|
1
|
Isakova T, Wahl P, Vargas GS, Gutiérrez
OM, Scialla J, Xie H, Appleby D, Nessel L, Bellovich K, Chen J, et
al: Fibroblast growth factor 23 is elevated before parathyroid
hormone and phosphate in chronic kidney disease. Kidney Int.
79:1370–1378. 2011.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Larsson T, Nisbeth U, Ljunggren O, Juppner
H and Jonsson KB: Circulating concentration of FGF-23 increases as
renal function declines in patients with chronic kidney disease,
but does not change in response to variation in phosphate intake in
healthy volunteers. Kidney Int. 64:2272–2279. 2003.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Gutierrez O, Isakova T, Rhee E, Shah A,
Holmes J, Collerone G, Juppner H and Wolf M: Fibroblast growth
factor-23 mitigates hyperphosphatemia but accentuates calcitriol
deficiency in chronic kidney disease. J Am Soc Nephrol.
16:2205–2215. 2005.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Portale AA, Wolf M, Jüppner H, Messinger
S, Kumar J, Wesseling-Perry K, Schwartz GJ, Furth SL, Warady BA and
Salusky IB: Disordered FGF23 and mineral metabolism in children
with CKD. Clin J Am Soc Nephrol. 9:344–353. 2014.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Han X and Quarles LD: Multiple faces of
fibroblast growth factor-23. Curr Opin Nephrol Hypertens.
25:333–342. 2016.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Farrow EG, Yu X, Summers LJ, Davis SI,
Fleet JC, Allen MR, Robling AG, Stayrook KR, Jideonwo V, Magers MJ,
et al: Iron deficiency drives an autosomal dominant
hypophosphatemic rickets (ADHR) phenotype in fibroblast growth
factor-23 (Fgf23) knock-in mice. Proc Natl Acad Sci USA.
108:E1146–E1155. 2011.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Clinkenbeard EL, Farrow EG, Summers LJ,
Cass TA, Roberts JL, Bayt CA, Lahm T, Albrecht M, Allen MR, Peacock
M and White KE: Neonatal iron deficiency causes abnormal phosphate
metabolism by elevating FGF23 in normal and ADHR mice. J Bone Miner
Res. 29:361–369. 2014.PubMed/NCBI View Article : Google Scholar
|
|
8
|
David V, Martin A, Isakova T, Spaulding C,
Qi L, Ramirez V, Zumbrennen-Bullough KB, Sun CC, Lin HY, Babitt JL
and Wolf M: Inflammation and functional iron deficiency regulate
fibroblast growth factor 23 production. Kidney Int. 89:135–146.
2016.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Hanudel MR, Chua K, Rappaport M, Gabayan
V, Valore E, Goltzman D, Ganz T, Nemeth E and Salusky IB: Effects
of dietary iron intake and chronic kidney disease on fibroblast
growth factor 23 metabolism in wild-type and hepcidin knockout
mice. Am J Physiol Renal Physiol. 311:F1369–F1377. 2016.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Clinkenbeard EL, Hanudel MR, Stayrook KR,
Appaiah HN, Farrow EG, Cass TA, Summers LJ, Ip CS, Hum JM, Thomas
JC, et al: Erythropoietin stimulates murine and human fibroblast
growth factor-23, revealing novel roles for bone and bone marrow.
Haematologica. 102:e427–e430. 2017.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Rabadi S, Udo I, Leaf DE, Waikar SS and
Christov M: Acute blood loss stimulates fibroblast growth factor 23
production. Am J Physiol Renal Physiol. 314:F132–F139.
2018.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Flamme I, Ellinghaus P, Urrego D and
Krüger T: FGF23 expression in rodents is directly induced via
erythropoietin after inhibition of hypoxia inducible factor proline
hydroxylase. PLoS One. 12(e0186979)2017.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Toro L, Barrientos V, León P, Rojas M,
Gonzalez M, González-Ibáñez A, Illanes S, Sugikawa K, Abarzua N,
Bascunan C, et al: Erythropoietin induces bone marrow and plasma
fibroblast growth factor 23 during acute kidney injury. Kidney Int.
