ΜicroRNA‑122 protects against ischemic stroke by targeting Maf1

  • Authors:
    • Mengmeng Wang
    • Xiaoman Liu
    • Yu Wu
    • Yi Wang
    • Jiahui Cui
    • Jing Sun
    • Ying Bai
    • Ming-Fei Lang
  • View Affiliations

  • Published online on: April 14, 2021     https://doi.org/10.3892/etm.2021.10048
  • Article Number: 616
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The protection of brain tissue against damage and the reduction of infarct size is crucial for improving patient prognosis following ischemic stroke. Therefore, the present study aimed to investigate the regulatory effect of microRNA (miR)‑122 and its target gene repressor of RNA polymerase III transcription MAF1 homolog (Maf1) on the infarct area in ischemic stroke. Reverse transcription-quantitative PCR (RT‑qPCR) was performed to determine miR‑122 expression levels in an ischemic stroke [middle cerebral artery occlusion (MCAO)] mouse model. Nissl staining was conducted to measure the infarct area of the MCAO mouse model. Moreover, RT‑qPCR was performed to investigate the relationship between the expression of Maf1 and miR‑122 in the MCAO mouse model. Dual‑luciferase reporter assay in vitro and miR‑122 mimic or inhibitor treatment in vivo were conducted to verify that miR‑122 targeted and inhibited Maf1 expression. The results suggested that miR‑122 was upregulated in the brain tissue of MCAO model mice. miR‑122 overexpression effectively reduced the size of the infarct area in comparison with a control and miR‑122 knockdown in brain tissue resulted in the opposite effect. Moreover, Maf1 was confirmed to be a direct target of miR‑122. The results of a dual‑luciferase reporter assay indicated that miR‑122 bound to the 3'‑untranslated region of Maf1. Maf1 expression decreased after stroke model induction in comparison with that in sham animals, and Maf1 expression was negatively associated with the expression of miR‑122. In addition, miR‑122 knockdown increased Maf1 expression levels, whereas miR‑122 overexpression decreased Maf1 expression levels in comparison with a control. In conclusion, the results suggested that miR‑122 improved the outcome of acute ischemic stroke by reducing the expression of Maf1.
View Figures
View References

Related Articles

Journal Cover

June-2021
Volume 21 Issue 6

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Wang M, Liu X, Wu Y, Wang Y, Cui J, Sun J, Bai Y and Lang M: ΜicroRNA‑122 protects against ischemic stroke by targeting Maf1. Exp Ther Med 21: 616, 2021
APA
Wang, M., Liu, X., Wu, Y., Wang, Y., Cui, J., Sun, J. ... Lang, M. (2021). ΜicroRNA‑122 protects against ischemic stroke by targeting Maf1. Experimental and Therapeutic Medicine, 21, 616. https://doi.org/10.3892/etm.2021.10048
MLA
Wang, M., Liu, X., Wu, Y., Wang, Y., Cui, J., Sun, J., Bai, Y., Lang, M."ΜicroRNA‑122 protects against ischemic stroke by targeting Maf1". Experimental and Therapeutic Medicine 21.6 (2021): 616.
Chicago
Wang, M., Liu, X., Wu, Y., Wang, Y., Cui, J., Sun, J., Bai, Y., Lang, M."ΜicroRNA‑122 protects against ischemic stroke by targeting Maf1". Experimental and Therapeutic Medicine 21, no. 6 (2021): 616. https://doi.org/10.3892/etm.2021.10048