Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
October-2021 Volume 22 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2021 Volume 22 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Crosstalk of fibroblast growth factor 23 and anemia‑related factors during the development and progression of CKD (Review)

  • Authors:
    • Rui Zhang
    • Song-Yan Wang
    • Fan Yang
    • Shuang Ma
    • Xu Lu
    • Chao Kan
    • Jing-Bin Zhang
  • View Affiliations / Copyright

    Affiliations: Department of Nephrology, Jilin Province People's Hospital, Changchun, Jilin 130021, P.R. China, Department of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130000, P.R. China
  • Article Number: 1159
    |
    Published online on: August 11, 2021
       https://doi.org/10.3892/etm.2021.10593
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Fibroblast growth factor 23 (FGF23) plays an important role in the development of chronic kidney disease‑mineral bone disorder (CKD‑MBD). Abnormally elevated levels of 1,25‑dihydroxyvitamin D cause osteocytes to secrete FGF23, which subsequently induces phosphaturia. Recent studies have reported that iron deficiency, erythropoietin (EPO) and hypoxia regulate the pathways responsible for FGF23 production. However, the molecular mechanisms underlying the interactions between FGF23 and anemia‑related factors are not yet fully understood. The present review discusses the associations between FGF23, iron, EPO and hypoxia‑inducible factors (HIFs), and their impact on FGF23 bioactivity, focusing on recent studies. Collectively, these findings propose interactions between FGF23 gene expression and anemia‑related factors, including iron deficiency, EPO and HIFs. Taken together, these results suggest that FGF23 bioactivity is closely associated with the occurrence of CKD‑related anemia and CKD‑MBD.
View Figures

Figure 1

View References

1 

Isakova T, Wahl P, Vargas GS, Gutiérrez OM, Scialla J, Xie H, Appleby D, Nessel L, Bellovich K, Chen J, et al: Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 79:1370–1378. 2011.PubMed/NCBI View Article : Google Scholar

2 

Larsson T, Nisbeth U, Ljunggren O, Juppner H and Jonsson KB: Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int. 64:2272–2279. 2003.PubMed/NCBI View Article : Google Scholar

3 

Gutierrez O, Isakova T, Rhee E, Shah A, Holmes J, Collerone G, Juppner H and Wolf M: Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol. 16:2205–2215. 2005.PubMed/NCBI View Article : Google Scholar

4 

Portale AA, Wolf M, Jüppner H, Messinger S, Kumar J, Wesseling-Perry K, Schwartz GJ, Furth SL, Warady BA and Salusky IB: Disordered FGF23 and mineral metabolism in children with CKD. Clin J Am Soc Nephrol. 9:344–353. 2014.PubMed/NCBI View Article : Google Scholar

5 

Han X and Quarles LD: Multiple faces of fibroblast growth factor-23. Curr Opin Nephrol Hypertens. 25:333–342. 2016.PubMed/NCBI View Article : Google Scholar

6 

Farrow EG, Yu X, Summers LJ, Davis SI, Fleet JC, Allen MR, Robling AG, Stayrook KR, Jideonwo V, Magers MJ, et al: Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice. Proc Natl Acad Sci USA. 108:E1146–E1155. 2011.PubMed/NCBI View Article : Google Scholar

7 

Clinkenbeard EL, Farrow EG, Summers LJ, Cass TA, Roberts JL, Bayt CA, Lahm T, Albrecht M, Allen MR, Peacock M and White KE: Neonatal iron deficiency causes abnormal phosphate metabolism by elevating FGF23 in normal and ADHR mice. J Bone Miner Res. 29:361–369. 2014.PubMed/NCBI View Article : Google Scholar

8 

David V, Martin A, Isakova T, Spaulding C, Qi L, Ramirez V, Zumbrennen-Bullough KB, Sun CC, Lin HY, Babitt JL and Wolf M: Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int. 89:135–146. 2016.PubMed/NCBI View Article : Google Scholar

9 

Hanudel MR, Chua K, Rappaport M, Gabayan V, Valore E, Goltzman D, Ganz T, Nemeth E and Salusky IB: Effects of dietary iron intake and chronic kidney disease on fibroblast growth factor 23 metabolism in wild-type and hepcidin knockout mice. Am J Physiol Renal Physiol. 311:F1369–F1377. 2016.PubMed/NCBI View Article : Google Scholar

