Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
December-2020 Volume 20 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2020 Volume 20 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Endoplasmic reticulum stress serves an important role in cardiac ischemia/reperfusion injury (Review)

  • Authors:
    • Yongxue Ruan
    • Jingjing Zeng
    • Qike Jin
    • Maoping Chu
    • Kangting Ji
    • Zhongyu Wang
    • Lei Li
  • View Affiliations / Copyright

    Affiliations: Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
    Copyright: © Ruan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 268
    |
    Published online on: October 27, 2020
       https://doi.org/10.3892/etm.2020.9398
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Although acute myocardial infarction is one of the most common fatal diseases worldwide, the understanding of its underlying pathogenesis continues to develop. Myocardial ischemia/reperfusion (I/R) can restore myocardial oxygen and nutrient supply. However, a large number of studies have demonstrated that recovery of blood perfusion after acute ischemia causes reperfusion injury to the heart. With progress made in the understanding of the underlying mechanisms of myocardial I/R and oxidative stress, a novel area of research that merits greater study has been identified, that of I/R‑induced endoplasmic reticulum (ER) stress (ERS). Cardiac I/R can alter the function of the ER, leading to the accumulation of unfolded/misfolded proteins. The resulting ERS then induces the activation of signal transduction pathways, which in turn contribute to the development of I/R injury. The mechanism of I/R injury, and the causal relationship between I/R and ERS are reviewed in the present article.
View Figures

Figure 1

View References

1 

Baulina N, Osmak G, Kiselev I, Matveeva N, Kukava N, Shakhnovich R, Kulakova O and Favorova O: NGS-identified circulating miR-375 as a potential regulating component of myocardial infarction associated network. J Mol Cell Cardiol. 121:173–179. 2018.PubMed/NCBI View Article : Google Scholar

2 

Nunez-Gomez E, Pericacho M, Ollauri-Ibanez C, Bernabeu C and Lopez-Novoa JM: The role of endoglin in post-ischemic revascularization. Angiogenesis. 20:1–24. 2017.PubMed/NCBI View Article : Google Scholar

3 

Zhou H, Ma Q, Zhu P, Ren J, Reiter RJ and Chen Y: Protective role of melatonin in cardiac ischemia-reperfusion injury: From pathogenesis to targeted therapy. J Pineal Res. 64(e12471)2018.PubMed/NCBI View Article : Google Scholar

4 

Jennings RB, Sommers HM, Smyth GA, Flack HA and Linn H: Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol. 70:68–78. 1960.PubMed/NCBI

5 

Davidson SM, Ferdinandy P, Andreadou I, Bøtker HE, Heusch G, Ibáñez B, Ovize M, Schulz R, Yellon DM, Hausenloy DJ, et al: Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC review topic of the week. J Am Coll Cardiol. 73:89–99. 2019.PubMed/NCBI View Article : Google Scholar

6 

Xu C, Bailly-Maitre B and Reed JC: Endoplasmic reticulum stress: Cell life and death decisions. J Clin Invest. 115:2656–2664. 2005.PubMed/NCBI View Article : Google Scholar

7 

Zhao S, Liu Y, Wang F, Xu D and Xie P: N-acetylcysteine protects against microcystin-LR-induced endoplasmic reticulum stress and germ cell apoptosis in zebrafish testes. Chemosphere. 204:463–473. 2018.PubMed/NCBI View Article : Google Scholar

8 

Liu X, Jin X, Su R and Li Z: The reproductive toxicology of male SD rats after PM2.5 exposure mediated by the stimulation of endoplasmic reticulum stress. Chemosphere. 189:547–555. 2017.PubMed/NCBI View Article : Google Scholar

9 

Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, Luís A, McCarthy N, Montibeller L, More S, et al: Endoplasmic reticulum stress signalling-from basic mechanisms to clinical applications. FEBS J. 286:241–278. 2019.PubMed/NCBI View Article : Google Scholar

10 

Guzel E, Arlier S, Guzeloglu-Kayisli O, Tabak MS, Ekiz T, Semerci N, Larsen K, Schatz F, Lockwood CJ and Kayisli UA: Endoplasmic reticulum stress and homeostasis in reproductive physiology and pathology. Int J Mol Sci. 18(792)2017.PubMed/NCBI View Article : Google Scholar

11 

Xin W, Li X, Lu X, Niu K and Cai J: Involvement of endoplasmic reticulum stress-associated apoptosis in a heart failure model induced by chronic myocardial ischemia. Int J Mol Med. 27:503–509. 2011.PubMed/NCBI View Article : Google Scholar

12 

Sanada S, Komuro I and Kitakaze M: Pathophysiology of myocardial reperfusion injury: Preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol Heart Circ Physiol. 301:H1723–H1741. 2011.PubMed/NCBI View Article : Google Scholar

13 

Marban E, Kitakaze M, Kusuoka H, Porterfield JK, Yue DT and Chacko VP: Intracellular free calcium concentration measured with 19F NMR spectroscopy in intact ferret hearts. Proc Natl Acad Sci USA. 84:6005–6009. 1987.PubMed/NCBI View Article : Google Scholar

14 

Kalogeris T, Baines CP, Krenz M and Korthuis RJ: Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol. 298:229–317. 2012.PubMed/NCBI View Article : Google Scholar

15 

Szydlowska K and Tymianski M: Calcium, ischemia and excitotoxicity. Cell Calcium. 47:122–129. 2010.PubMed/NCBI View Article : Google Scholar

16 

Jakob R, Beutner G, Sharma VK, Duan Y, Gross RA, Hurst S, Jhun BS, O-Uchi J and Sheu SS: Molecular and functional identification of a mitochondrial ryanodine receptor in neurons. Neurosci Lett. 575:7–12. 2014.PubMed/NCBI View Article : Google Scholar

17 

Peracchia C: Chemical gating of gap junction channels; roles of calcium, pH and calmodulin. Biochim Biophysica Acta. 1662:61–80. 2004.PubMed/NCBI View Article : Google Scholar

