Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
October-2021 Volume 22 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2021 Volume 22 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Emerging deep learning techniques using magnetic resonance imaging data applied in multiple sclerosis and clinical isolated syndrome patients (Review)

  • Authors:
    • Eleftherios E. Kontopodis
    • Efrosini Papadaki
    • Eleftherios Trivizakis
    • Thomas G. Maris
    • Panagiotis Simos
    • Georgios Z. Papadakis
    • Aristidis Tsatsakis
    • Demetrios A. Spandidos
    • Apostolos Karantanas
    • Kostas Marias
  • View Affiliations / Copyright

    Affiliations: Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology‑Hellas, 70013 Heraklion, Greece, Centre of Toxicology Science and Research, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece, Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
    Copyright: © Kontopodis et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 1149
    |
    Published online on: August 9, 2021
       https://doi.org/10.3892/etm.2021.10583
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Computer‑aided diagnosis systems aim to assist clinicians in the early identification of abnormal signs in order to optimize the interpretation of medical images and increase diagnostic precision. Multiple sclerosis (MS) and clinically isolated syndrome (CIS) are chronic inflammatory, demyelinating diseases affecting the central nervous system. Recent advances in deep learning (DL) techniques have led to novel computational paradigms in MS and CIS imaging designed for automatic segmentation and detection of areas of interest and automatic classification of anatomic structures, as well as optimization of neuroimaging protocols. To this end, there are several publications presenting artificial intelligence‑based predictive models aiming to increase diagnostic accuracy and to facilitate optimal clinical management in patients diagnosed with MS and/or CIS. The current study presents a thorough review covering DL techniques that have been applied in MS and CIS during recent years, shedding light on their current advances and limitations.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Ortiz GG, Pacheco-Moisés FP, Macías-Islas MÁ, Flores-Alvarado LJ, Mireles-Ramírez MA, González-Renovato ED, Hernández-Navarro VE, Sánchez-López AL and Alatorre-Jiménez MA: Role of the blood-brain barrier in multiple sclerosis. Arch Med Res. 45:687–697. 2014.PubMed/NCBI View Article : Google Scholar

2 

Lopes Pinheiro MA, Kooij G, Mizee MR, Kamermans A, Enzmann G, Lyck R, Schwaninger M, Engelhardt B and de Vries HE: Immune cell trafficking across the barriers of the central nervous system in multiple sclerosis and stroke. Biochim Biophys Acta. 1862:461–471. 2016.PubMed/NCBI View Article : Google Scholar

3 

Miller DH, Chard DT and Ciccarelli O: Clinically isolated syndromes. Lancet Neurol. 11:157–169. 2012.PubMed/NCBI View Article : Google Scholar

4 

Kappos L, Polman CH, Freedman MS, Edan G, Hartung HP, Miller DH, Montalban X, Barkhof F, Bauer L, Jakobs P, et al: Treatment with interferon beta-1b delays conversion to clinically definite and McDonald MS in patients with clinically isolated syndromes. Neurology. 67:1242–1249. 2006.PubMed/NCBI View Article : Google Scholar

5 

Fu Y, Talavage TM and Cheng JX: New imaging techniques in the diagnosis of multiple sclerosis. Expert Opin Med Diagn. 2:1055–1065. 2008.PubMed/NCBI View Article : Google Scholar

6 

Horsfield MA, Rovaris M, Rocca MA, Rossi P, Benedict RH, Filippi M and Bakshi R: Whole-brain atrophy in multiple sclerosis measured by two segmentation processes from various MRI sequences. J Neurol Sci. 216:169–177. 2003.PubMed/NCBI View Article : Google Scholar

7 

van Walderveen MA, Kamphorst W, Scheltens P, van Waesberghe JH, Ravid R, Valk J, Polman CH and Barkhof F: Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology. 50:1282–1288. 1998.PubMed/NCBI View Article : Google Scholar

8 

Bakshi R, Ariyaratana S, Benedict RH and Jacobs L: Fluid-attenuated inversion recovery magnetic resonance imaging detects cortical and juxtacortical multiple sclerosis lesions. Arch Neurol. 58:742–748. 2001.PubMed/NCBI View Article : Google Scholar

9 

Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, Lublin FD, Metz LM, McFarland HF, O'Connor PW, et al: Diagnostic criteria for multiple sclerosis: 2005 revisions to the ‘McDonald Criteria’. Ann Neurol. 58:840–846. 2005.PubMed/NCBI View Article : Google Scholar