10 

Clinkenbeard EL, Hanudel MR, Stayrook KR, Appaiah HN, Farrow EG, Cass TA, Summers LJ, Ip CS, Hum JM, Thomas JC, et al: Erythropoietin stimulates murine and human fibroblast growth factor-23, revealing novel roles for bone and bone marrow. Haematologica. 102:e427–e430. 2017.PubMed/NCBI View Article : Google Scholar

11 

Rabadi S, Udo I, Leaf DE, Waikar SS and Christov M: Acute blood loss stimulates fibroblast growth factor 23 production. Am J Physiol Renal Physiol. 314:F132–F139. 2018.PubMed/NCBI View Article : Google Scholar

12 

Flamme I, Ellinghaus P, Urrego D and Krüger T: FGF23 expression in rodents is directly induced via erythropoietin after inhibition of hypoxia inducible factor proline hydroxylase. PLoS One. 12(e0186979)2017.PubMed/NCBI View Article : Google Scholar

13 

Toro L, Barrientos V, León P, Rojas M, Gonzalez M, González-Ibáñez A, Illanes S, Sugikawa K, Abarzua N, Bascunan C, et al: Erythropoietin induces bone marrow and plasma fibroblast growth factor 23 during acute kidney injury. Kidney Int. 93:1131–1141. 2018.PubMed/NCBI View Article : Google Scholar

14 

Souma N, Isakova T, Lipiszko D, Sacco RL, Elkind MS, DeRosa JT, Silverberg SJ, Mendez AJ, Dong C, Wright CB, et al: Fibroblast growth factor 23 and cause-specific mortality in the general population: The Northern Manhattan Study. J Clin Endocrinol Metab. 101:3779–3786. 2016.PubMed/NCBI View Article : Google Scholar

15 

Gutiérrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, Smith K, Lee H, Thadhani R, Jüppner H and Wolf M: Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 359:584–592. 2008.PubMed/NCBI View Article : Google Scholar

16 

Baia LC, Humalda JK, Vervloet MG, Navis G, Bakker SJ and de Borst MH: NIGRAM Consortium. Fibroblast growth factor 23 and cardiovascular mortality after kidney transplantation. Clin J Am Soc Nephrol. 8:1968–1978. 2013.PubMed/NCBI View Article : Google Scholar

17 

Isakova T, Xie H, Yang W, Xie D, Anderson AH, Scialla J, Wahl P, Gutierrez OM, Steigerwalt S, He J, et al: Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. Jama. 305:2432–2439. 2011.PubMed/NCBI View Article : Google Scholar

18 

Szczech LA, Barnhart HX, Inrig JK, Reddan DN, Sapp S, Califf RM, Patel UD and Singh AK: Secondary analysis of the CHOIR trial epoetin-alpha dose and achieved hemoglobin outcomes. Kidney Int. 74:791–798. 2008.PubMed/NCBI View Article : Google Scholar

19 

Lestz RM, Fivush BA and Atkinson MA: Association of higher erythropoiesis stimulating agent dose and mortality in children on dialysis. Pediatr Nephrol. 29:2021–2028. 2014.PubMed/NCBI View Article : Google Scholar

20 

Valls J, Cambray S, Pérez-Guallar C, Bozic M, Bermúdez-López M, Fernández E, Betriu À, Rodríguez I and Valdivielso JM: Association of candidate gene polymorphisms with chronic kidney disease: Results of a case-control analysis in the Nefrona Cohort. Front Genet. 10(118)2019.PubMed/NCBI View Article : Google Scholar

21 

Agoro R, Montagna A, Goetz R, Aligbe O, Singh G, Coe LM, Mohammadi M, Rivella S and Sitara D: Inhibition of fibroblast growth factor 23 (FGF23) signaling rescues renal anemia. FASEB J. 32:3752–3764. 2018.PubMed/NCBI View Article : Google Scholar

22 

Geissler C and Singh M: Iron, meat and health. Nutrients. 3:283–316. 2011.PubMed/NCBI View Article : Google Scholar

23 

Brannon PM and Taylor CL: Iron supplementation during pregnancy and infancy: Uncertainties and implications for research and policy. Nutrients. 9(1327)2017.PubMed/NCBI View Article : Google Scholar