18 

Tribulova N, Knezl V, Szeiffova Bacova B, Egan Benova T, Viczenczova C, Gonçalvesova E and Slezak J: Disordered myocardial Ca(2+) homeostasis results in substructural alterations that may promote occurrence of malignant arrhythmias. Physiol Res. 65 (Suppl 1):S139–S148. 2016.PubMed/NCBI View Article : Google Scholar

19 

Javadov S, Hunter JC, Barreto-Torres G and Parodi-Rullan R: Targeting the mitochondrial permeability transition: Cardiac ischemia-reperfusion versus carcinogenesis. Cell Physiol Biochem. 27:179–190. 2011.PubMed/NCBI View Article : Google Scholar

20 

Abdallah Y, Gkatzoflia A, Gligorievski D, Kasseckert S, Euler G, Schlüter KD, Schäfer M, Piper HM and Schäfer C: Insulin protects cardiomyocytes against reoxygenation-induced hypercontracture by a survival pathway targeting SR Ca2+ storage. Cardiovasc Res. 70:346–353. 2006.PubMed/NCBI View Article : Google Scholar

21 

Wu H, Yang H, Rhee JW, Zhang JZ, Lam CK, Sallam K, Chang ACY, Ma N, Lee J, Zhang H, et al: Modelling diastolic dysfunction in induced pluripotent stem cell-derived cardiomyocytes from hypertrophic cardiomyopathy patients. Eur Heart J. 40:3685–3695. 2019.PubMed/NCBI View Article : Google Scholar

22 

Inserte J, Hernando V and Garcia-Dorado D: Contribution of calpains to myocardial ischaemia/reperfusion injury. Cardiovasc Res. 96:23–31. 2012.PubMed/NCBI View Article : Google Scholar

23 

Croall DE and Ersfeld K: The calpains: Modular designs and functional diversity. Genome Biol. 8(218)2007.PubMed/NCBI View Article : Google Scholar

24 

Commoner B, Townsend J and Pake GE: Free radicals in biological materials. Nature. 174:689–691. 1954.PubMed/NCBI View Article : Google Scholar

25 

Cadenas S: Mitochondrial uncoupling, ROS generation and cardioprotection. Biochim Biophys Acta Bioenerg. 1859:940–950. 2018.PubMed/NCBI View Article : Google Scholar

26 

Meitzler JL, Antony S, Wu Y, Juhasz A, Liu H, Jiang G, Lu J, Roy K and Doroshow JH: NADPH oxidases: A perspective on reactive oxygen species production in tumor biology. Antioxid Redox Signal. 20:2873–2889. 2014.PubMed/NCBI View Article : Google Scholar

27 

Ziech D, Franco R, Pappa A and Panayiotidis MI: Reactive oxygen species (ROS)-induced genetic and epigenetic alterations in human carcinogenesis. Mutation Res. 711:167–173. 2011.PubMed/NCBI View Article : Google Scholar

28 

Brand MD: The sites and topology of mitochondrial superoxide production. Exp Gerontol. 45:466–472. 2010.PubMed/NCBI View Article : Google Scholar

29 

Lambeth JD: NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 4:181–189. 2004.PubMed/NCBI View Article : Google Scholar

30 

Huang P, Feng L, Oldham EA, Keating MJ and Plunkett W: Superoxide dismutase as a target for the selective killing of cancer cells. Nature. 407:390–395. 2000.PubMed/NCBI View Article : Google Scholar

31 

Srinivas US, Tan BWQ Vellayappan BA and Jeyasekharan AD: ROS and the DNA damage response in cancer. Redox Biol. 25(101084)2019.PubMed/NCBI View Article : Google Scholar

32 

Azevedo PS, Polegato BF, Minicucci MF, Paiva SA and Zornoff LA: Cardiac remodeling: Concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arq Bras Cardiol. 106:62–69. 2016.PubMed/NCBI View Article : Google Scholar

33 

Moris D, Spartalis M, Spartalis E, Karachaliou GS, Karaolanis GI, Tsourouflis G, Tsilimigras DI, Tzatzaki E and Theocharis S: The role of reactive oxygen species in the pathophysiology of cardiovascular diseases and the clinical significance of myocardial redox. Ann Transl Med. 5(326)2017.PubMed/NCBI View Article : Google Scholar

34 

Bartz RR, Suliman HB and Piantadosi CA: Redox mechanisms of cardiomyocyte mitochondrial protection. Front Physiol. 6(291)2015.PubMed/NCBI View Article : Google Scholar

35 

Lee HL, Chen CL, Yeh ST, Zweier JL and Chen YR: Biphasic modulation of the mitochondrial electron transport chain in myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol. 302:H1410–H1422. 2012.PubMed/NCBI View Article : Google Scholar

36 

Chen YR and Zweier JL: Cardiac mitochondria and reactive oxygen species generation. Circ Res. 114:524–537. 2014.PubMed/NCBI View Article : Google Scholar

37 

Angelova PR and Abramov AY: Functional role of mitochondrial reactive oxygen species in physiology. Free Radic Biol Med. 100:81–85. 2016.PubMed/NCBI View Article : Google Scholar

38 

Chang JC, Lien CF, Lee WS, Chang HR, Hsu YC, Luo YP, Jeng JR, Hsieh JC and Yang KT: Intermittent hypoxia prevents myocardial mitochondrial Ca2+ overload and cell death during ischemia/reperfusion: The role of reactive oxygen species. Cells. 8(564)2019.PubMed/NCBI View Article : Google Scholar

39 

Zhu WZ, Xie Y, Chen L, Yang HT and Zhou ZN: Intermittent high altitude hypoxia inhibits opening of mitochondrial permeability transition pores against reperfusion injury. J Mol Cell Cardiol. 40:96–106. 2006.PubMed/NCBI View Article : Google Scholar

40 

Aguilar M, Gonzalez-Candia A, Rodríguez J, Carrasco-Pozo C, Cañas D, García-Herrera C, Herrera EA and Castillo RL: Mechanisms of cardiovascular protection associated with intermittent hypobaric hypoxia exposure in a rat model: Role of Oxidative Stress. Int J Mol Sci. 19(366)2018.PubMed/NCBI View Article : Google Scholar

