|
1
|
Baulina N, Osmak G, Kiselev I, Matveeva N,
Kukava N, Shakhnovich R, Kulakova O and Favorova O: NGS-identified
circulating miR-375 as a potential regulating component of
myocardial infarction associated network. J Mol Cell Cardiol.
121:173–179. 2018.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Nunez-Gomez E, Pericacho M, Ollauri-Ibanez
C, Bernabeu C and Lopez-Novoa JM: The role of endoglin in
post-ischemic revascularization. Angiogenesis. 20:1–24.
2017.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Zhou H, Ma Q, Zhu P, Ren J, Reiter RJ and
Chen Y: Protective role of melatonin in cardiac
ischemia-reperfusion injury: From pathogenesis to targeted therapy.
J Pineal Res. 64(e12471)2018.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Jennings RB, Sommers HM, Smyth GA, Flack
HA and Linn H: Myocardial necrosis induced by temporary occlusion
of a coronary artery in the dog. Arch Pathol. 70:68–78.
1960.PubMed/NCBI
|
|
5
|
Davidson SM, Ferdinandy P, Andreadou I,
Bøtker HE, Heusch G, Ibáñez B, Ovize M, Schulz R, Yellon DM,
Hausenloy DJ, et al: Multitarget strategies to reduce myocardial
ischemia/reperfusion injury: JACC review topic of the week. J Am
Coll Cardiol. 73:89–99. 2019.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Xu C, Bailly-Maitre B and Reed JC:
Endoplasmic reticulum stress: Cell life and death decisions. J Clin
Invest. 115:2656–2664. 2005.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Zhao S, Liu Y, Wang F, Xu D and Xie P:
N-acetylcysteine protects against microcystin-LR-induced
endoplasmic reticulum stress and germ cell apoptosis in zebrafish
testes. Chemosphere. 204:463–473. 2018.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Liu X, Jin X, Su R and Li Z: The
reproductive toxicology of male SD rats after PM2.5 exposure
mediated by the stimulation of endoplasmic reticulum stress.
Chemosphere. 189:547–555. 2017.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Almanza A, Carlesso A, Chintha C,
Creedican S, Doultsinos D, Leuzzi B, Luís A, McCarthy N,
Montibeller L, More S, et al: Endoplasmic reticulum stress
signalling-from basic mechanisms to clinical applications. FEBS J.
286:241–278. 2019.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Guzel E, Arlier S, Guzeloglu-Kayisli O,
Tabak MS, Ekiz T, Semerci N, Larsen K, Schatz F, Lockwood CJ and
Kayisli UA: Endoplasmic reticulum stress and homeostasis in
reproductive physiology and pathology. Int J Mol Sci.
18(792)2017.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Xin W, Li X, Lu X, Niu K and Cai J:
Involvement of endoplasmic reticulum stress-associated apoptosis in
a heart failure model induced by chronic myocardial ischemia. Int J
Mol Med. 27:503–509. 2011.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Sanada S, Komuro I and Kitakaze M:
Pathophysiology of myocardial reperfusion injury: Preconditioning,
postconditioning, and translational aspects of protective measures.
Am J Physiol Heart Circ Physiol. 301:H1723–H1741. 2011.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Marban E, Kitakaze M, Kusuoka H,
Porterfield JK, Yue DT and Chacko VP: Intracellular free calcium
concentration measured with 19F NMR spectroscopy in intact ferret
hearts. Proc Natl Acad Sci USA. 84:6005–6009. 1987.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Kalogeris T, Baines CP, Krenz M and
Korthuis RJ: Cell biology of ischemia/reperfusion injury. Int Rev
Cell Mol Biol. 298:229–317. 2012.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Szydlowska K and Tymianski M: Calcium,
ischemia and excitotoxicity. Cell Calcium. 47:122–129.
2010.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Jakob R, Beutner G, Sharma VK, Duan Y,
Gross RA, Hurst S, Jhun BS, O-Uchi J and Sheu SS: Molecular and
functional identification of a mitochondrial ryanodine receptor in
neurons. Neurosci Lett. 575:7–12. 2014.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Peracchia C: Chemical gating of gap
junction channels; roles of calcium, pH and calmodulin. Biochim
Biophysica Acta. 1662:61–80. 2004.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Tribulova N, Knezl V, Szeiffova Bacova B,
Egan Benova T, Viczenczova C, Gonçalvesova E and Slezak J:
Disordered myocardial Ca(2+) homeostasis results in substructural
alterations that may promote occurrence of malignant arrhythmias.
Physiol Res. 65 (Suppl 1):S139–S148. 2016.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Javadov S, Hunter JC, Barreto-Torres G and
Parodi-Rullan R: Targeting the mitochondrial permeability
transition: Cardiac ischemia-reperfusion versus carcinogenesis.