24 

Müller O and Krawinkel M: Malnutrition and health in developing countries. CMAJ. 173:279–286. 2005.PubMed/NCBI View Article : Google Scholar

25 

Skalicky A, Meyers AF, Adams WG, Yang Z, Cook JT and Frank DA: Child food insecurity and iron deficiency anemia in low-income infants and toddlers in the United States. Matern Child Health J. 10:177–185. 2006.PubMed/NCBI View Article : Google Scholar

26 

Díaz-Castro J, López-Frías MR, Campos MS, López-Frías M, Alférez MJ, Nestares T, Ojeda ML and López-Aliaga I: Severe nutritional iron-deficiency anaemia has a negative effect on some bone turnover biomarkers in rats. Eur J Nutr. 51:241–247. 2012.PubMed/NCBI View Article : Google Scholar

27 

Cartwright GE, Lauritsen MA, Humphreys S, Jones PJ, Merrill IM and Wintrobe MM: The anemia associated with chronic infection. Science. 103:72–73. 1946.PubMed/NCBI

28 

Cartwright GE, Lauritsen MA, Jones PJ, Merrill IM and Wintrobe MM: The anemia of infection; hypoferremia, hypercupremia, and alterations in porphyrin metabolism in patients. J Clin Invest. 25:65–80. 1946.PubMed/NCBI

29 

Qamar K, Saboor M, Qudsia F, Khosa SM and Moinuddin Usman M: Malabsorption of iron as a cause of iron deficiency anemia in postmenopausal women. Pak J Med Sci. 31:304–308. 2015.PubMed/NCBI View Article : Google Scholar

30 

Filmann N, Rey J, Schneeweiss S, Ardizzone S, Bager P, Bergamaschi G, Koutroubakis I, Lindgren S, Morena Fde L, Moum B, et al: Prevalence of anemia in inflammatory bowel diseases in european countries: A systematic review and individual patient data meta-analysis. Inflamm Bowel Dis. 20:936–945. 2014.PubMed/NCBI View Article : Google Scholar

31 

Gotloib L, Silverberg D, Fudin R and Shostak A: Iron deficiency is a common cause of anemia in chronic kidney disease and can often be corrected with intravenous iron. J Nephrol. 19:161–167. 2006.PubMed/NCBI

32 

Lankhorst CE and Wish JB: Anemia in renal disease: Diagnosis and management. Blood Rev. 24:39–47. 2010.PubMed/NCBI View Article : Google Scholar

33 

Mehta R, Cai X, Hodakowski A, Lee J, Leonard M, Ricardo A, Chen J, Hamm L, Sondheimer J, Dobre M, et al: Fibroblast growth factor 23 and anemia in the chronic renal insufficiency cohort study. Clin J Am Soc Nephrol. 12:1795–1803. 2017.PubMed/NCBI View Article : Google Scholar

34 

Eisenga MF, van Londen M, Leaf DE, Nolte IM, Navis G, Bakker SJL, de Borst MH and Gaillard C: C-terminal fibroblast growth factor 23, iron deficiency, and mortality in renal transplant recipients. J Am Soc Nephrol. 28:3639–3646. 2017.PubMed/NCBI View Article : Google Scholar

35 

Wolf M and White KE: Coupling fibroblast growth factor 23 production and cleavage: Iron deficiency, rickets, and kidney disease. Curr Opin Nephrol Hypertens. 23:411–419. 2014.PubMed/NCBI View Article : Google Scholar

36 

McMahon S, Grondin F, McDonald PP, Richard DE and Dubois CM: Hypoxia-enhanced expression of the proprotein convertase furin is mediated by hypoxia-inducible factor-1: Impact on the bioactivation of proproteins. J Biol Chem. 280:6561–6569. 2005.PubMed/NCBI View Article : Google Scholar

37 

Eisenga MF, De Jong MA, Van der Meer P, Leaf DE, Huls G, Nolte IM, Gaillard C, Bakker SJL and De Borst MH: Iron deficiency, elevated erythropoietin, fibroblast growth factor 23, and mortality in the general population of the Netherlands: A cohort study. PLoS Med. 16(e1002818)2019.PubMed/NCBI View Article : Google Scholar

