Dawood Y, den Boon HC, den Brok MG, Klunder JH, Koopmans KB,
Rademaker E, van den Broek HB, van den Bersselaar SM, et al:
NADP+-dependent IDH1 R132 mutation and its relevance for
glioma patient survival. Med Hypotheses. 80:728–731.
2013.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Atai NA, Renkema-Mills NA, Bosman J,
Schmidt N, Rijkeboer D, Tigchelaar W, Bosch KS, Troost D, Jonker A,
Bleeker FE, et al: Differential activity of NADPH-producing
dehydrogenases renders rodents unsuitable models to study IDH1R132
mutation effects in human glioblastoma. J Histochem Cytochem.
59:489–503. 2011.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Pan HC, Lee CC, Chou KM, Lu SC and Sun CY:
Serum levels of uncoupling proteins in patients with differential
insulin resistance: A community-based cohort study. Medicine
(Baltimore). 96(e8053)2017.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Brondani LA, Assmann TS, Duarte GC, Gross
JL, Canani LH and Crispim D: The role of the uncoupling protein 1
(UCP1) on the development of obesity and type 2 diabetes mellitus.
Arq Bras Endocrinol Metabol. 56:215–225. 2012.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Oelkrug R, Goetze N, Meyer CW and Jastroch
M: Antioxidant properties of UCP1 are evolutionarily conserved in
mammals and buffer mitochondrial reactive oxygen species. Free
Radic Biol Med. 77:210–216. 2014.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Sreedhar A and Zhao Y: Uncoupling protein
2 and metabolic diseases. Mitochondrion. 34:135–140.
2017.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Li N, Karaca M and Maechler P:
Upregulation of UCP2 in beta-cells confers partial protection
against both oxidative stress and glucotoxicity. Redox Biol.
13:541–549. 2017.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Senese R, Valli V, Moreno M, Lombardi A,
Busiello RA, Cioffi F, Silvestri E, Goglia F, Lanni A and de Lange
P: Uncoupling protein 3 expression levels influence insulin
sensitivity, fatty acid oxidation, and related signaling pathways.
Pflugers Arch. 461:153–164. 2011.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Edwards KS, Ashraf S, Lomax TM, Wiseman
JM, Hall ME, Gava FN, Hall JE, Hosler JP and Harmancey R:
Uncoupling protein 3 deficiency impairs myocardial fatty acid
oxidation and contractile recovery following ischemia/reperfusion.
Basic Res Cardiol. 113(47)2018.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Chan CB and Harper ME: Uncoupling
proteins: Role in insulin resistance and insulin insufficiency.
Curr Diabetes Rev. 2:271–283. 2006.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Jena NR: DNA damage by reactive species:
Mechanisms, mutation and repair. J Biosci. 37:503–517.
2012.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Borchert A, Kalms J, Roth SR, Rademacher
M, Schmidt A, Holzhutter HG, Kuhn H and Scheerer P: Crystal
structure and functional characterization of
selenocysteine-containing glutathione peroxidase 4 suggests an
alternative mechanism of peroxide reduction. Biochim Biophys Acta
Mol Cell Biol Lipids. 1863:1095–1107. 2018.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Jung CH and Choi KM: Impact of
high-carbohydrate diet on metabolic parameters in patients with
type 2 diabetes. Nutrients. 9(322)2017.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Li C, Deng X, Xie X, Liu Y, Friedmann
Angeli JP and Lai L: Activation of glutathione peroxidase 4 as a
novel anti-inflammatory strategy. Front Pharmacol.
9(1120)2018.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Lillig CH and Holmgren A: Thioredoxin and
related molecules-from biology to health and disease. Antioxid
Redox Signal. 9:25–47. 2007.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Eguchi K and Nagai R: Islet inflammation
in type 2 diabetes and physiology. J Clin Invest. 127:14–23.
2017.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Margaryan S, Witkowicz A, Partyka A,
Yepiskoposyan L, Manukyan G and Karabon L: The mRNA expression
levels of uncoupling proteins 1 and 2 in mononuclear cells from
patients with metabolic disorders: Obesity and type 2 diabetes
mellitus. Postepy Hig Med Dosw (Online). 71:895–900.