10 

Richards TL: Proton MR spectroscopy in multiple sclerosis: Value in establishing diagnosis, monitoring progression, and evaluating therapy. AJR Am J Roentgenol. 157:1073–1078. 1991.PubMed/NCBI View Article : Google Scholar

11 

Pike GB, De Stefano N, Narayanan S, Worsley KJ, Pelletier D, Francis GS, Antel JP and Arnold DL: Multiple sclerosis: Magnetization transfer MR imaging of white matter before lesion appearance on T2-weighted images. Radiology. 215:824–830. 2000.PubMed/NCBI View Article : Google Scholar

12 

Filippi M and Rocca MA: Magnetization transfer magnetic resonance imaging in the assessment of neurological diseases. J Neuroimaging. 14:303–313. 2004.PubMed/NCBI View Article : Google Scholar

13 

Rovaris M, Gass A, Bammer R, Hickman SJ, Ciccarelli O, Miller DH and Filippi M: Diffusion MRI in multiple sclerosis. Neurology. 65:1526–1532. 2005.PubMed/NCBI View Article : Google Scholar

14 

Lapointe E, Li DKB, Traboulsee AL and Rauscher A: What Have We Learned from Perfusion MRI in Multiple Sclerosis? AJNR Am J Neuroradiol. 39:994–1000. 2018.PubMed/NCBI View Article : Google Scholar

15 

Kotsiantis SB, Zaharakis I and Pintelas P: Supervised machine learning: A review of classification techniques. Emerging artificial intelligence applications in computer engineering. 160:3–24. 2007.

16 

Mortazavi D, Kouzani AZ and Soltanian-Zadeh H: Segmentation of multiple sclerosis lesions in MR images: A review. Neuroradiology. 54:299–320. 2012.PubMed/NCBI View Article : Google Scholar

17 

Uddin M, Wang Y and Woodbury-Smith M: Artificial intelligence for precision medicine in neurodevelopmental disorders. NPJ Digit Med. 2(112)2019.PubMed/NCBI View Article : Google Scholar

18 

Bergsland N, Horakova D, Dwyer MG, Uher T, Vaneckova M, Tyblova M, Seidl Z, Krasensky J, Havrdova E and Zivadinov R: Gray matter atrophy patterns in multiple sclerosis: A 10-year source-based morphometry study. Neuroimage Clin. 17:444–451. 2017.PubMed/NCBI View Article : Google Scholar

19 

Pontillo G, Petracca M, Cocozza S and Brunetti A: The Development of Subcortical Gray Matter Atrophy in Multiple Sclerosis: One Size Does Not Fit All. AJNR Am J Neuroradiol. 41:E80–E81. 2020.PubMed/NCBI View Article : Google Scholar

20 

Almutairi AH, Hassan HA, Suppiah S, Alomair OI, Alshoaibi A, Almutairi H and Mahmud R: Lesion load assessment among multiple sclerosis patient using DIR, FLAIR, and T2WI sequences. Egypt J Radiol Nucl Med. 51(209)2020.

21 

Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, Correale J, Fazekas F, Filippi M, Freedman MS, et al: Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 17:162–173. 2018.PubMed/NCBI View Article : Google Scholar

22 

Valverde S, Cabezas M, Roura E, González-Villà S, Pareto D, Vilanova JC, Ramió-Torrentà L, Rovira À, Oliver A and Lladó X: Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. Neuroimage. 155:159–168. 2017.PubMed/NCBI View Article : Google Scholar

23 

Birenbaum A and Greenspan H: Multi-view longitudinal CNN for multiple sclerosis lesion segmentation. Eng Appl Artif Intell. 65:111–118. 2017.

24 

Carass A, Roy S, Jog A, Cuzzocreo JL, Magrath E, Gherman A, Button J, Nguyen J, Bazin PL, Calabresi PA, et al: Longitudinal multiple sclerosis lesion segmentation data resource. Data Brief. 12:346–350. 2017.PubMed/NCBI View Article : Google Scholar

25 

Gros C, De Leener B, Badji A, Maranzano J, Eden D, Dupont SM, Talbott J, Zhuoquiong R, Liu Y, Granberg T, et al: Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. Neuroimage. 184:901–915. 2019.PubMed/NCBI View Article : Google Scholar

26 

Milletari F, Navab N and Ahmadi SA: V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In: Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV). IEEE, Stanford, CA, pp565-571, 2016.