38 

Vieth JT and Lane DR: Anemia. Emerg Med Clin North Am. 32:613–628. 2014.PubMed/NCBI View Article : Google Scholar

39 

Bryan LJ and Zakai NA: Why is my patient anemic? Hematol Oncol Clin North Am. 26:205–230, vii. 2012.PubMed/NCBI View Article : Google Scholar

40 

Kido S, Fujihara M, Nomura K, Sasaki S, Mukai R, Ohnishi R, Kaneko I, Segawa H, Tatsumi S, Izumi H, et al: Molecular mechanisms of cadmium-induced fibroblast growth factor 23 upregulation in osteoblast-like cells. Toxicol Sci. 139:301–316. 2014.PubMed/NCBI View Article : Google Scholar

41 

Lewerin C, Ljunggren O, Nilsson-Ehle H, Karlsson MK, Herlitz H, Lorentzon M, Ohlsson C and Mellstrom D: Low serum iron is associated with high serum intact FGF23 in elderly men: The Swedish MrOS study. Bone. 98:1–8. 2017.PubMed/NCBI View Article : Google Scholar

42 

David V, Francis C and Babitt JL: Ironing out the cross talk between FGF23 and inflammation. Am J Physiol Renal Physiol. 312:F1–F8. 2017.PubMed/NCBI View Article : Google Scholar

43 

Ärnlöv J, Carlsson AC, Sundström J, Ingelsson E, Larsson A, Lind L and Larsson TE: Serum FGF23 and risk of cardiovascular events in relation to mineral metabolism and cardiovascular pathology. Clin J Am Soc Nephrol. 8:781–786. 2013.PubMed/NCBI View Article : Google Scholar

44 

Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, Gutierrez OM, Aguillon-Prada R, Lincoln J, Hare JM, et al: FGF23 induces left ventricular hypertrophy. J Clin Invest. 121:4393–4408. 2011.PubMed/NCBI View Article : Google Scholar

45 

Silswal N, Touchberry CD, Daniel DR, McCarthy DL, Zhang S, Andresen J, Stubbs JR and Wacker MJ: FGF23 directly impairs endothelium-dependent vasorelaxation by increasing superoxide levels and reducing nitric oxide bioavailability. Am J Physiol Endocrinol Metab. 307:E426–E436. 2014.PubMed/NCBI View Article : Google Scholar

46 

Smith ER, Tan SJ, Holt SG and Hewitson TD: FGF23 is synthesised locally by renal tubules and activates injury-primed fibroblasts. Sci Rep. 7(3345)2017.PubMed/NCBI View Article : Google Scholar

47 

Singh S, Grabner A, Yanucil C, Schramm K, Czaya B, Krick S, Czaja MJ, Bartz R, Abraham R, Di Marco GS, et al: Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney Int. 90:985–996. 2016.PubMed/NCBI View Article : Google Scholar

48 

Rossaint J, Oehmichen J, Van Aken H, Reuter S, Pavenstadt HJ, Meersch M, Unruh M and Zarbock A: FGF23 signaling impairs neutrophil recruitment and host defense during CKD. J Clin Invest. 126:962–974. 2016.PubMed/NCBI View Article : Google Scholar

49 

Corn PG, Wang F, McKeehan WL and Navone N: Targeting fibroblast growth factor pathways in prostate cancer. Clin Cancer Res. 19:5856–5866. 2013.PubMed/NCBI View Article : Google Scholar

50 

Turner N and Grose R: Fibroblast growth factor signalling: From development to cancer. Nat Rev Cancer. 10:116–129. 2010.PubMed/NCBI View Article : Google Scholar

51 

Feng S, Wang J, Zhang Y, Creighton CJ and Ittmann M: FGF23 promotes prostate cancer progression. Oncotarget. 6:17291–17301. 2015.PubMed/NCBI View Article : Google Scholar

52 

Okada M, Imamura K, Fuchigami T, Omae T, Iida M, Nanishi F, Murakami M, Ohgushi H, Yao T, Fujita K and Ogawa K: 2 cases of nonspecific multiple ulcers of the small intestine associated with osteomalacia caused by long-term intravenous administration of saccharated ferric oxide. Nihon Naika Gakkai Zasshi. 71:1566–1572. 1982.PubMed/NCBI(In Japanese).