93:1131–1141. 2018.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Souma N, Isakova T, Lipiszko D, Sacco RL,
Elkind MS, DeRosa JT, Silverberg SJ, Mendez AJ, Dong C, Wright CB,
et al: Fibroblast growth factor 23 and cause-specific mortality in
the general population: The Northern Manhattan Study. J Clin
Endocrinol Metab. 101:3779–3786. 2016.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Gutiérrez OM, Mannstadt M, Isakova T,
Rauh-Hain JA, Tamez H, Shah A, Smith K, Lee H, Thadhani R, Jüppner
H and Wolf M: Fibroblast growth factor 23 and mortality among
patients undergoing hemodialysis. N Engl J Med. 359:584–592.
2008.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Baia LC, Humalda JK, Vervloet MG, Navis G,
Bakker SJ and de Borst MH: NIGRAM Consortium. Fibroblast growth
factor 23 and cardiovascular mortality after kidney
transplantation. Clin J Am Soc Nephrol. 8:1968–1978.
2013.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Isakova T, Xie H, Yang W, Xie D, Anderson
AH, Scialla J, Wahl P, Gutierrez OM, Steigerwalt S, He J, et al:
Fibroblast growth factor 23 and risks of mortality and end-stage
renal disease in patients with chronic kidney disease. Jama.
305:2432–2439. 2011.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Szczech LA, Barnhart HX, Inrig JK, Reddan
DN, Sapp S, Califf RM, Patel UD and Singh AK: Secondary analysis of
the CHOIR trial epoetin-alpha dose and achieved hemoglobin
outcomes. Kidney Int. 74:791–798. 2008.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Lestz RM, Fivush BA and Atkinson MA:
Association of higher erythropoiesis stimulating agent dose and
mortality in children on dialysis. Pediatr Nephrol. 29:2021–2028.
2014.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Valls J, Cambray S, Pérez-Guallar C, Bozic
M, Bermúdez-López M, Fernández E, Betriu À, Rodríguez I and
Valdivielso JM: Association of candidate gene polymorphisms with
chronic kidney disease: Results of a case-control analysis in the
Nefrona Cohort. Front Genet. 10(118)2019.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Agoro R, Montagna A, Goetz R, Aligbe O,
Singh G, Coe LM, Mohammadi M, Rivella S and Sitara D: Inhibition of
fibroblast growth factor 23 (FGF23) signaling rescues renal anemia.
FASEB J. 32:3752–3764. 2018.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Geissler C and Singh M: Iron, meat and
health. Nutrients. 3:283–316. 2011.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Brannon PM and Taylor CL: Iron
supplementation during pregnancy and infancy: Uncertainties and
implications for research and policy. Nutrients.
9(1327)2017.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Müller O and Krawinkel M: Malnutrition and
health in developing countries. CMAJ. 173:279–286. 2005.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Skalicky A, Meyers AF, Adams WG, Yang Z,
Cook JT and Frank DA: Child food insecurity and iron deficiency
anemia in low-income infants and toddlers in the United States.
Matern Child Health J. 10:177–185. 2006.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Díaz-Castro J, López-Frías MR, Campos MS,
López-Frías M, Alférez MJ, Nestares T, Ojeda ML and López-Aliaga I:
Severe nutritional iron-deficiency anaemia has a negative effect on
some bone turnover biomarkers in rats. Eur J Nutr. 51:241–247.
2012.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Cartwright GE, Lauritsen MA, Humphreys S,
Jones PJ, Merrill IM and Wintrobe MM: The anemia associated with
chronic infection. Science. 103:72–73. 1946.PubMed/NCBI
|
|
28
|
Cartwright GE, Lauritsen MA, Jones PJ,
Merrill IM and Wintrobe MM: The anemia of infection; hypoferremia,
hypercupremia, and alterations in porphyrin metabolism in patients.
J Clin Invest. 25:65–80. 1946.PubMed/NCBI
|
|
29
|
Qamar K, Saboor M, Qudsia F, Khosa SM and
Moinuddin Usman M: Malabsorption of iron as a cause of iron
deficiency anemia in postmenopausal women. Pak J Med Sci.
31:304–308. 2015.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Filmann N, Rey J, Schneeweiss S, Ardizzone
S, Bager P, Bergamaschi G, Koutroubakis I, Lindgren S, Morena Fde
L, Moum B, et al: Prevalence of anemia in inflammatory bowel
diseases in european countries: A systematic review and individual
patient data meta-analysis. Inflamm Bowel Dis. 20:936–945.
2014.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Gotloib L, Silverberg D, Fudin R and
Shostak A: Iron deficiency is a common cause of anemia in chronic
kidney disease and can often be corrected with intravenous iron. J
Nephrol. 19:161–167. 2006.PubMed/NCBI
|
|
32
|
Lankhorst CE and Wish JB: Anemia in renal
disease: Diagnosis and management. Blood Rev. 24:39–47.