27 

De Leener B, Kadoury S and Cohen-Adad J: Robust, accurate and fast automatic segmentation of the spinal cord. Neuroimage. 98:528–536. 2014.PubMed/NCBI View Article : Google Scholar

28 

Aslani S, Dayan M, Storelli L, Filippi M, Murino V, Rocca MA and Sona D: Multi-branch convolutional neural network for multiple sclerosis lesion segmentation. Neuroimage. 196:1–15. 2019.PubMed/NCBI View Article : Google Scholar

29 

Sander L, Pezold S, Andermatt S, Amann M, Meier D, Wendebourg MJ, Sinnecker T, Radue EW, Naegelin Y, Granziera C, et al: Alzheimer's Disease Neuroimaging Initiative: Accurate, rapid and reliable, fully automated MRI brainstem segmentation for application in multiple sclerosis and neurodegenerative diseases. Hum Brain Mapp. 40:4091–4104. 2019.PubMed/NCBI View Article : Google Scholar

30 

Iglesias JE, Van Leemput K, Bhatt P, Casillas C, Dutt S, Schuff N, Truran-Sacrey D, Boxer A and Fischl B: Alzheimer's Disease Neuroimaging Initiative. Bayesian segmentation of brainstem structures in MRI. Neuroimage. 113:184–195. 2015.PubMed/NCBI View Article : Google Scholar

31 

Hashemi SR, Salehi SSM, Erdogmus D, Prabhu SP, Warfield SK and Gholipour A: Asymmetric Loss Functions and Deep Densely Connected Networks for Highly Imbalanced Medical Image Segmentation: Application to Multiple Sclerosis Lesion Detection. IEEE Access. 7:721–1735. 2019.PubMed/NCBI View Article : Google Scholar

32 

Commowick O, Cervenansky F and Ameli R: MSSEG challenge proceedings: multiple sclerosis lesions segmentation challenge using a data management and processing infrastructure. MICCAI, Athens, 2016.

33 

Carass A, Roy S, Jog A, Cuzzocreo JL, Magrath E, Gherman A, Button J, Nguyen J, Prados F, Sudre CH, et al: Longitudinal multiple sclerosis lesion segmentation: Resource and challenge. Neuroimage. 148:77–102. 2017.PubMed/NCBI View Article : Google Scholar

34 

Gabr RE, Coronado I, Robinson M, Sujit SJ, Datta S, Sun X, Allen WJ, Lublin FD, Wolinsky JS and Narayana PA: Brain and lesion segmentation in multiple sclerosis using fully convolutional neural networks: A large-scale study. Mult Scler. 26:1217–1226. 2020.PubMed/NCBI View Article : Google Scholar

35 

Weeda MM, Brouwer I, de Vos ML, de Vries MS, Barkhof F, Pouwels PJW and Vrenken H: Comparing lesion segmentation methods in multiple sclerosis: Input from one manually delineated subject is sufficient for accurate lesion segmentation. Neuroimage Clin. 24(102074)2019.PubMed/NCBI View Article : Google Scholar

36 

Valverde S, Salem M, Cabezas M, Pareto D, Vilanova JC, Ramió-Torrentà L, Rovira À, Salvi J, Oliver A and Lladó X: One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks. Neuroimage Clin. 21(101638)2019.PubMed/NCBI View Article : Google Scholar

37 

Shiee N, Bazin PL, Ozturk A, Reich DS, Calabresi PA and Pham DL: A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. Neuroimage. 49:1524–1535. 2010.PubMed/NCBI View Article : Google Scholar

38 

Schmidt P: Bayesian Inference for Structured Additive Regression Models for Large-Scale Problems with Applications to Medical Imaging (unpublished PhD thesis). Ludwig-Maximilians-Universität München, 2016.

39 

Griffanti L, Zamboni G, Khan A, Li L, Bonifacio G, Sundaresan V, Schulz UG, Kuker W, Battaglini M, Rothwell PM, et al: BIANCA (Brain Intensity AbNormality Classification Algorithm): A new tool for automated segmentation of white matter hyperintensities. Neuroimage. 141:191–205. 2016.PubMed/NCBI View Article : Google Scholar

40 

McKinley R, Wepfer R, Aschwanden F, Grunder L, Muri R, Rummel C, Verma R, Weisstanner C, Reyes M, Salmen A, et al: Simultaneous lesion and neuroanatomy segmentation in multiple sclerosis using deep neural networks. arXiv:1901.07419.