53 

Shepshelovich D, Rozen-Zvi B, Avni T, Gafter U and Gafter-Gvili A: Intravenous versus oral iron supplementation for the treatment of anemia in CKD: An updated systematic review and meta-analysis. Am J Kidney Dis. 68:677–690. 2016.PubMed/NCBI View Article : Google Scholar

54 

Fukao W, Hasuike Y, Yamakawa T, Toyoda K, Aichi M, Masachika S, Kantou M, Takahishi SI, Iwasaki T, Yahiro M, et al: Oral versus intravenous iron supplementation for the treatment of iron deficiency anemia in patients on maintenance hemodialysis-effect on fibroblast growth factor-23 metabolism. J Ren Nutr. 28:270–277. 2018.PubMed/NCBI View Article : Google Scholar

55 

Taniguchi K and Kakuta H: Bixalomer, a novel phosphate binder with a small swelling index, improves hyperphosphatemia in chronic kidney disease rat. Eur J Pharmacol. 766:129–134. 2015.PubMed/NCBI View Article : Google Scholar

56 

Koiwa F, Yokoyama K, Fukagawa M, Terao A and Akizawa T: Efficacy and safety of sucroferric oxyhydroxide compared with sevelamer hydrochloride in Japanese haemodialysis patients with hyperphosphataemia: A randomized, open-label, multicentre, 12-week phase III study. Nephrology (Carlton). 22:293–300. 2017.PubMed/NCBI View Article : Google Scholar

57 

Covic AC, Floege J, Ketteler M, Sprague SM, Lisk L, Rakov V and Rastogi A: Iron-related parameters in dialysis patients treated with sucroferric oxyhydroxide. Nephrol Dial Transplant. 32:1330–1338. 2017.PubMed/NCBI View Article : Google Scholar

58 

Shima H, Miya K, Okada K, Minakuchi J and Kawashima S: Sucroferric oxyhydroxide decreases serum phosphorus level and fibroblast growth factor 23 and improves renal anemia in hemodialysis patients. BMC Res Notes. 11(363)2018.PubMed/NCBI View Article : Google Scholar

59 

Yang WC, Yang CS, Hou CC, Wu TH, Young EW and Hsu CH: An open-label, crossover study of a new phosphate-binding agent in haemodialysis patients: Ferric citrate. Nephrol Dial Transplant. 17:265–270. 2002.PubMed/NCBI View Article : Google Scholar

60 

Lee CT, Wu IW, Chiang SS, Peng YS, Shu KH, Wu MJ and Wu MS: Effect of oral ferric citrate on serum phosphorus in hemodialysis patients: Multicenter, randomized, double-blind, placebo-controlled study. J Nephrol. 28:105–113. 2015.PubMed/NCBI View Article : Google Scholar

61 

Maruyama N, Otsuki T, Yoshida Y, Nagura C, Kitai M, Shibahara N, Tomita H, Maruyama T and Abe M: Ferric citrate decreases fibroblast growth factor 23 and improves erythropoietin responsiveness in hemodialysis patients. Am J Nephrol. 47:406–414. 2018.PubMed/NCBI View Article : Google Scholar

62 

National Clinical Guideline Centre (UK): Anaemia Management in Chronic Kidney Disease: Partial Update 2015 (Internet). London: Royal College of Physicians (UK), Jun 2015. https://www.ncbi.nlm.nih.gov/books/NBK299242/.

63 

Babitt JL and Lin HY: Mechanisms of anemia in CKD. J Am Soc Nephrol. 23:1631–1634. 2012.PubMed/NCBI View Article : Google Scholar

64 

Hinata A, Iijima M, Nakano Y, Sakamoto T and Tomita M: Chemical characterization of rabbit alpha 2-macroglobulin. Chem Pharm Bull (Tokyo). 35:271–276. 1987.PubMed/NCBI View Article : Google Scholar

65 

Landau D, London L, Bandach I and Segev Y: The hypoxia inducible factor/erythropoietin (EPO)/EPO receptor pathway is disturbed in a rat model of chronic kidney disease related anemia. PLoS One. 13(e0196684)2018.PubMed/NCBI View Article : Google Scholar