Cell Physiol Biochem. 27:179–190. 2011.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Abdallah Y, Gkatzoflia A, Gligorievski D,
Kasseckert S, Euler G, Schlüter KD, Schäfer M, Piper HM and Schäfer
C: Insulin protects cardiomyocytes against reoxygenation-induced
hypercontracture by a survival pathway targeting SR Ca2+
storage. Cardiovasc Res. 70:346–353. 2006.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Wu H, Yang H, Rhee JW, Zhang JZ, Lam CK,
Sallam K, Chang ACY, Ma N, Lee J, Zhang H, et al: Modelling
diastolic dysfunction in induced pluripotent stem cell-derived
cardiomyocytes from hypertrophic cardiomyopathy patients. Eur Heart
J. 40:3685–3695. 2019.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Inserte J, Hernando V and Garcia-Dorado D:
Contribution of calpains to myocardial ischaemia/reperfusion
injury. Cardiovasc Res. 96:23–31. 2012.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Croall DE and Ersfeld K: The calpains:
Modular designs and functional diversity. Genome Biol.
8(218)2007.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Commoner B, Townsend J and Pake GE: Free
radicals in biological materials. Nature. 174:689–691.
1954.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Cadenas S: Mitochondrial uncoupling, ROS
generation and cardioprotection. Biochim Biophys Acta Bioenerg.
1859:940–950. 2018.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Meitzler JL, Antony S, Wu Y, Juhasz A, Liu
H, Jiang G, Lu J, Roy K and Doroshow JH: NADPH oxidases: A
perspective on reactive oxygen species production in tumor biology.
Antioxid Redox Signal. 20:2873–2889. 2014.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Ziech D, Franco R, Pappa A and
Panayiotidis MI: Reactive oxygen species (ROS)-induced genetic and
epigenetic alterations in human carcinogenesis. Mutation Res.
711:167–173. 2011.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Brand MD: The sites and topology of
mitochondrial superoxide production. Exp Gerontol. 45:466–472.
2010.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Lambeth JD: NOX enzymes and the biology of
reactive oxygen. Nat Rev Immunol. 4:181–189. 2004.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Huang P, Feng L, Oldham EA, Keating MJ and
Plunkett W: Superoxide dismutase as a target for the selective
killing of cancer cells. Nature. 407:390–395. 2000.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Srinivas US, Tan BWQ Vellayappan BA and
Jeyasekharan AD: ROS and the DNA damage response in cancer. Redox
Biol. 25(101084)2019.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Azevedo PS, Polegato BF, Minicucci MF,
Paiva SA and Zornoff LA: Cardiac remodeling: Concepts, clinical
impact, pathophysiological mechanisms and pharmacologic treatment.
Arq Bras Cardiol. 106:62–69. 2016.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Moris D, Spartalis M, Spartalis E,
Karachaliou GS, Karaolanis GI, Tsourouflis G, Tsilimigras DI,
Tzatzaki E and Theocharis S: The role of reactive oxygen species in
the pathophysiology of cardiovascular diseases and the clinical
significance of myocardial redox. Ann Transl Med.
5(326)2017.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Bartz RR, Suliman HB and Piantadosi CA:
Redox mechanisms of cardiomyocyte mitochondrial protection. Front
Physiol. 6(291)2015.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Lee HL, Chen CL, Yeh ST, Zweier JL and
Chen YR: Biphasic modulation of the mitochondrial electron
transport chain in myocardial ischemia and reperfusion. Am J
Physiol Heart Circ Physiol. 302:H1410–H1422. 2012.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Chen YR and Zweier JL: Cardiac
mitochondria and reactive oxygen species generation. Circ Res.
114:524–537. 2014.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Angelova PR and Abramov AY: Functional
role of mitochondrial reactive oxygen species in physiology. Free
Radic Biol Med. 100:81–85. 2016.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Chang JC, Lien CF, Lee WS, Chang HR, Hsu
YC, Luo YP, Jeng JR, Hsieh JC and Yang KT: Intermittent hypoxia
prevents myocardial mitochondrial Ca2+ overload and cell
death during ischemia/reperfusion: The role of reactive oxygen
species. Cells. 8(564)2019.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Zhu WZ, Xie Y, Chen L, Yang HT and Zhou
ZN: Intermittent high altitude hypoxia inhibits opening of
mitochondrial permeability transition pores against reperfusion
injury. J Mol Cell Cardiol. 40:96–106. 2006.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Aguilar M, Gonzalez-Candia A, Rodríguez J,
Carrasco-Pozo C, Cañas D, García-Herrera C, Herrera EA and Castillo
RL: Mechanisms of cardiovascular protection associated with
intermittent hypobaric hypoxia exposure in a rat model: Role of
Oxidative Stress. Int J Mol Sci. 19(366)2018.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Jordan JE, Zhao ZQ and Vinten-Johansen J:
The role of neutrophils in myocardial ischemia-reperfusion injury.
Cardiovasc Res. 43:860–878. 1999.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Chandrasekar B, Colston JT, Geimer J,
Cortez D and Freeman GL: Induction of nuclear factor kappaB but not
kappaB-responsive cytokine expression during myocardial reperfusion
injury after neutropenia. Free Radic Biol Med. 28:1579–1588.
2000.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Sugano M, Hata T, Tsuchida K, Suematsu N,
Oyama J, Satoh S and Makino N: Local delivery of soluble TNF-alpha
receptor 1 gene reduces infarct size following ischemia/reperfusion
injury in rats. Mol Cell Biochem. 266:127–132. 2004.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Merchant SH, Gurule DM and Larson RS:
Amelioration of ischemia-reperfusion injury with cyclic peptide
blockade of ICAM-1. Am J Physiol Heart Circ Physiol.