41 

Narayana PA, Coronado I, Sujit SJ, Wolinsky JS, Lublin FD and Gabr RE: Deep-Learning-Based Neural Tissue Segmentation of MRI in Multiple Sclerosis: Effect of Training Set Size. J Magn Reson Imaging. 51:1487–1496. 2020.PubMed/NCBI View Article : Google Scholar

42 

Nair T, Precup D, Arnold DL and Arbel T: Exploring uncertainty measures in deep networks for Multiple sclerosis lesion detection and segmentation. Med Image Anal. 59(101557)2020.PubMed/NCBI View Article : Google Scholar

43 

McKinley R, Wepfer R, Aschwanden F, Grunder L, Muri R, Rummel C, Verma R, Weisstanner C, Reyes M, Salmen A, et al: Simultaneous lesion and brain segmentation in multiple sclerosis using deep neural networks. Sci Rep. 11(1087)2021.PubMed/NCBI View Article : Google Scholar

44 

Narayana PA, Coronado I, Sujit SJ, Sun X, Wolinsky JS and Gabr RE: Are multi-contrast magnetic resonance images necessary for segmenting multiple sclerosis brains? A large cohort study based on deep learning. Magn Reson Imaging. 65:8–14. 2020.PubMed/NCBI View Article : Google Scholar

45 

Salem M, Valverde S, Cabezas M, Pareto D, Oliver A, Salvi J, Rovira À and Lladó X: A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis. Neuroimage Clin. 25(102149)2020.PubMed/NCBI View Article : Google Scholar

46 

Brown RA, Fetco D, Fratila R, Fadda G, Jiang S, Alkhawajah NM, Yeh EA, Banwell B, Bar-Or A and Arnold DL: Canadian Pediatric Demyelinating Disease Network. Deep learning segmentation of orbital fat to calibrate conventional MRI for longitudinal studies. Neuroimage. 208(116442)2020.PubMed/NCBI View Article : Google Scholar

47 

Ackaouy A, Courty N, Vallée E, Commowick O, Barillot C and Galassi F: Unsupervised Domain Adaptation With Optimal Transport in Multi-Site Segmentation of Multiple Sclerosis Lesions From MRI Data. Front Comput Neurosci. 14(19)2020.PubMed/NCBI View Article : Google Scholar

48 

Commowick O, Istace A, Kain M, Laurent B, Leray F, Simon M, Pop SC, Girard P, Améli R, Ferré JC, et al: Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure. Sci Rep. 8(13650)2018.PubMed/NCBI View Article : Google Scholar

49 

Coronado I, Gabr RE and Narayana PA: Deep learning segmentation of gadolinium-enhancing lesions in multiple sclerosis. Mult Scler. 27:219–527. 2021.PubMed/NCBI View Article : Google Scholar

50 

La Rosa F, Abdulkadir A, Fartaria MJ, Rahmanzadeh R, Lu PJ, Galbusera R, Barakovic M, Thiran JP, Granziera C and Cuadra MB: Multiple sclerosis cortical and WM lesion segmentation at 3T MRI: A deep learning method based on FLAIR and MP2RAGE. Neuroimage Clin. 27(102335)2020.PubMed/NCBI View Article : Google Scholar

51 

Gessert N, Krüger J, Opfer R, Ostwaldt AC, Manogaran P, Kitzler HH, Schippling S and Schlaefer A: Multiple sclerosis lesion activity segmentation with attention-guided two-path CNNs. Comput Med Imaging Graph. 84(101772)2020.PubMed/NCBI View Article : Google Scholar

52 

Essa E, Aldesouky D, Hussein SE and Rashad MZ: Neuro-fuzzy patch-wise R-CNN for multiple sclerosis segmentation. Med Biol Eng Comput. 58:2161–2175. 2020.PubMed/NCBI View Article : Google Scholar

53 

Barquero G, La Rosa F, Kebiri H, Lu PJ, Rahmanzadeh R, Weigel M, Fartaria MJ, Kober T, Théaudin M, Du Pasquier R, et al: RimNet: A deep 3D multimodal MRI architecture for paramagnetic rim lesion assessment in multiple sclerosis. Neuroimage Clin. 28(102412)2020.PubMed/NCBI View Article : Google Scholar