66 

Thomas S and Rampersad M: Anaemia in diabetes. Acta diabetologica. 41 (Suppl 1):S13–S17. 2004.PubMed/NCBI View Article : Google Scholar

67 

Daryadel A, Bettoni C, Haider T, Imenez Silva PH, Schnitzbauer U, Pastor-Arroyo EM, Wenger RH, Gassmann M and Wagner CA: Erythropoietin stimulates fibroblast growth factor 23 (FGF23) in mice and men. Pflugers Arch. 470:1569–1582. 2018.PubMed/NCBI View Article : Google Scholar

68 

Hanudel MR, Eisenga MF, Rappaport M, Chua K, Qiao B, Jung G, Gabayan V, Gales B, Ramos G, de Jong MA, et al: Effects of erythropoietin on fibroblast growth factor 23 in mice and humans. Nephrol Dial Transplant. 34:2057–2065. 2019.PubMed/NCBI View Article : Google Scholar

69 

Eisenga MF, Emans ME, van der Putten K, Cramer MJ, Diepenbroek A, Velthuis BK, Doevendans PA, Verhaar MC, Joles JA, Bakker SJL, et al: Epoetin Beta and C-terminal fibroblast growth factor 23 in patients with chronic heart failure and chronic kidney disease. J Am Heart Assoc. 8(e011130)2019.PubMed/NCBI View Article : Google Scholar

70 

van der Putten K, Braam B, Jie KE and Gaillard CA: Mechanisms of disease: Erythropoietin resistance in patients with both heart and kidney failure. Nat Clin Pract Nephrol. 4:47–57. 2008.PubMed/NCBI View Article : Google Scholar

71 

Goetz R, Nakada Y, Hu MC, Kurosu H, Wang L, Nakatani T, Shi M, Eliseenkova AV, Razzaque MS, Moe OW, et al: Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-Klotho complex formation. Proc Natl Acad Sci USA. 107:407–412. 2010.PubMed/NCBI View Article : Google Scholar

72 

Courbebaisse M, Mehel H, Petit-Hoang C, Ribeil JA, Sabbah L, Tuloup-Minguez V, Bergerat D, Arlet JB, Stanislas A, Souberbielle JC, et al: Carboxy-terminal fragment of fibroblast growth factor 23 induces heart hypertrophy in sickle cell disease. Haematologica. 102:e33–e35. 2017.PubMed/NCBI View Article : Google Scholar

73 

Miikkulainen P, Högel H, Rantanen K, Suomi T, Kouvonen P, Elo LL and Jaakkola PM: HIF prolyl hydroxylase PHD3 regulates translational machinery and glucose metabolism in clear cell renal cell carcinoma. Cancer Metab. 5(5)2017.PubMed/NCBI View Article : Google Scholar

74 

Ivan M and Kaelin WG Jr: The EGLN-HIF O2-sensing system: Multiple inputs and feedbacks. Mol Cell. 66:772–779. 2017.PubMed/NCBI View Article : Google Scholar

75 

Pugh CW and Ratcliffe PJ: New horizons in hypoxia signaling pathways. Exp Cell Res. 356:116–121. 2017.PubMed/NCBI View Article : Google Scholar

76 

Prabhakar NR and Semenza GL: Oxygen sensing and homeostasis. Physiology (Bethesda). 30:340–348. 2015.PubMed/NCBI View Article : Google Scholar

77 

Maxwell PH and Eckardt KU: HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond. Nat Rev Nephrol. 12:157–168. 2016.PubMed/NCBI View Article : Google Scholar

78 

Wyatt CM and Drüeke TB: HIF stabilization by prolyl hydroxylase inhibitors for the treatment of anemia in chronic kidney disease. Kidney Int. 90:923–925. 2016.PubMed/NCBI View Article : Google Scholar

79 

Kanbay M, Vervloet M, Cozzolino M, Siriopol D, Covic A, Goldsmith D and Solak Y: Novel faces of fibroblast growth factor 23 (FGF23): Iron deficiency, inflammation, insulin resistance, left ventricular hypertrophy, proteinuria and acute kidney injury. Calcif Tissue Int. 100:217–228. 2017.PubMed/NCBI View Article : Google Scholar