41 

Jordan JE, Zhao ZQ and Vinten-Johansen J: The role of neutrophils in myocardial ischemia-reperfusion injury. Cardiovasc Res. 43:860–878. 1999.PubMed/NCBI View Article : Google Scholar

42 

Chandrasekar B, Colston JT, Geimer J, Cortez D and Freeman GL: Induction of nuclear factor kappaB but not kappaB-responsive cytokine expression during myocardial reperfusion injury after neutropenia. Free Radic Biol Med. 28:1579–1588. 2000.PubMed/NCBI View Article : Google Scholar

43 

Sugano M, Hata T, Tsuchida K, Suematsu N, Oyama J, Satoh S and Makino N: Local delivery of soluble TNF-alpha receptor 1 gene reduces infarct size following ischemia/reperfusion injury in rats. Mol Cell Biochem. 266:127–132. 2004.PubMed/NCBI View Article : Google Scholar

44 

Merchant SH, Gurule DM and Larson RS: Amelioration of ischemia-reperfusion injury with cyclic peptide blockade of ICAM-1. Am J Physiol Heart Circ Physiol. 284:H1260–H1268. 2003.PubMed/NCBI View Article : Google Scholar

45 

Dar WA, Sullivan E, Bynon JS, Eltzschig H and Ju C: Ischaemia reperfusion injury in liver transplantation: Cellular and molecular mechanisms. Liver Int. 39:788–801. 2019.PubMed/NCBI View Article : Google Scholar

46 

Bhattacharya K, Farwell K, Huang M, Kempuraj D, Donelan J, Papaliodis D, Vasiadi M and Theoharides TC: Mast cell deficient W/Wv mice have lower serum IL-6 and less cardiac tissue necrosis than their normal littermates following myocardial ischemia-reperfusion. Int J Immunopathol Pharmacol. 20:69–74. 2007.PubMed/NCBI View Article : Google Scholar

47 

Yap ML and Peter K: Molecular positron emission tomography in cardiac ischemia/reperfusion. Circ Res. 124:827–829. 2019.PubMed/NCBI View Article : Google Scholar

48 

Valente M and Calabrese F: Liver and apoptosis. Ital J Gastroenterol Hepatol. 31:73–77. 1999.PubMed/NCBI

49 

Metukuri MR, Beer-Stolz D, Namas RA, Dhupar R, Torres A, Loughran PA, Jefferson BS, Tsung A, Billiar TR, Vodovotz Y and Zamora R: Expression and subcellular localization of BNIP3 in hypoxic hepatocytes and liver stress. Am J Physiol Gastrointest Liver Physiol. 296:G499–G509. 2009.PubMed/NCBI View Article : Google Scholar

50 

Wu B, Qiu W, Wang P, Yu H, Cheng T, Zambetti GP, Zhang L and Yu J: p53 independent induction of PUMA mediates intestinal apoptosis in response to ischaemia-reperfusion. Gut. 56:645–654. 2007.PubMed/NCBI View Article : Google Scholar

51 

Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T and Korsmeyer SJ: BAX and BAK regulation of endoplasmic reticulum Ca2+: A control point for apoptosis. Science. 300:135–139. 2003.PubMed/NCBI View Article : Google Scholar

52 

Kobayashi A, Imamura H, Isobe M, Matsuyama Y, Soeda J, Matsunaga K and Kawasaki S: Mac-1 (CD11b/CD18) and intercellular adhesion molecule-1 in ischemia-reperfusion injury of rat liver. Am J Physiol Gastrointest Liver Physiol. 281:G577–G585. 2001.PubMed/NCBI View Article : Google Scholar

53 

Yang W, Guastella J, Huang JC, Wang Y, Zhang L, Xue D, Tran M, Woodward R, Kasibhatla S, Tseng B, et al: MX1013, a dipeptide caspase inhibitor with potent in vivo antiapoptotic activity. Br J Pharmacol. 140:402–412. 2003.PubMed/NCBI View Article : Google Scholar

54 

Vandenabeele P, Declercq W, Van Herreweghe F and Vanden Berghe T: The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Sci Signal. 3(re4)2010.PubMed/NCBI View Article : Google Scholar

55 

Kubli DA, Ycaza JE and Gustafsson AB: Bnip3 mediates mitochondrial dysfunction and cell death through Bax and Bak. Biochem J. 405:407–415. 2007.PubMed/NCBI View Article : Google Scholar

56 

Kubli DA, Quinsay MN, Huang C, Lee Y and Gustafsson AB: Bnip3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol. 295:H2025–H2031. 2008.PubMed/NCBI View Article : Google Scholar

57 

Poller W, Dimmeler S, Heymans S, Zeller T, Haas J, Karakas M, Leistner DM, Jakob P, Nakagawa S, Blankenberg S, et al: Non-coding RNAs in cardiovascular diseases: Diagnostic and therapeutic perspectives. Eur Heart J. 39:2704–2716. 2018.PubMed/NCBI View Article : Google Scholar

58 

Winter J, Jung S, Keller S, Gregory RI and Diederichs S: Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 11:228–234. 2009.PubMed/NCBI View Article : Google Scholar

59 

Peng L, Chun-Guang Q, Bei-Fang L, Xue-Zhi D, Zi-Hao W, Yun-Fu L, Yan-Ping D, Yang-Gui L, Wei-Guo L, Tian-Yong H and Zhen-Wen H: Clinical impact of circulating miR-133, miR-1291 and miR-663b in plasma of patients with acute myocardial infarction. Diagn Pathol. 9(89)2014.PubMed/NCBI View Article : Google Scholar

60 

Zhang R, Lan C, Pei H, Duan G, Huang L and Li L: Expression of circulating miR-486 and miR-150 in patients with acute myocardial infarction. BMC Cardiovasc Disord. 15(51)2015.PubMed/NCBI View Article : Google Scholar