54 

Gautam R and Sharma M: Prevalence and Diagnosis of Neurological Disorders Using Different Deep Learning Techniques: A Meta-Analysis. J Med Syst. 44(49)2020.PubMed/NCBI View Article : Google Scholar

55 

Yoo Y, Tang LYW, Brosch T, Li DKB, Kolind S, Vavasour I, Rauscher A, MacKay AL, Traboulsee A and Tam RC: Deep learning of joint myelin and T1w MRI features in normal-appearing brain tissue to distinguish between multiple sclerosis patients and healthy controls. Neuroimage Clin. 17:169–178. 2017.PubMed/NCBI View Article : Google Scholar

56 

Wang SH, Tang C, Sun J, Yang J, Huang C, Phillips P and Zhang YD: Multiple Sclerosis Identification by 14-Layer Convolutional Neural Network With Batch Normalization, Dropout, and Stochastic Pooling. Front Neurosci. 12(818)2018.PubMed/NCBI View Article : Google Scholar

57 

Zhang YD, Pan C, Sun J and Tang C: Multiple sclerosis identification by convolutional neural network with dropout and parametric ReLU. J Comput Sci. 28(818)2018.

58 

Talo M, Baloglu UB, Yıldırım Ö and Acharya UR: Application of deep transfer learning for automated brain abnormality classification using MR images. Cogn Syst Res. 54:176–188. 2019.

59 

Lu S, Lu Z and Zhang YD: Pathological brain detection based on AlexNet and transfer learning. J Comput Sci. 30:41–47. 2019.

60 

McKinley R, Wepfer R, Grunder L, Aschwanden F, Fischer T, Friedli C, Muri R, Rummel C, Verma R, Weisstanner C, et al: Automatic detection of lesion load change in Multiple Sclerosis using convolutional neural networks with segmentation confidence. Neuroimage Clin. 25(102104)2020.PubMed/NCBI View Article : Google Scholar

61 

Marzullo A, Kocevar G, Stamile C, Durand-Dubief F, Terracina G, Calimeri F and Sappey-Marinier D: Classification of Multiple Sclerosis Clinical Profiles via Graph Convolutional Neural Networks. Front Neurosci. 13(594)2019.PubMed/NCBI View Article : Google Scholar

62 

Eitel F, Soehler E, Bellmann-Strobl J, Brandt AU, Ruprecht K, Giess RM, Kuchling J, Asseyer S, Weygandt M, Haynes JD, et al: Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation. Neuroimage Clin. 24(102003)2019.PubMed/NCBI View Article : Google Scholar

63 

Narayana PA, Coronado I, Sujit SJ, Wolinsky JS, Lublin FD and Gabr RE: Deep Learning for Predicting Enhancing Lesions in Multiple Sclerosis from Noncontrast MRI. Radiology. 294:398–404. 2020.PubMed/NCBI View Article : Google Scholar

64 

Maggi P, Fartaria MJ, Jorge J, La Rosa F, Absinta M, Sati P, Meuli R, Du Pasquier R, Reich DS, Cuadra MB, et al: CVSnet: A machine learning approach for automated central vein sign assessment in multiple sclerosis. NMR Biomed. 33(e4283)2020.PubMed/NCBI View Article : Google Scholar

65 

Wang Z, Yu Z, Wang Y, Zhang H, Luo Y, Shi L, Wang Y and Guo C: 3D Compressed Convolutional Neural Network Differentiates Neuromyelitis Optical Spectrum Disorders From Multiple Sclerosis Using Automated White Matter Hyperintensities Segmentations. Front Physiol. 11(612928)2020.PubMed/NCBI View Article : Google Scholar

66 

Roca P, Attye A, Colas L, Tucholka A, Rubini P, Cackowski S, Ding J, Budzik JF, Renard F, Doyle S, et al: OFSEP Investigators; Steering Committee; Investigators; Imaging group: Artificial intelligence to predict clinical disability in patients with multiple sclerosis using FLAIR MRI. Diagn Interv Imaging. 101:795–802. 2020.PubMed/NCBI View Article : Google Scholar

67 

Lopatina A, Ropele S, Sibgatulin R, Reichenbach JR and Güllmar D: Investigation of Deep-Learning-Driven Identification of Multiple Sclerosis Patients Based on Susceptibility-Weighted Images Using Relevance Analysis. Front Neurosci. 14(609468)2020.PubMed/NCBI View Article : Google Scholar