284:H1260–H1268. 2003.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Dar WA, Sullivan E, Bynon JS, Eltzschig H
and Ju C: Ischaemia reperfusion injury in liver transplantation:
Cellular and molecular mechanisms. Liver Int. 39:788–801.
2019.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Bhattacharya K, Farwell K, Huang M,
Kempuraj D, Donelan J, Papaliodis D, Vasiadi M and Theoharides TC:
Mast cell deficient W/Wv mice have lower serum IL-6 and less
cardiac tissue necrosis than their normal littermates following
myocardial ischemia-reperfusion. Int J Immunopathol Pharmacol.
20:69–74. 2007.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Yap ML and Peter K: Molecular positron
emission tomography in cardiac ischemia/reperfusion. Circ Res.
124:827–829. 2019.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Valente M and Calabrese F: Liver and
apoptosis. Ital J Gastroenterol Hepatol. 31:73–77. 1999.PubMed/NCBI
|
|
49
|
Metukuri MR, Beer-Stolz D, Namas RA,
Dhupar R, Torres A, Loughran PA, Jefferson BS, Tsung A, Billiar TR,
Vodovotz Y and Zamora R: Expression and subcellular localization of
BNIP3 in hypoxic hepatocytes and liver stress. Am J Physiol
Gastrointest Liver Physiol. 296:G499–G509. 2009.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Wu B, Qiu W, Wang P, Yu H, Cheng T,
Zambetti GP, Zhang L and Yu J: p53 independent induction of PUMA
mediates intestinal apoptosis in response to ischaemia-reperfusion.
Gut. 56:645–654. 2007.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Scorrano L, Oakes SA, Opferman JT, Cheng
EH, Sorcinelli MD, Pozzan T and Korsmeyer SJ: BAX and BAK
regulation of endoplasmic reticulum Ca2+: A control
point for apoptosis. Science. 300:135–139. 2003.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Kobayashi A, Imamura H, Isobe M, Matsuyama
Y, Soeda J, Matsunaga K and Kawasaki S: Mac-1 (CD11b/CD18) and
intercellular adhesion molecule-1 in ischemia-reperfusion injury of
rat liver. Am J Physiol Gastrointest Liver Physiol. 281:G577–G585.
2001.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Yang W, Guastella J, Huang JC, Wang Y,
Zhang L, Xue D, Tran M, Woodward R, Kasibhatla S, Tseng B, et al:
MX1013, a dipeptide caspase inhibitor with potent in vivo
antiapoptotic activity. Br J Pharmacol. 140:402–412.
2003.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Vandenabeele P, Declercq W, Van Herreweghe
F and Vanden Berghe T: The role of the kinases RIP1 and RIP3 in
TNF-induced necrosis. Sci Signal. 3(re4)2010.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Kubli DA, Ycaza JE and Gustafsson AB:
Bnip3 mediates mitochondrial dysfunction and cell death through Bax
and Bak. Biochem J. 405:407–415. 2007.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Kubli DA, Quinsay MN, Huang C, Lee Y and
Gustafsson AB: Bnip3 functions as a mitochondrial sensor of
oxidative stress during myocardial ischemia and reperfusion. Am J
Physiol Heart Circ Physiol. 295:H2025–H2031. 2008.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Poller W, Dimmeler S, Heymans S, Zeller T,
Haas J, Karakas M, Leistner DM, Jakob P, Nakagawa S, Blankenberg S,
et al: Non-coding RNAs in cardiovascular diseases: Diagnostic and
therapeutic perspectives. Eur Heart J. 39:2704–2716.
2018.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Winter J, Jung S, Keller S, Gregory RI and
Diederichs S: Many roads to maturity: microRNA biogenesis pathways
and their regulation. Nat Cell Biol. 11:228–234. 2009.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Peng L, Chun-Guang Q, Bei-Fang L, Xue-Zhi
D, Zi-Hao W, Yun-Fu L, Yan-Ping D, Yang-Gui L, Wei-Guo L, Tian-Yong
H and Zhen-Wen H: Clinical impact of circulating miR-133, miR-1291
and miR-663b in plasma of patients with acute myocardial
infarction. Diagn Pathol. 9(89)2014.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Zhang R, Lan C, Pei H, Duan G, Huang L and
Li L: Expression of circulating miR-486 and miR-150 in patients
with acute myocardial infarction. BMC Cardiovasc Disord.
15(51)2015.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Joladarashi D, Garikipati VNS,
Thandavarayan RA, Verma SK, Mackie AR, Khan M, Gumpert AM, Bhimaraj
A, Youker KA, Uribe C, et al: Enhanced cardiac regenerative ability
of stem cells after ischemia-reperfusion injury: Role of human
CD34+ cells deficient in MicroRNA-377. J Am Coll
Cardiol. 66:2214–2226. 2015.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Xu C, Lu Y, Pan Z, Chu W, Luo X, Lin H,
Xiao J, Shan H, Wang Z and Yang B: The muscle-specific microRNAs
miR-1 and miR-133 produce opposing effects on apoptosis by
targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci.
120:3045–3052. 2007.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Tang Y, Zheng J, Sun Y, Wu Z, Liu Z and
Huang G: MicroRNA-1 regulates cardiomyocyte apoptosis by targeting
Bcl-2. Int Heart J. 50:377–387. 2009.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Yu XY, Song YH, Geng YJ, Lin QX, Shan ZX,
Lin SG and Li Y: Glucose induces apoptosis of cardiomyocytes via
microRNA-1 and IGF-1. Biochem Biophys Res Commun. 376:548–552.