2010.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Mehta R, Cai X, Hodakowski A, Lee J,
Leonard M, Ricardo A, Chen J, Hamm L, Sondheimer J, Dobre M, et al:
Fibroblast growth factor 23 and anemia in the chronic renal
insufficiency cohort study. Clin J Am Soc Nephrol. 12:1795–1803.
2017.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Eisenga MF, van Londen M, Leaf DE, Nolte
IM, Navis G, Bakker SJL, de Borst MH and Gaillard C: C-terminal
fibroblast growth factor 23, iron deficiency, and mortality in
renal transplant recipients. J Am Soc Nephrol. 28:3639–3646.
2017.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Wolf M and White KE: Coupling fibroblast
growth factor 23 production and cleavage: Iron deficiency, rickets,
and kidney disease. Curr Opin Nephrol Hypertens. 23:411–419.
2014.PubMed/NCBI View Article : Google Scholar
|
|
36
|
McMahon S, Grondin F, McDonald PP, Richard
DE and Dubois CM: Hypoxia-enhanced expression of the proprotein
convertase furin is mediated by hypoxia-inducible factor-1: Impact
on the bioactivation of proproteins. J Biol Chem. 280:6561–6569.
2005.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Eisenga MF, De Jong MA, Van der Meer P,
Leaf DE, Huls G, Nolte IM, Gaillard C, Bakker SJL and De Borst MH:
Iron deficiency, elevated erythropoietin, fibroblast growth factor
23, and mortality in the general population of the Netherlands: A
cohort study. PLoS Med. 16(e1002818)2019.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Vieth JT and Lane DR: Anemia. Emerg Med
Clin North Am. 32:613–628. 2014.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Bryan LJ and Zakai NA: Why is my patient
anemic? Hematol Oncol Clin North Am. 26:205–230, vii.
2012.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Kido S, Fujihara M, Nomura K, Sasaki S,
Mukai R, Ohnishi R, Kaneko I, Segawa H, Tatsumi S, Izumi H, et al:
Molecular mechanisms of cadmium-induced fibroblast growth factor 23
upregulation in osteoblast-like cells. Toxicol Sci. 139:301–316.
2014.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Lewerin C, Ljunggren O, Nilsson-Ehle H,
Karlsson MK, Herlitz H, Lorentzon M, Ohlsson C and Mellstrom D: Low
serum iron is associated with high serum intact FGF23 in elderly
men: The Swedish MrOS study. Bone. 98:1–8. 2017.PubMed/NCBI View Article : Google Scholar
|
|
42
|
David V, Francis C and Babitt JL: Ironing
out the cross talk between FGF23 and inflammation. Am J Physiol
Renal Physiol. 312:F1–F8. 2017.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Ärnlöv J, Carlsson AC, Sundström J,
Ingelsson E, Larsson A, Lind L and Larsson TE: Serum FGF23 and risk
of cardiovascular events in relation to mineral metabolism and
cardiovascular pathology. Clin J Am Soc Nephrol. 8:781–786.
2013.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Faul C, Amaral AP, Oskouei B, Hu MC, Sloan
A, Isakova T, Gutierrez OM, Aguillon-Prada R, Lincoln J, Hare JM,
et al: FGF23 induces left ventricular hypertrophy. J Clin Invest.
121:4393–4408. 2011.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Silswal N, Touchberry CD, Daniel DR,
McCarthy DL, Zhang S, Andresen J, Stubbs JR and Wacker MJ: FGF23
directly impairs endothelium-dependent vasorelaxation by increasing
superoxide levels and reducing nitric oxide bioavailability. Am J
Physiol Endocrinol Metab. 307:E426–E436. 2014.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Smith ER, Tan SJ, Holt SG and Hewitson TD:
FGF23 is synthesised locally by renal tubules and activates
injury-primed fibroblasts. Sci Rep. 7(3345)2017.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Singh S, Grabner A, Yanucil C, Schramm K,
Czaya B, Krick S, Czaja MJ, Bartz R, Abraham R, Di Marco GS, et al:
Fibroblast growth factor 23 directly targets hepatocytes to promote
inflammation in chronic kidney disease. Kidney Int. 90:985–996.