2017.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Dalmas E, Venteclef N, Caer C, Poitou C,
Cremer I, Aron-Wisnewsky J, Lacroix-Desmazes S, Bayry J, Kaveri SV,
Clément K, et al: T cell-derived IL-22 amplifies IL-1β-driven
inflammation in human adipose tissue: Relevance to obesity and type
2 diabetes. Diabetes. 63:1966–1977. 2014.PubMed/NCBI View Article : Google Scholar
|
|
135
|
Oh H, Park SH, Kang MK, Kim YH, Lee EJ,
Kim DY, Kim SI, Oh S, Lim SS and Kang YH: Asaronic acid attenuates
macrophage activation toward M1 phenotype through inhibition of
NF-κB pathway and JAK-STAT signaling in glucose-loaded murine
macrophages. J Agric Food Chem, 2019.
|
|
136
|
Wang Y, Shan B, Liang Y, Wei H and Yuan J:
Parkin regulates NF-κB by mediating site-specific ubiquitination of
RIPK1. Cell Death Dis. 9(732)2018.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Kim DH, Lee JC, Kim S, Oh SH, Lee MK, Kim
KW and Lee MS: Inhibition of autoimmune diabetes by TLR2 tolerance.
J Immunol. 187:5211–5220. 2011.PubMed/NCBI View Article : Google Scholar
|
|
138
|
Tan Q, Majewska-Szczepanik M, Zhang X,
Szczepanik M, Zhou Z, Wong FS and Wen L: IRAK-M deficiency promotes
the development of type 1 diabetes in NOD mice. Diabetes.
63:2761–2775. 2014.PubMed/NCBI View Article : Google Scholar
|
|
139
|
QiNan W, XiaGuang G, XiaoTian L, WuQuan D,
Ling Z and Bing C: Par-4/NF-κB mediates the apoptosis of islet β
cells induced by glucolipotoxicity. J Diabetes Res.
2016(4692478)2016.PubMed/NCBI View Article : Google Scholar
|
|
140
|
Cnop M, Toivonen S, Igoillo-Esteve M and
Salpea P: Endoplasmic reticulum stress and eIF2α phosphorylation:
The Achilles heel of pancreatic β cells. Mol Metab. 6:1024–1039.
2017.PubMed/NCBI View Article : Google Scholar
|
|
141
|
Sauter NS, Thienel C, Plutino Y, Kampe K,
Dror E, Traub S, Timper K, Bédat B, Pattou F, Kerr-Conte J, et al:
Angiotensin II induces interleukin-1β-mediated islet inflammation
and β-cell dysfunction independently of vasoconstrictive effects.
Diabetes. 64:1273–1283. 2015.PubMed/NCBI View Article : Google Scholar
|
|
142
|
Dinarello CA, Donath MY and
Mandrup-Poulsen T: Role of IL-1beta in type 2 diabetes. Curr Opin
Endocrinol Diabetes Obes. 17:314–321. 2010.PubMed/NCBI View Article : Google Scholar
|
|
143
|
Carrasco-Pozo C, Tan KN Gotteland M and
Borges K: Sulforaphane protects against high cholesterol-induced
mitochondrial bioenergetics impairments, inflammation, and
oxidative stress and preserves pancreatic β-cells function. Oxid
Med Cell Longev. 2017(3839756)2017.PubMed/NCBI View Article : Google Scholar
|
|
144
|
Donath MY and Shoelson SE: Type 2 diabetes
as an inflammatory disease. Nat Rev Immunol. 11:98–107.
2011.PubMed/NCBI View Article : Google Scholar
|
|
145
|
Gomes BF and Accardo CM:
Immunoinflammatory mediators in the pathogenesis of diabetes
mellitus. Einstein (Sao Paulo). 17(eRB4596)2019.PubMed/NCBI View Article : Google Scholar : (In En,
Portuguese).
|