2008.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Matkovich SJ, Wang W, Tu Y, Eschenbacher
WH, Dorn LE, Condorelli G, Diwan A, Nerbonne JM and Dorn GW II:
MicroRNA-133a protects against myocardial fibrosis and modulates
electrical repolarization without affecting hypertrophy in
pressure-overloaded adult hearts. Circ Res. 106:166–175.
2010.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Cheng Y, Liu X, Zhang S, Lin Y, Yang J and
Zhang C: MicroRNA-21 protects against the H(2)O(2)-induced injury
on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardiol.
47:5–14. 2009.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Cheng Y, Zhu P, Yang J, Liu X, Dong S,
Wang X, Chun B, Zhuang J and Zhang C: Ischaemic
preconditioning-regulated miR-21 protects heart against
ischaemia/reperfusion injury via anti-apoptosis through its target
PDCD4. Cardiovas Res. 87:431–439. 2010.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Sayed D, He M, Hong C, Gao S, Rane S, Yang
Z and Abdellatif M: MicroRNA-21 is a downstream effector of AKT
that mediates its antiapoptotic effects via suppression of Fas
ligand. J Biol Chem. 285:20281–20290. 2010.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Zhu H and Fan GC: Role of microRNAs in the
reperfused myocardium towards post-infarct remodelling. Cardiovasc
Res. 94:284–292. 2012.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Magenta A, Dellambra E, Ciarapica R and
Capogrossi MC: Oxidative stress, microRNAs and cytosolic calcium
homeostasis. Cell Calcium. 60:207–217. 2016.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Cha MJ, Jang JK, Ham O, Song BW, Lee SY,
Lee CY, Park JH, Lee J, Seo HH, Choi E, et al: MicroRNA-145
suppresses ROS-induced Ca2+ overload of cardiomyocytes
by targeting CaMKIIδ. Biochem Biophys Res Commun. 435:720–726.
2013.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Pan L, Huang BJ, Ma XE, Wang SY, Feng J,
Lv F, Liu Y, Liu Y, Li CM, Liang DD, et al: MiR-25 protects
cardiomyocytes against oxidative damage by targeting the
mitochondrial calcium uniporter. Int J Mol Sci. 16:5420–5433.
2015.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Aurora AB, Mahmoud AI, Luo X, Johnson BA,
van Rooij E, Matsuzaki S, Humphries KM, Hill JA, Bassel-Duby R,
Sadek HA and Olson EN: MicroRNA-214 protects the mouse heart from
ischemic injury by controlling Ca2+ overload and cell
death. J Clin Invest. 122:1222–1232. 2012.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Wang X, Zhu H, Zhang X, Liu Y, Chen J,
Medvedovic M, Li H, Weiss MJ, Ren X and Fan GC: Loss of the
miR-144/451 cluster impairs ischaemic preconditioning-mediated
cardioprotection by targeting Rac-1. Cardiovasc Res. 94:379–390.
2012.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Ong SB, Katwadi K, Kwek XY, Ismail NI,
Chinda K, Ong SG and Hausenloy DJ: Non-coding RNAs as therapeutic
targets for preventing myocardial ischemia-reperfusion injury.
Expert Opin Ther Targets. 22:247–261. 2018.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Ong SG and Hausenloy DJ: Hypoxia-inducible
factor as a therapeutic target for cardioprotection. Pharmacol
Ther. 136:69–81. 2012.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Hinkel R, Penzkofer D, Zühlke S, Fischer
A, Husada W, Xu QF, Baloch E, van Rooij E, Zeiher AM, Kupatt C and
Dimmeler S: Inhibition of microRNA-92a protects against
ischemia/reperfusion injury in a large-animal model. Circulation.
128:1066–1075. 2013.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Hullinger TG, Montgomery RL, Seto AG,
Dickinson BA, Semus HM, Lynch JM, Dalby CM, Robinson K, Stack C,
Latimer PA, et al: Inhibition of miR-15 protects against cardiac
ischemic injury. Circ Res. 110:71–81. 2012.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Minamino T and Kitakaze M: ER stress in
cardiovascular disease. J Mol Cell Cardiol. 48:1105–1110.
2010.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Lindholm D, Wootz H and Korhonen L: ER
stress and neurodegenerative diseases. Cell Death Differ.
13:385–392. 2006.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Matus S, Glimcher LH and Hetz C: Protein
folding stress in neurodegenerative diseases: A glimpse into the
ER. Curr Opin Cell Biol. 23:239–252. 2011.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Hotamisligil GS: Endoplasmic reticulum
stress and the inflammatory basis of metabolic disease. Cell.
140:900–917. 2010.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Chiang CK, Hsu SP, Wu CT, Huang JW, Cheng
HT, Chang YW, Hung KY, Wu KD and Liu SH: Endoplasmic reticulum
stress implicated in the development of renal fibrosis. Mol Med.
17:1295–1305. 2011.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Zhang L, Wang Y, Zhang L, Xia X, Chao Y,
He R, Han C and Zhao W: ZBTB7A, a miR-663a target gene, protects
osteosarcoma from endoplasmic reticulum stress-induced apoptosis by
suppressing LncRNA GAS5 expression. Cancer Lett. 448:105–116.