68 

Sreekumari A, Shanbhag D, Yeo D, Foo T, Pilitsis J, Polzin J, Patil U, Coblentz A, Kapadia A, Khinda J, et al: A Deep Learning-Based Approach to Reduce Rescan and Recall Rates in Clinical MRI Examinations. AJNR Am J Neuroradiol. 40:217–223. 2019.PubMed/NCBI View Article : Google Scholar

69 

Sujit SJ, Coronado I, Kamali A, Narayana PA and Gabr RE: Automated image quality evaluation of structural brain MRI using an ensemble of deep learning networks. J Magn Reson Imaging. 50:1260–1267. 2019.PubMed/NCBI View Article : Google Scholar

70 

Lublin FD, Cofield SS, Cutter GR, Conwit R, Narayana PA, Nelson F, Salter AR, Gustafson T and Wolinsky JS: CombiRx Investigators. Randomized study combining interferon and glatiramer acetate in multiple sclerosis. Ann Neurol. 73:327–340. 2013.PubMed/NCBI View Article : Google Scholar

71 

Zhao C, Shao M, Carass A, Li H, Dewey BE, Ellingsen LM, Woo J, Guttman MA, Blitz AM, Stone M, et al: Applications of a deep learning method for anti-aliasing and super-resolution in MRI. Magn Reson Imaging. 64:132–141. 2019.PubMed/NCBI View Article : Google Scholar

72 

Jog A, Carass A and Prince JL: Self Super-resolution for Magnetic Resonance Images. Med Image Comput Comput Assist Interv. 9902:553–560. 2016.PubMed/NCBI View Article : Google Scholar

73 

Wei W, Poirion E, Bodini B, Durrleman S, Colliot O, Stankoff B and Ayache N: Fluid-attenuated inversion recovery MRI synthesis from multisequence MRI using three-dimensional fully convolutional networks for multiple sclerosis. J Med Imaging (Bellingham). 6(014005)2019.PubMed/NCBI View Article : Google Scholar

74 

Ye DH, Zikic D, Glocker B, Criminisi A and Konukoglu E: Modality propagation: coherent synthesis of subject-specific scans with data-driven regularization. Med Image Comput Comput Assist Interv. 13:606–613. 2013.PubMed/NCBI View Article : Google Scholar

75 

Jog A, Carass A, Pham DL and Prince JL: RANDOM FOREST FLAIR RECONSTRUCTION FROM T1, T2, AND PD-WEIGHTED MRI. Proc IEEE Int Symp Biomed Imaging. 2014:1079–1082. 2014.PubMed/NCBI View Article : Google Scholar

76 

Ronneberger O, Fischer P and Brox T: U-Net: Convolutional Networks for Biomedical Image Segmentation. Lect Notes Comput Sci. 9351:234–241. 2015.

77 

Salem M, Valverde S, Cabezas M, Pareto D, Oliver A, Salvi J, Rovira À and Lladó X: Multiple sclerosis lesion synthesis in MRI using an encoder-decoder U-NET. IEEE Access. 7:25171–25184. 2019.

78 

Wei W, Poirion E, Bodini B, Durrleman S, Ayache N, Stankoff B and Colliot O: Predicting PET-derived demyelination from multimodal MRI using sketcher-refiner adversarial training for multiple sclerosis. Med Image Anal. 58(101546)2019.PubMed/NCBI View Article : Google Scholar

79 

Finck T, Li H, Grundl L, Eichinger P, Bussas M, Mühlau M, Menze B and Wiestler B: Deep-Learning Generated Synthetic Double Inversion Recovery Images Improve Multiple Sclerosis Lesion Detection. Invest Radiol. 55:318–323. 2020.PubMed/NCBI View Article : Google Scholar

80 

Yoon J, Gong E, Chatnuntawech I, Bilgic B, Lee J, Jung W, Ko J, Jung H, Setsompop K, Zaharchuk G, et al: Quantitative susceptibility mapping using deep neural network: QSMnet. Neuroimage. 179:199–206. 2018.PubMed/NCBI View Article : Google Scholar