61 

Joladarashi D, Garikipati VNS, Thandavarayan RA, Verma SK, Mackie AR, Khan M, Gumpert AM, Bhimaraj A, Youker KA, Uribe C, et al: Enhanced cardiac regenerative ability of stem cells after ischemia-reperfusion injury: Role of human CD34+ cells deficient in MicroRNA-377. J Am Coll Cardiol. 66:2214–2226. 2015.PubMed/NCBI View Article : Google Scholar

62 

Xu C, Lu Y, Pan Z, Chu W, Luo X, Lin H, Xiao J, Shan H, Wang Z and Yang B: The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci. 120:3045–3052. 2007.PubMed/NCBI View Article : Google Scholar

63 

Tang Y, Zheng J, Sun Y, Wu Z, Liu Z and Huang G: MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int Heart J. 50:377–387. 2009.PubMed/NCBI View Article : Google Scholar

64 

Yu XY, Song YH, Geng YJ, Lin QX, Shan ZX, Lin SG and Li Y: Glucose induces apoptosis of cardiomyocytes via microRNA-1 and IGF-1. Biochem Biophys Res Commun. 376:548–552. 2008.PubMed/NCBI View Article : Google Scholar

65 

Matkovich SJ, Wang W, Tu Y, Eschenbacher WH, Dorn LE, Condorelli G, Diwan A, Nerbonne JM and Dorn GW II: MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ Res. 106:166–175. 2010.PubMed/NCBI View Article : Google Scholar

66 

Cheng Y, Liu X, Zhang S, Lin Y, Yang J and Zhang C: MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardiol. 47:5–14. 2009.PubMed/NCBI View Article : Google Scholar

67 

Cheng Y, Zhu P, Yang J, Liu X, Dong S, Wang X, Chun B, Zhuang J and Zhang C: Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovas Res. 87:431–439. 2010.PubMed/NCBI View Article : Google Scholar

68 

Sayed D, He M, Hong C, Gao S, Rane S, Yang Z and Abdellatif M: MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression of Fas ligand. J Biol Chem. 285:20281–20290. 2010.PubMed/NCBI View Article : Google Scholar

69 

Zhu H and Fan GC: Role of microRNAs in the reperfused myocardium towards post-infarct remodelling. Cardiovasc Res. 94:284–292. 2012.PubMed/NCBI View Article : Google Scholar

70 

Magenta A, Dellambra E, Ciarapica R and Capogrossi MC: Oxidative stress, microRNAs and cytosolic calcium homeostasis. Cell Calcium. 60:207–217. 2016.PubMed/NCBI View Article : Google Scholar

71 

Cha MJ, Jang JK, Ham O, Song BW, Lee SY, Lee CY, Park JH, Lee J, Seo HH, Choi E, et al: MicroRNA-145 suppresses ROS-induced Ca2+ overload of cardiomyocytes by targeting CaMKIIδ. Biochem Biophys Res Commun. 435:720–726. 2013.PubMed/NCBI View Article : Google Scholar

72 

Pan L, Huang BJ, Ma XE, Wang SY, Feng J, Lv F, Liu Y, Liu Y, Li CM, Liang DD, et al: MiR-25 protects cardiomyocytes against oxidative damage by targeting the mitochondrial calcium uniporter. Int J Mol Sci. 16:5420–5433. 2015.PubMed/NCBI View Article : Google Scholar

73 

Aurora AB, Mahmoud AI, Luo X, Johnson BA, van Rooij E, Matsuzaki S, Humphries KM, Hill JA, Bassel-Duby R, Sadek HA and Olson EN: MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca2+ overload and cell death. J Clin Invest. 122:1222–1232. 2012.PubMed/NCBI View Article : Google Scholar

74 

Wang X, Zhu H, Zhang X, Liu Y, Chen J, Medvedovic M, Li H, Weiss MJ, Ren X and Fan GC: Loss of the miR-144/451 cluster impairs ischaemic preconditioning-mediated cardioprotection by targeting Rac-1. Cardiovasc Res. 94:379–390. 2012.PubMed/NCBI View Article : Google Scholar

75 

Ong SB, Katwadi K, Kwek XY, Ismail NI, Chinda K, Ong SG and Hausenloy DJ: Non-coding RNAs as therapeutic targets for preventing myocardial ischemia-reperfusion injury. Expert Opin Ther Targets. 22:247–261. 2018.PubMed/NCBI View Article : Google Scholar

76 

Ong SG and Hausenloy DJ: Hypoxia-inducible factor as a therapeutic target for cardioprotection. Pharmacol Ther. 136:69–81. 2012.PubMed/NCBI View Article : Google Scholar

77 

Hinkel R, Penzkofer D, Zühlke S, Fischer A, Husada W, Xu QF, Baloch E, van Rooij E, Zeiher AM, Kupatt C and Dimmeler S: Inhibition of microRNA-92a protects against ischemia/reperfusion injury in a large-animal model. Circulation. 128:1066–1075. 2013.PubMed/NCBI View Article : Google Scholar

78 

Hullinger TG, Montgomery RL, Seto AG, Dickinson BA, Semus HM, Lynch JM, Dalby CM, Robinson K, Stack C, Latimer PA, et al: Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res. 110:71–81. 2012.PubMed/NCBI View Article : Google Scholar

79 

Minamino T and Kitakaze M: ER stress in cardiovascular disease. J Mol Cell Cardiol. 48:1105–1110. 2010.PubMed/NCBI View Article : Google Scholar

80 

Lindholm D, Wootz H and Korhonen L: ER stress and neurodegenerative diseases. Cell Death Differ. 13:385–392. 2006.PubMed/NCBI View Article : Google Scholar

81 

Matus S, Glimcher LH and Hetz C: Protein folding stress in neurodegenerative diseases: A glimpse into the ER. Curr Opin Cell Biol. 23:239–252. 2011.PubMed/NCBI View Article : Google Scholar

82 

Hotamisligil GS: Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 140:900–917. 2010.PubMed/NCBI View Article : Google Scholar