2019.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Wang EM, Akasaka H, Zhao J, Varadhachary
GR, Lee JE, Maitra A, Fleming JB, Hung MC, Wang H and Katz MH:
Expression and clinical significance of protein kinase RNA-like
endoplasmic reticulum kinase and phosphorylated eukaryotic
initiation factor 2α in pancreatic ductal adenocarcinoma. Pancreas.
48:323–328. 2019.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Yu LM, Dong X, Zhang J, Li Z, Xue XD, Wu
HJ, Yang ZL, Yang Y and Wang HS: Naringenin attenuates myocardial
ischemia-reperfusion injury via cGMP-PKGIα signaling and in vivo
and in vitro studies. Oxid Med Cell Longev.
2019(7670854)2019.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Peñaranda Fajardo NM, Meijer C and Kruyt
FA: The endoplasmic reticulum stress/unfolded protein response in
gliomagenesis, tumor progression and as a therapeutic target in
glioblastoma. Biochem Pharmacol. 118:1–8. 2016.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Beck D, Niessner H, Smalley KS, Flaherty
K, Paraiso KH, Busch C, Sinnberg T, Vasseur S, Iovanna JL, Drießen
S, et al: Vemurafenib potently induces endoplasmic reticulum
stress-mediated apoptosis in BRAFV600E melanoma cells. Sci Signal.
6(ra7)2013.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Lee JH, Kwon EJ and Kim DH: Calumenin has
a role in the alleviation of ER stress in neonatal rat
cardiomyocytes. Biochem Biophys Res Commun. 439:327–332.
2013.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Brewer JW and Diehl JA: PERK mediates
cell-cycle exit during the mammalian unfolded protein response.
Proc Natl Acad Sci USA. 97:12625–12630. 2000.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Zhang M, Han N, Jiang Y, Wang J, Li G, Lv
X, Li G and Qiao Q: EGFR confers radioresistance in human
oropharyngeal carcinoma by activating endoplasmic reticulum stress
signaling PERK-eIF2α-GRP94 and IRE1α-XBP1-GRP78. Cancer Med.
7:6234–6246. 2018.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Oyadomari S and Mori M: Roles of
CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ.
11:381–389. 2004.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Palam LR, Baird TD and Wek RC:
Phosphorylation of eIF2 facilitates ribosomal bypass of an
inhibitory upstream ORF to enhance CHOP translation. J Biol Chem.
286:10939–10949. 2011.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Oyadomari S, Koizumi A, Takeda K, Gotoh T,
Akira S, Araki E and Mori M: Targeted disruption of the Chop gene
delays endoplasmic reticulum stress-mediated diabetes. J Clin
Invest. 109:525–532. 2002.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Yao Y, Lu Q, Hu Z, Yu Y, Chen Q and Wang
QK: A non-canonical pathway regulates ER stress signaling and
blocks ER stress-induced apoptosis and heart failure. Nat Commun.
8(133)2017.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Correll RN, Grimes KM, Prasad V, Lynch JM,
Khalil H and Molkentin JD: Overlapping and differential functions
of ATF6α versus ATF6β in the mouse heart. Sci Rep.
9(2059)2019.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Okada T, Yoshida H, Akazawa R, Negishi M
and Mori K: Distinct roles of activating transcription factor 6
(ATF6) and double-stranded RNA-activated protein kinase-like
endoplasmic reticulum kinase (PERK) in transcription during the
mammalian unfolded protein response. Biochem J. 366:585–594.
2002.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Yoshida H, Okada T, Haze K, Yanagi H, Yura
T, Negishi M and Mori K: ATF6 activated by proteolysis binds in the
presence of NF-Y (CBF) directly to the cis-acting element
responsible for the mammalian unfolded protein response. Mol Cell
Biol. 20:6755–6767. 2000.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Xiang C, Wang Y, Zhang H and Han F: The
role of endoplasmic reticulum stress in neurodegenerative disease.
Apoptosis. 22:1–26. 2017.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Korennykh A and Walter P: Structural basis
of the unfolded protein response. Annu Rev Cell Dev Biol.
28:251–277. 2012.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Tsuru A, Fujimoto N, Takahashi S, Saito M,
Nakamura D, Iwano M, Iwawaki T, Kadokura H, Ron D and Kohno K:
Negative feedback by IRE1β optimizes mucin production in goblet
cells. Proc Natl Acad Sci USA. 110:2864–2869. 2013.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Pavitt GD and Ron D: New insights into
translational regulation in the endoplasmic reticulum unfolded
protein response. Cold Spring Harbor Perspect Biol.
4(a012278)2012.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Han F, Yan S and Shi Y: Single-prolonged
stress induces endoplasmic reticulum-dependent apoptosis in the
hippocampus in a rat model of Post-traumatic stress disorder. PLoS
One. 8(e69340)2013.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Yu B, Wen L, Xiao B, Han F and Shi Y:
Single prolonged stress induces ATF6 alpha-dependent Endoplasmic
reticulum stress and the apoptotic process in medial Frontal Cortex
neurons. BMC Neurosci. 15(115)2014.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Walter P and Ron D: The unfolded protein
response: From stress pathway to homeostatic regulation. Science.