81 

Bollmann S, Rasmussen KGB, Kristensen M, Blendal RG, Østergaard LR, Plocharski M, O'Brien K, Langkammer C, Janke A and Barth M: DeepQSM-using deep learning to solve the dipole inversion for quantitative susceptibility mapping. Neuroimage. 195:373–383. 2019.PubMed/NCBI View Article : Google Scholar

82 

Dewey BE, Zhao C, Reinhold JC, Carass A, Fitzgerald KC, Sotirchos ES, Saidha S, Oh J, Pham DL, Calabresi PA, et al: DeepHarmony: A deep learning approach to contrast harmonization across scanner changes. Magn Reson Imaging. 64:160–170. 2019.PubMed/NCBI View Article : Google Scholar

83 

Liu H, Xiang QS, Tam R, Dvorak AV, MacKay AL, Kolind SH, Traboulsee A, Vavasour IM, Li DKB, Kramer JK, et al: Myelin water imaging data analysis in less than one minute. Neuroimage. 210(116551)2020.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Kontopodis EE, Papadaki E, Trivizakis E, Maris TG, Simos P, Papadakis GZ, Tsatsakis A, Spandidos DA, Karantanas A, Marias K, Marias K, et al: Emerging deep learning techniques using magnetic resonance imaging data applied in multiple sclerosis and clinical isolated syndrome patients (Review). Exp Ther Med 22: 1149, 2021.
APA
Kontopodis, E.E., Papadaki, E., Trivizakis, E., Maris, T.G., Simos, P., Papadakis, G.Z. ... Marias, K. (2021). Emerging deep learning techniques using magnetic resonance imaging data applied in multiple sclerosis and clinical isolated syndrome patients (Review). Experimental and Therapeutic Medicine, 22, 1149. https://doi.org/10.3892/etm.2021.10583
MLA
Kontopodis, E. E., Papadaki, E., Trivizakis, E., Maris, T. G., Simos, P., Papadakis, G. Z., Tsatsakis, A., Spandidos, D. A., Karantanas, A., Marias, K."Emerging deep learning techniques using magnetic resonance imaging data applied in multiple sclerosis and clinical isolated syndrome patients (Review)". Experimental and Therapeutic Medicine 22.4 (2021): 1149.
Chicago
Kontopodis, E. E., Papadaki, E., Trivizakis, E., Maris, T. G., Simos, P., Papadakis, G. Z., Tsatsakis, A., Spandidos, D. A., Karantanas, A., Marias, K."Emerging deep learning techniques using magnetic resonance imaging data applied in multiple sclerosis and clinical isolated syndrome patients (Review)". Experimental and Therapeutic Medicine 22, no. 4 (2021): 1149. https://doi.org/10.3892/etm.2021.10583
Copy and paste a formatted citation
x
Spandidos Publications style
Kontopodis EE, Papadaki E, Trivizakis E, Maris TG, Simos P, Papadakis GZ, Tsatsakis A, Spandidos DA, Karantanas A, Marias K, Marias K, et al: Emerging deep learning techniques using magnetic resonance imaging data applied in multiple sclerosis and clinical isolated syndrome patients (Review). Exp Ther Med 22: 1149, 2021.
APA
Kontopodis, E.E., Papadaki, E., Trivizakis, E., Maris, T.G., Simos, P., Papadakis, G.Z. ... Marias, K. (2021). Emerging deep learning techniques using magnetic resonance imaging data applied in multiple sclerosis and clinical isolated syndrome patients (Review). Experimental and Therapeutic Medicine, 22, 1149. https://doi.org/10.3892/etm.2021.10583
MLA
Kontopodis, E. E., Papadaki, E., Trivizakis, E., Maris, T. G., Simos, P., Papadakis, G. Z., Tsatsakis, A., Spandidos, D. A., Karantanas, A., Marias, K."Emerging deep learning techniques using magnetic resonance imaging data applied in multiple sclerosis and clinical isolated syndrome patients (Review)". Experimental and Therapeutic Medicine 22.4 (2021): 1149.
Chicago
Kontopodis, E. E., Papadaki, E., Trivizakis, E., Maris, T. G., Simos, P., Papadakis, G. Z., Tsatsakis, A., Spandidos, D. A., Karantanas, A., Marias, K."Emerging deep learning techniques using magnetic resonance imaging data applied in multiple sclerosis and clinical isolated syndrome patients (Review)". Experimental and Therapeutic Medicine 22, no. 4 (2021): 1149. https://doi.org/10.3892/etm.2021.10583
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team