83 

Chiang CK, Hsu SP, Wu CT, Huang JW, Cheng HT, Chang YW, Hung KY, Wu KD and Liu SH: Endoplasmic reticulum stress implicated in the development of renal fibrosis. Mol Med. 17:1295–1305. 2011.PubMed/NCBI View Article : Google Scholar

84 

Zhang L, Wang Y, Zhang L, Xia X, Chao Y, He R, Han C and Zhao W: ZBTB7A, a miR-663a target gene, protects osteosarcoma from endoplasmic reticulum stress-induced apoptosis by suppressing LncRNA GAS5 expression. Cancer Lett. 448:105–116. 2019.PubMed/NCBI View Article : Google Scholar

85 

Wang EM, Akasaka H, Zhao J, Varadhachary GR, Lee JE, Maitra A, Fleming JB, Hung MC, Wang H and Katz MH: Expression and clinical significance of protein kinase RNA-like endoplasmic reticulum kinase and phosphorylated eukaryotic initiation factor 2α in pancreatic ductal adenocarcinoma. Pancreas. 48:323–328. 2019.PubMed/NCBI View Article : Google Scholar

86 

Yu LM, Dong X, Zhang J, Li Z, Xue XD, Wu HJ, Yang ZL, Yang Y and Wang HS: Naringenin attenuates myocardial ischemia-reperfusion injury via cGMP-PKGIα signaling and in vivo and in vitro studies. Oxid Med Cell Longev. 2019(7670854)2019.PubMed/NCBI View Article : Google Scholar

87 

Peñaranda Fajardo NM, Meijer C and Kruyt FA: The endoplasmic reticulum stress/unfolded protein response in gliomagenesis, tumor progression and as a therapeutic target in glioblastoma. Biochem Pharmacol. 118:1–8. 2016.PubMed/NCBI View Article : Google Scholar

88 

Beck D, Niessner H, Smalley KS, Flaherty K, Paraiso KH, Busch C, Sinnberg T, Vasseur S, Iovanna JL, Drießen S, et al: Vemurafenib potently induces endoplasmic reticulum stress-mediated apoptosis in BRAFV600E melanoma cells. Sci Signal. 6(ra7)2013.PubMed/NCBI View Article : Google Scholar

89 

Lee JH, Kwon EJ and Kim DH: Calumenin has a role in the alleviation of ER stress in neonatal rat cardiomyocytes. Biochem Biophys Res Commun. 439:327–332. 2013.PubMed/NCBI View Article : Google Scholar

90 

Brewer JW and Diehl JA: PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc Natl Acad Sci USA. 97:12625–12630. 2000.PubMed/NCBI View Article : Google Scholar

91 

Zhang M, Han N, Jiang Y, Wang J, Li G, Lv X, Li G and Qiao Q: EGFR confers radioresistance in human oropharyngeal carcinoma by activating endoplasmic reticulum stress signaling PERK-eIF2α-GRP94 and IRE1α-XBP1-GRP78. Cancer Med. 7:6234–6246. 2018.PubMed/NCBI View Article : Google Scholar

92 

Oyadomari S and Mori M: Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 11:381–389. 2004.PubMed/NCBI View Article : Google Scholar

93 

Palam LR, Baird TD and Wek RC: Phosphorylation of eIF2 facilitates ribosomal bypass of an inhibitory upstream ORF to enhance CHOP translation. J Biol Chem. 286:10939–10949. 2011.PubMed/NCBI View Article : Google Scholar

94 

Oyadomari S, Koizumi A, Takeda K, Gotoh T, Akira S, Araki E and Mori M: Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J Clin Invest. 109:525–532. 2002.PubMed/NCBI View Article : Google Scholar

95 

Yao Y, Lu Q, Hu Z, Yu Y, Chen Q and Wang QK: A non-canonical pathway regulates ER stress signaling and blocks ER stress-induced apoptosis and heart failure. Nat Commun. 8(133)2017.PubMed/NCBI View Article : Google Scholar

96 

Correll RN, Grimes KM, Prasad V, Lynch JM, Khalil H and Molkentin JD: Overlapping and differential functions of ATF6α versus ATF6β in the mouse heart. Sci Rep. 9(2059)2019.PubMed/NCBI View Article : Google Scholar

97 

Okada T, Yoshida H, Akazawa R, Negishi M and Mori K: Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochem J. 366:585–594. 2002.PubMed/NCBI View Article : Google Scholar

98 

Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M and Mori K: ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol. 20:6755–6767. 2000.PubMed/NCBI View Article : Google Scholar

99 

Xiang C, Wang Y, Zhang H and Han F: The role of endoplasmic reticulum stress in neurodegenerative disease. Apoptosis. 22:1–26. 2017.PubMed/NCBI View Article : Google Scholar

100 

Korennykh A and Walter P: Structural basis of the unfolded protein response. Annu Rev Cell Dev Biol. 28:251–277. 2012.PubMed/NCBI View Article : Google Scholar

101 

Tsuru A, Fujimoto N, Takahashi S, Saito M, Nakamura D, Iwano M, Iwawaki T, Kadokura H, Ron D and Kohno K: Negative feedback by IRE1β optimizes mucin production in goblet cells. Proc Natl Acad Sci USA. 110:2864–2869. 2013.PubMed/NCBI View Article : Google Scholar

102 

Pavitt GD and Ron D: New insights into translational regulation in the endoplasmic reticulum unfolded protein response. Cold Spring Harbor Perspect Biol. 4(a012278)2012.PubMed/NCBI View Article : Google Scholar

103 

Han F, Yan S and Shi Y: Single-prolonged stress induces endoplasmic reticulum-dependent apoptosis in the hippocampus in a rat model of Post-traumatic stress disorder. PLoS One. 8(e69340)2013.PubMed/NCBI View Article : Google Scholar

104 

Yu B, Wen L, Xiao B, Han F and Shi Y: Single prolonged stress induces ATF6 alpha-dependent Endoplasmic reticulum stress and the apoptotic process in medial Frontal Cortex neurons. BMC Neurosci. 15(115)2014.PubMed/NCBI View Article : Google Scholar