334:1081–1086. 2011.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Maly DJ and Papa FR: Druggable sensors of
the unfolded protein response. Nat Chem Biol. 10:892–901.
2014.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Yoshida H: ER stress and diseases. FEBS J.
274:630–658. 2007.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Paschen W: Endoplasmic reticulum
dysfunction in brain pathology: Critical role of protein synthesis.
Curr Neurovasc Res. 1:173–181. 2004.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Thuerauf DJ, Marcinko M, Gude N, Rubio M,
Sussman MA and Glembotski CC: Activation of the unfolded protein
response in infarcted mouse heart and hypoxic cultured cardiac
myocytes. Circ Res. 99:275–282. 2006.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Severino A, Campioni M, Straino S, Salloum
FN, Schmidt N, Herbrand U, Frede S, Toietta G, Di Rocco G, Bussani
R, et al: Identification of protein disulfide isomerase as a
cardiomyocyte survival factor in ischemic cardiomyopathy. J Am Coll
Cardiol. 50:1029–1037. 2007.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Terai K, Hiramoto Y, Masaki M, Sugiyama S,
Kuroda T, Hori M, Kawase I and Hirota H: AMP-activated protein
kinase protects cardiomyocytes against hypoxic injury through
attenuation of endoplasmic reticulum stress. Mol Cell Biol.
25:9554–9575. 2005.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Glembotski CC: The role of the unfolded
protein response in the heart. J Mol Cell Cardiol. 44:453–459.
2008.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Hadley G, Neuhaus AA, Couch Y, Beard DJ,
Adriaanse BA, Vekrellis K, DeLuca GC, Papadakis M, Sutherland BA
and Buchan AM: The role of the endoplasmic reticulum stress
response following cerebral ischemia. Int J Stroke. 13:379–390.
2018.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Lehotský J, Urban P, Pavlíková M,
Tatarková Z, Kaminska B and Lehotský J: Molecular mechanisms
leading to neuroprotection/ischemic tolerance: Effect of
preconditioning on the stress reaction of endoplasmic reticulum.
Cell Mol Neurobiol. 29:917–925. 2009.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Eijkelenboom A and Burgering BM: FOXOs:
Signalling integrators for homeostasis maintenance. Nat Rev Mol
Cell Biol. 14:83–97. 2013.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Huang H and Tindall DJ: Dynamic FoxO
transcription factors. J Cell Sci. 120:2479–2487. 2007.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Chien CT, Lee PH, Chen CF, Ma MC, Lai MK
and Hsu SM: De novo demonstration and co-localization of
free-radical production and apoptosis formation in rat kidney
subjected to ischemia/reperfusion. J Am Soc Nephrol. 12:973–982.
2001.PubMed/NCBI
|
|
118
|
Liu H, Wang L, Weng X, Chen H, Du Y, Diao
C, Chen Z and Liu X: Inhibition of Brd4 alleviates renal
ischemia/reperfusion injury-induced apoptosis and endoplasmic
reticulum stress by blocking FoxO4-mediated oxidative stress. Redox
Biol. 24(101195)2019.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Ren L, Wang Q, Chen Y, Ma Y and Wang D:
Involvement of MicroRNA-133a in the protective effect of hydrogen
sulfide against ischemia/Reperfusion-induced endoplasmic reticulum
stress and cardiomyocyte apoptosis. Pharmacology. 103:1–9.
2019.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Yan Y, Zhang B, Liu N, Qi C, Xiao Y, Tian
X, Li T and Liu B: Circulating long noncoding RNA UCA1 as a novel
biomarker of acute myocardial infarction. BioMed Res Int.
2016(8079372)2016.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Chen J, Hu Q, Zhang BF, Liu XP, Yang S and
Jiang H: Long noncoding RNA UCA1 inhibits ischaemia/reperfusion
injury induced cardiomyocytes apoptosis via suppression of
endoplasmic reticulum stress. Genes Genomics. 41:803–810.
2019.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Guo R, Ma H, Gao F, Zhong L and Ren J:
Metallothionein alleviates oxidative stress-induced endoplasmic
reticulum stress and myocardial dysfunction. J Mol Cell Cardiol.
47:228–237. 2009.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Minamino T, Komuro I and Kitakaze M:
Endoplasmic reticulum stress as a therapeutic target in
cardiovascular disease. Circ Res. 107:1071–1082. 2010.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Glembotski CC: Endoplasmic reticulum
stress in the heart. Circ Res. 101:975–984. 2007.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Urano F, Wang X, Bertolotti A, Zhang Y,
Chung P, Harding HP and Ron D: Coupling of stress in the ER to
activation of JNK protein kinases by transmembrane protein kinase
IRE1. Science. 287:664–666. 2000.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Yoneda T, Imaizumi K, Oono K, Yui D, Gomi
F, Katayama T and Tohyama M: Activation of caspase-12, an
endoplastic reticulum (ER) resident caspase, through tumor necrosis
factor receptor-associated factor 2-dependent mechanism in response
to the ER stress. J Biol Chem. 276:13935–13940. 2001.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Martindale JJ, Fernandez R, Thuerauf D,
Whittaker R, Gude N, Sussman MA and Glembotski CC: Endoplasmic
reticulum stress gene induction and protection from
ischemia/reperfusion injury in the hearts of transgenic mice with a
tamoxifen-regulated form of ATF6. Circ Res. 98:1186–1193.