2016.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Rossaint J, Oehmichen J, Van Aken H,
Reuter S, Pavenstadt HJ, Meersch M, Unruh M and Zarbock A: FGF23
signaling impairs neutrophil recruitment and host defense during
CKD. J Clin Invest. 126:962–974. 2016.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Corn PG, Wang F, McKeehan WL and Navone N:
Targeting fibroblast growth factor pathways in prostate cancer.
Clin Cancer Res. 19:5856–5866. 2013.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Turner N and Grose R: Fibroblast growth
factor signalling: From development to cancer. Nat Rev Cancer.
10:116–129. 2010.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Feng S, Wang J, Zhang Y, Creighton CJ and
Ittmann M: FGF23 promotes prostate cancer progression. Oncotarget.
6:17291–17301. 2015.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Okada M, Imamura K, Fuchigami T, Omae T,
Iida M, Nanishi F, Murakami M, Ohgushi H, Yao T, Fujita K and Ogawa
K: 2 cases of nonspecific multiple ulcers of the small intestine
associated with osteomalacia caused by long-term intravenous
administration of saccharated ferric oxide. Nihon Naika Gakkai
Zasshi. 71:1566–1572. 1982.PubMed/NCBI(In Japanese).
|
|
53
|
Shepshelovich D, Rozen-Zvi B, Avni T,
Gafter U and Gafter-Gvili A: Intravenous versus oral iron
supplementation for the treatment of anemia in CKD: An updated
systematic review and meta-analysis. Am J Kidney Dis. 68:677–690.
2016.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Fukao W, Hasuike Y, Yamakawa T, Toyoda K,
Aichi M, Masachika S, Kantou M, Takahishi SI, Iwasaki T, Yahiro M,
et al: Oral versus intravenous iron supplementation for the
treatment of iron deficiency anemia in patients on maintenance
hemodialysis-effect on fibroblast growth factor-23 metabolism. J
Ren Nutr. 28:270–277. 2018.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Taniguchi K and Kakuta H: Bixalomer, a
novel phosphate binder with a small swelling index, improves
hyperphosphatemia in chronic kidney disease rat. Eur J Pharmacol.
766:129–134. 2015.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Koiwa F, Yokoyama K, Fukagawa M, Terao A
and Akizawa T: Efficacy and safety of sucroferric oxyhydroxide
compared with sevelamer hydrochloride in Japanese haemodialysis
patients with hyperphosphataemia: A randomized, open-label,
multicentre, 12-week phase III study. Nephrology (Carlton).
22:293–300. 2017.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Covic AC, Floege J, Ketteler M, Sprague
SM, Lisk L, Rakov V and Rastogi A: Iron-related parameters in
dialysis patients treated with sucroferric oxyhydroxide. Nephrol
Dial Transplant. 32:1330–1338. 2017.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Shima H, Miya K, Okada K, Minakuchi J and
Kawashima S: Sucroferric oxyhydroxide decreases serum phosphorus
level and fibroblast growth factor 23 and improves renal anemia in
hemodialysis patients. BMC Res Notes. 11(363)2018.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Yang WC, Yang CS, Hou CC, Wu TH, Young EW
and Hsu CH: An open-label, crossover study of a new
phosphate-binding agent in haemodialysis patients: Ferric citrate.
Nephrol Dial Transplant. 17:265–270. 2002.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Lee CT, Wu IW, Chiang SS, Peng YS, Shu KH,
Wu MJ and Wu MS: Effect of oral ferric citrate on serum phosphorus
in hemodialysis patients: Multicenter, randomized, double-blind,
placebo-controlled study. J Nephrol. 28:105–113. 2015.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Maruyama N, Otsuki T, Yoshida Y, Nagura C,
Kitai M, Shibahara N, Tomita H, Maruyama T and Abe M: Ferric
citrate decreases fibroblast growth factor 23 and improves
erythropoietin responsiveness in hemodialysis patients. Am J
Nephrol. 47:406–414. 2018.PubMed/NCBI View Article : Google Scholar
|
|
62
|
National Clinical Guideline Centre (UK):
Anaemia Management in Chronic Kidney Disease: Partial Update 2015
(Internet). London: Royal College of Physicians (UK), Jun 2015.
https://www.ncbi.nlm.nih.gov/books/NBK299242/.
|
|
63
|
Babitt JL and Lin HY: Mechanisms of anemia
in CKD. J Am Soc Nephrol. 23:1631–1634. 2012.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Hinata A, Iijima M, Nakano Y, Sakamoto T
and Tomita M: Chemical characterization of rabbit alpha
2-macroglobulin. Chem Pharm Bull (Tokyo). 35:271–276.