105 

Walter P and Ron D: The unfolded protein response: From stress pathway to homeostatic regulation. Science. 334:1081–1086. 2011.PubMed/NCBI View Article : Google Scholar

106 

Maly DJ and Papa FR: Druggable sensors of the unfolded protein response. Nat Chem Biol. 10:892–901. 2014.PubMed/NCBI View Article : Google Scholar

107 

Yoshida H: ER stress and diseases. FEBS J. 274:630–658. 2007.PubMed/NCBI View Article : Google Scholar

108 

Paschen W: Endoplasmic reticulum dysfunction in brain pathology: Critical role of protein synthesis. Curr Neurovasc Res. 1:173–181. 2004.PubMed/NCBI View Article : Google Scholar

109 

Thuerauf DJ, Marcinko M, Gude N, Rubio M, Sussman MA and Glembotski CC: Activation of the unfolded protein response in infarcted mouse heart and hypoxic cultured cardiac myocytes. Circ Res. 99:275–282. 2006.PubMed/NCBI View Article : Google Scholar

110 

Severino A, Campioni M, Straino S, Salloum FN, Schmidt N, Herbrand U, Frede S, Toietta G, Di Rocco G, Bussani R, et al: Identification of protein disulfide isomerase as a cardiomyocyte survival factor in ischemic cardiomyopathy. J Am Coll Cardiol. 50:1029–1037. 2007.PubMed/NCBI View Article : Google Scholar

111 

Terai K, Hiramoto Y, Masaki M, Sugiyama S, Kuroda T, Hori M, Kawase I and Hirota H: AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress. Mol Cell Biol. 25:9554–9575. 2005.PubMed/NCBI View Article : Google Scholar

112 

Glembotski CC: The role of the unfolded protein response in the heart. J Mol Cell Cardiol. 44:453–459. 2008.PubMed/NCBI View Article : Google Scholar

113 

Hadley G, Neuhaus AA, Couch Y, Beard DJ, Adriaanse BA, Vekrellis K, DeLuca GC, Papadakis M, Sutherland BA and Buchan AM: The role of the endoplasmic reticulum stress response following cerebral ischemia. Int J Stroke. 13:379–390. 2018.PubMed/NCBI View Article : Google Scholar

114 

Lehotský J, Urban P, Pavlíková M, Tatarková Z, Kaminska B and Lehotský J: Molecular mechanisms leading to neuroprotection/ischemic tolerance: Effect of preconditioning on the stress reaction of endoplasmic reticulum. Cell Mol Neurobiol. 29:917–925. 2009.PubMed/NCBI View Article : Google Scholar

115 

Eijkelenboom A and Burgering BM: FOXOs: Signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol. 14:83–97. 2013.PubMed/NCBI View Article : Google Scholar

116 

Huang H and Tindall DJ: Dynamic FoxO transcription factors. J Cell Sci. 120:2479–2487. 2007.PubMed/NCBI View Article : Google Scholar

117 

Chien CT, Lee PH, Chen CF, Ma MC, Lai MK and Hsu SM: De novo demonstration and co-localization of free-radical production and apoptosis formation in rat kidney subjected to ischemia/reperfusion. J Am Soc Nephrol. 12:973–982. 2001.PubMed/NCBI

118 

Liu H, Wang L, Weng X, Chen H, Du Y, Diao C, Chen Z and Liu X: Inhibition of Brd4 alleviates renal ischemia/reperfusion injury-induced apoptosis and endoplasmic reticulum stress by blocking FoxO4-mediated oxidative stress. Redox Biol. 24(101195)2019.PubMed/NCBI View Article : Google Scholar

119 

Ren L, Wang Q, Chen Y, Ma Y and Wang D: Involvement of MicroRNA-133a in the protective effect of hydrogen sulfide against ischemia/Reperfusion-induced endoplasmic reticulum stress and cardiomyocyte apoptosis. Pharmacology. 103:1–9. 2019.PubMed/NCBI View Article : Google Scholar

120 

Yan Y, Zhang B, Liu N, Qi C, Xiao Y, Tian X, Li T and Liu B: Circulating long noncoding RNA UCA1 as a novel biomarker of acute myocardial infarction. BioMed Res Int. 2016(8079372)2016.PubMed/NCBI View Article : Google Scholar

121 

Chen J, Hu Q, Zhang BF, Liu XP, Yang S and Jiang H: Long noncoding RNA UCA1 inhibits ischaemia/reperfusion injury induced cardiomyocytes apoptosis via suppression of endoplasmic reticulum stress. Genes Genomics. 41:803–810. 2019.PubMed/NCBI View Article : Google Scholar

122 

Guo R, Ma H, Gao F, Zhong L and Ren J: Metallothionein alleviates oxidative stress-induced endoplasmic reticulum stress and myocardial dysfunction. J Mol Cell Cardiol. 47:228–237. 2009.PubMed/NCBI View Article : Google Scholar

123 

Minamino T, Komuro I and Kitakaze M: Endoplasmic reticulum stress as a therapeutic target in cardiovascular disease. Circ Res. 107:1071–1082. 2010.PubMed/NCBI View Article : Google Scholar

124 

Glembotski CC: Endoplasmic reticulum stress in the heart. Circ Res. 101:975–984. 2007.PubMed/NCBI View Article : Google Scholar

125 

Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP and Ron D: Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 287:664–666. 2000.PubMed/NCBI View Article : Google Scholar

126 

Yoneda T, Imaizumi K, Oono K, Yui D, Gomi F, Katayama T and Tohyama M: Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem. 276:13935–13940. 2001.PubMed/NCBI View Article : Google Scholar

127 

Martindale JJ, Fernandez R, Thuerauf D, Whittaker R, Gude N, Sussman MA and Glembotski CC: Endoplasmic reticulum stress gene induction and protection from ischemia/reperfusion injury in the hearts of transgenic mice with a tamoxifen-regulated form of ATF6. Circ Res. 98:1186–1193. 2006.PubMed/NCBI View Article : Google Scholar