2006.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Shintani-Ishida K, Nakajima M, Uemura K
and Yoshida K: Ischemic preconditioning protects cardiomyocytes
against ischemic injury by inducing GRP78. Biochem Biophys Res
Commun. 345:1600–1605. 2006.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Weigand K, Brost S, Steinebrunner N,
Buchler M, Schemmer P and Muller M: Ischemia/Reperfusion injury in
liver surgery and transplantation: Pathophysiology. HPB Surg.
2012(176723)2012.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Hartley T, Siva M, Lai E, Teodoro T, Zhang
L and Volchuk A: Endoplasmic reticulum stress response in an INS-1
pancreatic beta-cell line with inducible expression of a
folding-deficient proinsulin. BMC Cell Biol. 11(59)2010.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Szegezdi E, Duffy A, O'Mahoney ME, Logue
SE, Mylotte LA, O'brien T and Samali A: ER stress contributes to
ischemia-induced cardiomyocyte apoptosis. Biochem Biophys Res
Commun. 349:1406–1411. 2006.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Murphy E and Steenbergen C: Mechanisms
underlying acute protection from cardiac ischemia-reperfusion
injury. Physiol Rev. 88:581–609. 2008.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Wang X, Xu L, Gillette TG, Jiang X and
Wang ZV: The unfolded protein response in ischemic heart disease. J
Mol Cell Cardiol. 117:19–25. 2018.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Yang W and Paschen W: Unfolded protein
response in brain ischemia: A timely update. J Cereb Blood Flow
Metab. 36:2044–2050. 2016.PubMed/NCBI View Article : Google Scholar
|
|
135
|
Tabas I and Ron D: Integrating the
mechanisms of apoptosis induced by endoplasmic reticulum stress.
Nat Cell Biol. 13:184–190. 2011.PubMed/NCBI View Article : Google Scholar
|
|
136
|
Li G, Mongillo M, Chin KT, Harding H, Ron
D, Marks AR and Tabas I: Role of ERO1-alpha-mediated stimulation of
inositol 1,4,5-triphosphate receptor activity in endoplasmic
reticulum stress-induced apoptosis. J Cell Biol. 186:783–792.
2009.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Timmins JM, Ozcan L, Seimon TA, Li G,
Malagelada C, Backs J, Backs T, Bassel-Duby R, Olson EN, Anderson
ME and Tabas I: Calcium/calmodulin-dependent protein kinase II
links ER stress with Fas and mitochondrial apoptosis pathways. J
Clin Invest. 119:2925–2941. 2009.PubMed/NCBI View Article : Google Scholar
|
|
138
|
Vitadello M, Penzo D, Petronilli V,
Michieli G, Gomirato S, Menabò R, Di Lisa F and Gorza L:
Overexpression of the stress protein Grp94 reduces cardiomyocyte
necrosis due to calcium overload and simulated ischemia. FASEB J.
17:923–925. 2003.PubMed/NCBI View Article : Google Scholar
|
|
139
|
Ikeda Y, Young LH and Lefer AM:
Attenuation of neutrophil-mediated myocardial ischemia-reperfusion
injury by a calpain inhibitor. Am J Physiol Heart Circ Physiol.
282:H1421–H1426. 2002.PubMed/NCBI View Article : Google Scholar
|
|
140
|
Hernando V, Inserte J, Sartorio CL, Parra
VM, Poncelas-Nozal M and Garcia-Dorado D: Calpain translocation and
activation as pharmacological targets during myocardial
ischemia/reperfusion. J Mol Cell Cardiol. 49:271–279.
2010.PubMed/NCBI View Article : Google Scholar
|
|
141
|
Zheng D, Wang G, Li S, Fan GC and Peng T:
Calpain-1 induces endoplasmic reticulum stress in promoting
cardiomyocyte apoptosis following hypoxia/reoxygenation. Biochim
Biophys Acta. 1852:882–892. 2015.PubMed/NCBI View Article : Google Scholar
|
|
142
|
Munoz JP, Ivanova S, Sanchez-Wandelmer J,
Martínez-Cristóbal P, Noguera E, Sancho A, Díaz-Ramos A,
Hernández-Alvarez MI, Sebastián D, Mauvezin C, et al: Mfn2
modulates the UPR and mitochondrial function via repression of
PERK. EMBO J. 32:2348–2361. 2013.PubMed/NCBI View Article : Google Scholar
|
|
143
|
Zeng L, Liu YP, Sha H, Chen H, Qi L and
Smith JA: XBP-1 couples endoplasmic reticulum stress to augmented
IFN-beta induction via a cis-acting enhancer in macrophages. J
Immunol. 185:2324–2330. 2010.PubMed/NCBI View Article : Google Scholar
|
|
144
|
Cao L, Chen Y, Zhang Z, Li Y and Zhao P:
Endoplasmic reticulum stress-induced NLRP1 inflammasome activation
contributes to myocardial ischemia/reperfusion injury. Shock.