1987.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Landau D, London L, Bandach I and Segev Y:
The hypoxia inducible factor/erythropoietin (EPO)/EPO receptor
pathway is disturbed in a rat model of chronic kidney disease
related anemia. PLoS One. 13(e0196684)2018.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Thomas S and Rampersad M: Anaemia in
diabetes. Acta diabetologica. 41 (Suppl 1):S13–S17. 2004.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Daryadel A, Bettoni C, Haider T, Imenez
Silva PH, Schnitzbauer U, Pastor-Arroyo EM, Wenger RH, Gassmann M
and Wagner CA: Erythropoietin stimulates fibroblast growth factor
23 (FGF23) in mice and men. Pflugers Arch. 470:1569–1582.
2018.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Hanudel MR, Eisenga MF, Rappaport M, Chua
K, Qiao B, Jung G, Gabayan V, Gales B, Ramos G, de Jong MA, et al:
Effects of erythropoietin on fibroblast growth factor 23 in mice
and humans. Nephrol Dial Transplant. 34:2057–2065. 2019.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Eisenga MF, Emans ME, van der Putten K,
Cramer MJ, Diepenbroek A, Velthuis BK, Doevendans PA, Verhaar MC,
Joles JA, Bakker SJL, et al: Epoetin Beta and C-terminal fibroblast
growth factor 23 in patients with chronic heart failure and chronic
kidney disease. J Am Heart Assoc. 8(e011130)2019.PubMed/NCBI View Article : Google Scholar
|
|
70
|
van der Putten K, Braam B, Jie KE and
Gaillard CA: Mechanisms of disease: Erythropoietin resistance in
patients with both heart and kidney failure. Nat Clin Pract
Nephrol. 4:47–57. 2008.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Goetz R, Nakada Y, Hu MC, Kurosu H, Wang
L, Nakatani T, Shi M, Eliseenkova AV, Razzaque MS, Moe OW, et al:
Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by
inhibiting FGF23-FGFR-Klotho complex formation. Proc Natl Acad Sci
USA. 107:407–412. 2010.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Courbebaisse M, Mehel H, Petit-Hoang C,
Ribeil JA, Sabbah L, Tuloup-Minguez V, Bergerat D, Arlet JB,
Stanislas A, Souberbielle JC, et al: Carboxy-terminal fragment of
fibroblast growth factor 23 induces heart hypertrophy in sickle
cell disease. Haematologica. 102:e33–e35. 2017.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Miikkulainen P, Högel H, Rantanen K, Suomi
T, Kouvonen P, Elo LL and Jaakkola PM: HIF prolyl hydroxylase PHD3
regulates translational machinery and glucose metabolism in clear
cell renal cell carcinoma. Cancer Metab. 5(5)2017.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Ivan M and Kaelin WG Jr: The EGLN-HIF
O2-sensing system: Multiple inputs and feedbacks. Mol
Cell. 66:772–779. 2017.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Pugh CW and Ratcliffe PJ: New horizons in
hypoxia signaling pathways. Exp Cell Res. 356:116–121.
2017.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Prabhakar NR and Semenza GL: Oxygen
sensing and homeostasis. Physiology (Bethesda). 30:340–348.
2015.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Maxwell PH and Eckardt KU: HIF prolyl
hydroxylase inhibitors for the treatment of renal anaemia and
beyond. Nat Rev Nephrol. 12:157–168. 2016.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Wyatt CM and Drüeke TB: HIF stabilization
by prolyl hydroxylase inhibitors for the treatment of anemia in
chronic kidney disease. Kidney Int. 90:923–925. 2016.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Kanbay M, Vervloet M, Cozzolino M,
Siriopol D, Covic A, Goldsmith D and Solak Y: Novel faces of
fibroblast growth factor 23 (FGF23): Iron deficiency, inflammation,
insulin resistance, left ventricular hypertrophy, proteinuria and
acute kidney injury. Calcif Tissue Int. 100:217–228.