128 

Shintani-Ishida K, Nakajima M, Uemura K and Yoshida K: Ischemic preconditioning protects cardiomyocytes against ischemic injury by inducing GRP78. Biochem Biophys Res Commun. 345:1600–1605. 2006.PubMed/NCBI View Article : Google Scholar

129 

Weigand K, Brost S, Steinebrunner N, Buchler M, Schemmer P and Muller M: Ischemia/Reperfusion injury in liver surgery and transplantation: Pathophysiology. HPB Surg. 2012(176723)2012.PubMed/NCBI View Article : Google Scholar

130 

Hartley T, Siva M, Lai E, Teodoro T, Zhang L and Volchuk A: Endoplasmic reticulum stress response in an INS-1 pancreatic beta-cell line with inducible expression of a folding-deficient proinsulin. BMC Cell Biol. 11(59)2010.PubMed/NCBI View Article : Google Scholar

131 

Szegezdi E, Duffy A, O'Mahoney ME, Logue SE, Mylotte LA, O'brien T and Samali A: ER stress contributes to ischemia-induced cardiomyocyte apoptosis. Biochem Biophys Res Commun. 349:1406–1411. 2006.PubMed/NCBI View Article : Google Scholar

132 

Murphy E and Steenbergen C: Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev. 88:581–609. 2008.PubMed/NCBI View Article : Google Scholar

133 

Wang X, Xu L, Gillette TG, Jiang X and Wang ZV: The unfolded protein response in ischemic heart disease. J Mol Cell Cardiol. 117:19–25. 2018.PubMed/NCBI View Article : Google Scholar

134 

Yang W and Paschen W: Unfolded protein response in brain ischemia: A timely update. J Cereb Blood Flow Metab. 36:2044–2050. 2016.PubMed/NCBI View Article : Google Scholar

135 

Tabas I and Ron D: Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol. 13:184–190. 2011.PubMed/NCBI View Article : Google Scholar

136 

Li G, Mongillo M, Chin KT, Harding H, Ron D, Marks AR and Tabas I: Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. J Cell Biol. 186:783–792. 2009.PubMed/NCBI View Article : Google Scholar

137 

Timmins JM, Ozcan L, Seimon TA, Li G, Malagelada C, Backs J, Backs T, Bassel-Duby R, Olson EN, Anderson ME and Tabas I: Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. J Clin Invest. 119:2925–2941. 2009.PubMed/NCBI View Article : Google Scholar

138 

Vitadello M, Penzo D, Petronilli V, Michieli G, Gomirato S, Menabò R, Di Lisa F and Gorza L: Overexpression of the stress protein Grp94 reduces cardiomyocyte necrosis due to calcium overload and simulated ischemia. FASEB J. 17:923–925. 2003.PubMed/NCBI View Article : Google Scholar

139 

Ikeda Y, Young LH and Lefer AM: Attenuation of neutrophil-mediated myocardial ischemia-reperfusion injury by a calpain inhibitor. Am J Physiol Heart Circ Physiol. 282:H1421–H1426. 2002.PubMed/NCBI View Article : Google Scholar

140 

Hernando V, Inserte J, Sartorio CL, Parra VM, Poncelas-Nozal M and Garcia-Dorado D: Calpain translocation and activation as pharmacological targets during myocardial ischemia/reperfusion. J Mol Cell Cardiol. 49:271–279. 2010.PubMed/NCBI View Article : Google Scholar

141 

Zheng D, Wang G, Li S, Fan GC and Peng T: Calpain-1 induces endoplasmic reticulum stress in promoting cardiomyocyte apoptosis following hypoxia/reoxygenation. Biochim Biophys Acta. 1852:882–892. 2015.PubMed/NCBI View Article : Google Scholar

142 

Munoz JP, Ivanova S, Sanchez-Wandelmer J, Martínez-Cristóbal P, Noguera E, Sancho A, Díaz-Ramos A, Hernández-Alvarez MI, Sebastián D, Mauvezin C, et al: Mfn2 modulates the UPR and mitochondrial function via repression of PERK. EMBO J. 32:2348–2361. 2013.PubMed/NCBI View Article : Google Scholar

143 

Zeng L, Liu YP, Sha H, Chen H, Qi L and Smith JA: XBP-1 couples endoplasmic reticulum stress to augmented IFN-beta induction via a cis-acting enhancer in macrophages. J Immunol. 185:2324–2330. 2010.PubMed/NCBI View Article : Google Scholar

144 

Cao L, Chen Y, Zhang Z, Li Y and Zhao P: Endoplasmic reticulum stress-induced NLRP1 inflammasome activation contributes to myocardial ischemia/reperfusion injury. Shock. 51:511–518. 2019.PubMed/NCBI View Article : Google Scholar

145 

Yi YS: Role of inflammasomes in inflammatory autoimmune rheumatic diseases. Korean J Physiol Pharmacol. 22:1–15. 2018.PubMed/NCBI View Article : Google Scholar

146 

Zhang G, Wang X, Gillette TG, Deng Y and Wang ZV: Unfolded protein response as a therapeutic target in cardiovascular disease. Curr Top Med Chem. 19:1902–1917. 2019.PubMed/NCBI View Article : Google Scholar

147 

Asada R, Kanemoto S, Kondo S, Saito A and Imaizumi K: The signalling from endoplasmic reticulum-resident bZIP transcription factors involved in diverse cellular physiology. J Biochem. 149:507–518. 2011.PubMed/NCBI View Article : Google Scholar

148 

Zhang K, Shen X, Wu J, Sakaki K, Saunders T, Rutkowski DT, Back SH and Kaufman RJ: Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell. 124:587–599. 2006.PubMed/NCBI View Article : Google Scholar