51:511–518. 2019.PubMed/NCBI View Article : Google Scholar
|
|
145
|
Yi YS: Role of inflammasomes in
inflammatory autoimmune rheumatic diseases. Korean J Physiol
Pharmacol. 22:1–15. 2018.PubMed/NCBI View Article : Google Scholar
|
|
146
|
Zhang G, Wang X, Gillette TG, Deng Y and
Wang ZV: Unfolded protein response as a therapeutic target in
cardiovascular disease. Curr Top Med Chem. 19:1902–1917.
2019.PubMed/NCBI View Article : Google Scholar
|
|
147
|
Asada R, Kanemoto S, Kondo S, Saito A and
Imaizumi K: The signalling from endoplasmic reticulum-resident bZIP
transcription factors involved in diverse cellular physiology. J
Biochem. 149:507–518. 2011.PubMed/NCBI View Article : Google Scholar
|
|
148
|
Zhang K, Shen X, Wu J, Sakaki K, Saunders
T, Rutkowski DT, Back SH and Kaufman RJ: Endoplasmic reticulum
stress activates cleavage of CREBH to induce a systemic
inflammatory response. Cell. 124:587–599. 2006.PubMed/NCBI View Article : Google Scholar
|
|
149
|
Jin JK, Blackwood EA, Azizi K, Thuerauf
DJ, Fahem AG, Hofmann C, Kaufman RJ, Doroudgar S and Glembotski CC:
ATF6 decreases myocardial ischemia/reperfusion damage and links ER
stress and oxidative stress signaling pathways in the heart. Circ
Res. 120:862–875. 2017.PubMed/NCBI View Article : Google Scholar
|
|
150
|
Thuerauf DJ, Hoover H, Meller J, Hernandez
J, Su L, Andrews C, Dillmann WH, McDonough PM and Glembotski CC:
Sarco/endoplasmic reticulum calcium ATPase-2 expression is
regulated by ATF6 during the endoplasmic reticulum stress response:
Intracellular signaling of calcium stress in a cardiac myocyte
model system. J Biol Chem. 276:48309–48317. 2001.PubMed/NCBI View Article : Google Scholar
|
|
151
|
Zhang C, Tang Y, Li Y, Xie L, Zhuang W,
Liu J and Gong J: Unfolded protein response plays a critical role
in heart damage after myocardial ischemia/reperfusion in rats. PLoS
One. 12(e0179042)2017.PubMed/NCBI View Article : Google Scholar
|
|
152
|
Jiang D, Niwa M and Koong AC: Targeting
the IRE1α-XBP1 branch of the unfolded protein response in human
diseases. Semin Cancer Biol. 33:48–56. 2015.PubMed/NCBI View Article : Google Scholar
|
|
153
|
Schmitz ML, Shaban MS, Albert BV, Gökçen A
and Kracht M: The crosstalk of endoplasmic reticulum (ER) stress
pathways with NF-κB: Complex mechanisms relevant for cancer,
inflammation and infection. Biomedicines. 6(58)2018.PubMed/NCBI View Article : Google Scholar
|
|
154
|
Ibuki T, Yamasaki Y, Mizuguchi H and
Sokabe M: Protective effects of XBP1 against oxygen and glucose
deprivation/reoxygenation injury in rat primary hippocampal
neurons. Neurosci Lett. 518:45–48. 2012.PubMed/NCBI View Article : Google Scholar
|
|
155
|
DeGracia DJ and Montie HL: Cerebral
ischemia and the unfolded protein response. J Neurochem. 91:1–8.
2004.PubMed/NCBI View Article : Google Scholar
|
|
156
|
McCullough KD, Martindale JL, Klotz LO, Aw
TY and Holbrook NJ: Gadd153 sensitizes cells to endoplasmic
reticulum stress by down-regulating Bcl2 and perturbing the
cellular redox state. Mol Cell Biol. 21:1249–1259. 2001.PubMed/NCBI View Article : Google Scholar
|
|
157
|
Cullinan SB, Zhang D, Hannink M, Arvisais
E, Kaufman RJ and Diehl JA: Nrf2 is a direct PERK substrate and
effector of PERK-dependent cell survival. Mol Cell Biol.
23:7198–7209. 2003.PubMed/NCBI View Article : Google Scholar
|
|
158
|
Puthalakath H, O'Reilly LA, Gunn P, Lee L,
Kelly PN, Huntington ND, Hughes PD, Michalak EM, McKimm-Breschkin
J, Motoyama N, et al: ER stress triggers apoptosis by activating
BH3-only protein Bim. Cell. 129:1337–1349. 2007.PubMed/NCBI View Article : Google Scholar
|
|
159
|
Ghosh AP, Klocke BJ, Ballestas ME and Roth
KA: CHOP potentially co-operates with FOXO3a in neuronal cells to
regulate PUMA and BIM expression in response to ER stress. PLoS
One. 7(e39586)2012.PubMed/NCBI View Article : Google Scholar
|
|
160
|
De Meyer GR and Martinet W: Autophagy in
the cardiovascular system. Biochim Biophy Acta. 1793:1485–1495.
2009.PubMed/NCBI View Article : Google Scholar
|
|
161
|
Wei L, Zhang Y, Qi X, Sun X, Li Y and Xu
Y: Ubiquitin-proteasomes are the dominant mediators of the
regulatory effect of microRNA-1 on cardiac remodeling after
myocardial infarction. Int J Mol Med. 44:1899–1907. 2019.PubMed/NCBI View Article : Google Scholar
|