Open Access

Proteomic and microRNA‑omic profiles and potential mechanisms of dysfunction in pancreatic islet cells primed by inflammation

  • Authors:
    • Yipei Ding
    • Jin Zhong
    • Yangyang Wang
    • Weidong Xie
  • View Affiliations

  • Published online on: December 3, 2020     https://doi.org/10.3892/etm.2020.9554
  • Article Number: 122
  • Copyright: © Ding et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Diabetes is an inflammatory disease that induces pancreatic islet dysfunction. However, to the best of our knowledge, the potential underlying molecular mechanisms of this inflammatory process remains unknown. The present study investigated microRNA (miRNA/miR) and protein expression profiles through proteomics and miRNA‑omics. Lipopolysaccharide‑induced macrophage cell medium (LRM) was used to stimulate inflammation in mouse Beta‑TC‑6 islet cells. Protein analysis revealed that 87 proteins were upregulated and 42 proteins were downregulated in LRM‑treated Beta‑TC‑6 cells compared with control cells. Additionally, miRNA analysis revealed that 11 miRNAs were upregulated, while 28 miRNAs were downregulated in LRM‑treated Beta‑TC‑6 cells compared with control cells. Islet cells exposed to inflammation exhibited markedly downregulated protein levels of transcription factor MafA, pancreatic and duodenal homeobox 1, paired box 6, homeobox protein Nkx‑2.2, synaptosomal‑associated protein 25, glucagon and insulin‑2, while the expression of miR‑146a‑5p and miR‑21a‑5p were upregulated. It was also determined that upregulated miR‑146a‑5p and miR‑21a‑5p levels may be mediated by NF‑κB activation. The downregulation of islet functional factor mRNA was partially reversed by treating islet cells with an inhibitor of miR‑21a‑5p. However, treatment with an miR‑146a‑5p inhibitor did not exert the same effect. Overall, the present study determined the molecular profiles of islet cell inflammation based on proteomics and miRNA‑omics, and indicated that the proteins and miRNAs with altered expressions may form a large network that serves a role in islet dysfunction. Particularly, miR‑21a‑5p upregulation in response to inflammation may contribute to islet cell dysfunction. However, how these miRNAs regulated the expression of certain mRNAs and proteins in islet cell inflammation requires further investigation.
View Figures
View References

Related Articles

Journal Cover

February-2021
Volume 21 Issue 2

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Ding Y, Zhong J, Wang Y and Xie W: Proteomic and microRNA‑omic profiles and potential mechanisms of dysfunction in pancreatic islet cells primed by inflammation. Exp Ther Med 21: 122, 2021
APA
Ding, Y., Zhong, J., Wang, Y., & Xie, W. (2021). Proteomic and microRNA‑omic profiles and potential mechanisms of dysfunction in pancreatic islet cells primed by inflammation. Experimental and Therapeutic Medicine, 21, 122. https://doi.org/10.3892/etm.2020.9554
MLA
Ding, Y., Zhong, J., Wang, Y., Xie, W."Proteomic and microRNA‑omic profiles and potential mechanisms of dysfunction in pancreatic islet cells primed by inflammation". Experimental and Therapeutic Medicine 21.2 (2021): 122.
Chicago
Ding, Y., Zhong, J., Wang, Y., Xie, W."Proteomic and microRNA‑omic profiles and potential mechanisms of dysfunction in pancreatic islet cells primed by inflammation". Experimental and Therapeutic Medicine 21, no. 2 (2021): 122. https://doi.org/10.3892/etm.2020.9554