149 

Jin JK, Blackwood EA, Azizi K, Thuerauf DJ, Fahem AG, Hofmann C, Kaufman RJ, Doroudgar S and Glembotski CC: ATF6 decreases myocardial ischemia/reperfusion damage and links ER stress and oxidative stress signaling pathways in the heart. Circ Res. 120:862–875. 2017.PubMed/NCBI View Article : Google Scholar

150 

Thuerauf DJ, Hoover H, Meller J, Hernandez J, Su L, Andrews C, Dillmann WH, McDonough PM and Glembotski CC: Sarco/endoplasmic reticulum calcium ATPase-2 expression is regulated by ATF6 during the endoplasmic reticulum stress response: Intracellular signaling of calcium stress in a cardiac myocyte model system. J Biol Chem. 276:48309–48317. 2001.PubMed/NCBI View Article : Google Scholar

151 

Zhang C, Tang Y, Li Y, Xie L, Zhuang W, Liu J and Gong J: Unfolded protein response plays a critical role in heart damage after myocardial ischemia/reperfusion in rats. PLoS One. 12(e0179042)2017.PubMed/NCBI View Article : Google Scholar

152 

Jiang D, Niwa M and Koong AC: Targeting the IRE1α-XBP1 branch of the unfolded protein response in human diseases. Semin Cancer Biol. 33:48–56. 2015.PubMed/NCBI View Article : Google Scholar

153 

Schmitz ML, Shaban MS, Albert BV, Gökçen A and Kracht M: The crosstalk of endoplasmic reticulum (ER) stress pathways with NF-κB: Complex mechanisms relevant for cancer, inflammation and infection. Biomedicines. 6(58)2018.PubMed/NCBI View Article : Google Scholar

154 

Ibuki T, Yamasaki Y, Mizuguchi H and Sokabe M: Protective effects of XBP1 against oxygen and glucose deprivation/reoxygenation injury in rat primary hippocampal neurons. Neurosci Lett. 518:45–48. 2012.PubMed/NCBI View Article : Google Scholar

155 

DeGracia DJ and Montie HL: Cerebral ischemia and the unfolded protein response. J Neurochem. 91:1–8. 2004.PubMed/NCBI View Article : Google Scholar

156 

McCullough KD, Martindale JL, Klotz LO, Aw TY and Holbrook NJ: Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol. 21:1249–1259. 2001.PubMed/NCBI View Article : Google Scholar

157 

Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ and Diehl JA: Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol. 23:7198–7209. 2003.PubMed/NCBI View Article : Google Scholar

158 

Puthalakath H, O'Reilly LA, Gunn P, Lee L, Kelly PN, Huntington ND, Hughes PD, Michalak EM, McKimm-Breschkin J, Motoyama N, et al: ER stress triggers apoptosis by activating BH3-only protein Bim. Cell. 129:1337–1349. 2007.PubMed/NCBI View Article : Google Scholar

159 

Ghosh AP, Klocke BJ, Ballestas ME and Roth KA: CHOP potentially co-operates with FOXO3a in neuronal cells to regulate PUMA and BIM expression in response to ER stress. PLoS One. 7(e39586)2012.PubMed/NCBI View Article : Google Scholar

160 

De Meyer GR and Martinet W: Autophagy in the cardiovascular system. Biochim Biophy Acta. 1793:1485–1495. 2009.PubMed/NCBI View Article : Google Scholar

161 

Wei L, Zhang Y, Qi X, Sun X, Li Y and Xu Y: Ubiquitin-proteasomes are the dominant mediators of the regulatory effect of microRNA-1 on cardiac remodeling after myocardial infarction. Int J Mol Med. 44:1899–1907. 2019.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ruan Y, Zeng J, Jin Q, Chu M, Ji K, Wang Z and Li L: Endoplasmic reticulum stress serves an important role in cardiac ischemia/reperfusion injury (Review). Exp Ther Med 20: 268, 2020.
APA
Ruan, Y., Zeng, J., Jin, Q., Chu, M., Ji, K., Wang, Z., & Li, L. (2020). Endoplasmic reticulum stress serves an important role in cardiac ischemia/reperfusion injury (Review). Experimental and Therapeutic Medicine, 20, 268. https://doi.org/10.3892/etm.2020.9398
MLA
Ruan, Y., Zeng, J., Jin, Q., Chu, M., Ji, K., Wang, Z., Li, L."Endoplasmic reticulum stress serves an important role in cardiac ischemia/reperfusion injury (Review)". Experimental and Therapeutic Medicine 20.6 (2020): 268.
Chicago
Ruan, Y., Zeng, J., Jin, Q., Chu, M., Ji, K., Wang, Z., Li, L."Endoplasmic reticulum stress serves an important role in cardiac ischemia/reperfusion injury (Review)". Experimental and Therapeutic Medicine 20, no. 6 (2020): 268. https://doi.org/10.3892/etm.2020.9398
Copy and paste a formatted citation
x
Spandidos Publications style
Ruan Y, Zeng J, Jin Q, Chu M, Ji K, Wang Z and Li L: Endoplasmic reticulum stress serves an important role in cardiac ischemia/reperfusion injury (Review). Exp Ther Med 20: 268, 2020.
APA
Ruan, Y., Zeng, J., Jin, Q., Chu, M., Ji, K., Wang, Z., & Li, L. (2020). Endoplasmic reticulum stress serves an important role in cardiac ischemia/reperfusion injury (Review). Experimental and Therapeutic Medicine, 20, 268. https://doi.org/10.3892/etm.2020.9398
MLA
Ruan, Y., Zeng, J., Jin, Q., Chu, M., Ji, K., Wang, Z., Li, L."Endoplasmic reticulum stress serves an important role in cardiac ischemia/reperfusion injury (Review)". Experimental and Therapeutic Medicine 20.6 (2020): 268.
Chicago
Ruan, Y., Zeng, J., Jin, Q., Chu, M., Ji, K., Wang, Z., Li, L."Endoplasmic reticulum stress serves an important role in cardiac ischemia/reperfusion injury (Review)". Experimental and Therapeutic Medicine 20, no. 6 (2020): 268. https://doi.org/10.3892/etm.2020.9398
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team