2017.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Agoro R, Ni P, Noonan ML and White KE:
Osteocytic FGF23 and its kidney function. Front Endocrinol
(Lausanne). 11(592)2020.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Provenzano R, Besarab A, Sun CH, Diamond
SA, Durham JH, Cangiano JL, Aiello JR, Novak JE, Lee T, Leong R, et
al: Oral hypoxia-inducible factor Prolyl hydroxylase inhibitor
roxadustat (FG-4592) for the treatment of anemia in patients with
CKD. Clin J Am Soc Nephrol. 11:982–991. 2016.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Hanudel MR, Laster M and Salusky IB:
Non-renal-Related Mechanisms of FGF23 Pathophysiology. Curr
Osteoporos Rep. 16:724–729. 2018.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Wheeler JA and Clinkenbeard EL: Regulation
of fibroblast growth factor 23 by iron, EPO, and HIF. Curr Mol Biol
Rep. 5:8–17. 2019.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Zhang Q, Doucet M, Tomlinson RE, Han X,
Quarles LD, Collins MT and Clemens TL: The hypoxia-inducible
factor-1α activates ectopic production of fibroblast growth factor
23 in tumor-induced osteomalacia. Bone Res. 4(16011)2016.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Babitt JL and Sitara D: Crosstalk between
fibroblast growth factor 23, iron, erythropoietin, and inflammation
in kidney disease. Curr Opin Nephrol Hypertens. 28:304–310.
2019.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Khozeymeh F, Mortazavi M, Khalighinejad N,
Akhavankhaleghi M and Alikhani M: Salivary levels of interleukin-6
and tumor necrosis factor-α in patients undergoing hemodialysis.
Dent Res J (Isfahan). 13:69–73. 2016.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Wu J, Guo N, Chen X and Xing C:
Coexistence of micro-inflammatory and macrophage phenotype
abnormalities in chronic kidney disease. Int J Clin Exp Pathol.
13:317–323. 2020.PubMed/NCBI
|
|
88
|
Kim IY, Kim JH, Kim MJ, Lee DW, Hwang CG,
Han M, Rhee H, Song SH, Seong EY and Lee SB: Low
1,25-dihydroxyvitamin D level is associated with erythropoietin
deficiency and endogenous erythropoietin resistance in patients
with chronic kidney disease. Int Urol Nephrol. 50:2255–2260.
2018.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Icardi A, Paoletti E, De Nicola L,
Mazzaferro S, Russo R and Cozzolino M: Renal anaemia and EPO
hyporesponsiveness associated with vitamin D deficiency: The
potential role of inflammation. Nephrol Dial Transplant.
28:1672–1679. 2013.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Lee B, Kwon E, Kim Y, Kim JH, Son SW, Lee
JK, Kim DW, Sohn J, Kim TH and Ji JD: 1α,25-Dihydroxyvitamin D3
upregulates HIF-1 and TREM-1 via mTOR signaling. Immunol Lett.
163:14–21. 2015.PubMed/NCBI View Article : Google Scholar
|
|
91
|
van Vuren AJ, Gaillard C, Eisenga MF, van
Wijk R and van Beers EJ: The EPO-FGF23 signaling pathway in
erythroid progenitor cells: Opening a new area of research. Front
Physiol. 10(304)2019.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Yousaf F and Spinowitz B:
Hypoxia-inducible factor stabilizers: A new avenue for reducing BP
while helping hemoglobin? Curr Hypertens Rep. 18(23)2016.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Honda H, Michihata T, Shishido K,
Takahashi K, Takahashi G, Hosaka N, Ikeda M, Sanada D and Shibata
T: High fibroblast growth factor 23 levels are associated with
decreased ferritin levels and increased intravenous iron doses in
hemodialysis patients. PLoS One. 12(e0176984)2017.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Artunc F and Risler T: Serum
erythropoietin concentrations and responses to anaemia in patients
with or without chronic kidney disease. Nephrol Dial Transplant.
22:2900–2908. 2007.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Smith ER, Cai MM, McMahon LP and Holt SG:
Biological variability of plasma intact and C-terminal FGF23
measurements. J Clin Endocrinol Metab. 97:3357–3365.
2012.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Shimada T, Urakawa I, Isakova T, Yamazaki
Y, Epstein M, Wesseling-Perry K, Wolf M, Salusky IB and Jüppner H:
Circulating fibroblast growth factor 23 in patients with end-stage
renal disease treated by peritoneal dialysis is intact and
biologically active. J Clin Endocrinol Metab. 95:578–585.
2010.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Kalyanasundaram A and Fedorov VV:
Fibroblast growth factor 23: A novel key to find hidden substrates
of atrial fibrillation? Circulation. 130:295–297. 2014.PubMed/NCBI View Article : Google Scholar
|