80 

Agoro R, Ni P, Noonan ML and White KE: Osteocytic FGF23 and its kidney function. Front Endocrinol (Lausanne). 11(592)2020.PubMed/NCBI View Article : Google Scholar

81 

Provenzano R, Besarab A, Sun CH, Diamond SA, Durham JH, Cangiano JL, Aiello JR, Novak JE, Lee T, Leong R, et al: Oral hypoxia-inducible factor Prolyl hydroxylase inhibitor roxadustat (FG-4592) for the treatment of anemia in patients with CKD. Clin J Am Soc Nephrol. 11:982–991. 2016.PubMed/NCBI View Article : Google Scholar

82 

Hanudel MR, Laster M and Salusky IB: Non-renal-Related Mechanisms of FGF23 Pathophysiology. Curr Osteoporos Rep. 16:724–729. 2018.PubMed/NCBI View Article : Google Scholar

83 

Wheeler JA and Clinkenbeard EL: Regulation of fibroblast growth factor 23 by iron, EPO, and HIF. Curr Mol Biol Rep. 5:8–17. 2019.PubMed/NCBI View Article : Google Scholar

84 

Zhang Q, Doucet M, Tomlinson RE, Han X, Quarles LD, Collins MT and Clemens TL: The hypoxia-inducible factor-1α activates ectopic production of fibroblast growth factor 23 in tumor-induced osteomalacia. Bone Res. 4(16011)2016.PubMed/NCBI View Article : Google Scholar

85 

Babitt JL and Sitara D: Crosstalk between fibroblast growth factor 23, iron, erythropoietin, and inflammation in kidney disease. Curr Opin Nephrol Hypertens. 28:304–310. 2019.PubMed/NCBI View Article : Google Scholar

86 

Khozeymeh F, Mortazavi M, Khalighinejad N, Akhavankhaleghi M and Alikhani M: Salivary levels of interleukin-6 and tumor necrosis factor-α in patients undergoing hemodialysis. Dent Res J (Isfahan). 13:69–73. 2016.PubMed/NCBI View Article : Google Scholar

87 

Wu J, Guo N, Chen X and Xing C: Coexistence of micro-inflammatory and macrophage phenotype abnormalities in chronic kidney disease. Int J Clin Exp Pathol. 13:317–323. 2020.PubMed/NCBI

88 

Kim IY, Kim JH, Kim MJ, Lee DW, Hwang CG, Han M, Rhee H, Song SH, Seong EY and Lee SB: Low 1,25-dihydroxyvitamin D level is associated with erythropoietin deficiency and endogenous erythropoietin resistance in patients with chronic kidney disease. Int Urol Nephrol. 50:2255–2260. 2018.PubMed/NCBI View Article : Google Scholar

89 

Icardi A, Paoletti E, De Nicola L, Mazzaferro S, Russo R and Cozzolino M: Renal anaemia and EPO hyporesponsiveness associated with vitamin D deficiency: The potential role of inflammation. Nephrol Dial Transplant. 28:1672–1679. 2013.PubMed/NCBI View Article : Google Scholar

90 

Lee B, Kwon E, Kim Y, Kim JH, Son SW, Lee JK, Kim DW, Sohn J, Kim TH and Ji JD: 1α,25-Dihydroxyvitamin D3 upregulates HIF-1 and TREM-1 via mTOR signaling. Immunol Lett. 163:14–21. 2015.PubMed/NCBI View Article : Google Scholar

91 

van Vuren AJ, Gaillard C, Eisenga MF, van Wijk R and van Beers EJ: The EPO-FGF23 signaling pathway in erythroid progenitor cells: Opening a new area of research. Front Physiol. 10(304)2019.PubMed/NCBI View Article : Google Scholar

92 

Yousaf F and Spinowitz B: Hypoxia-inducible factor stabilizers: A new avenue for reducing BP while helping hemoglobin? Curr Hypertens Rep. 18(23)2016.PubMed/NCBI View Article : Google Scholar

93 

Honda H, Michihata T, Shishido K, Takahashi K, Takahashi G, Hosaka N, Ikeda M, Sanada D and Shibata T: High fibroblast growth factor 23 levels are associated with decreased ferritin levels and increased intravenous iron doses in hemodialysis patients. PLoS One. 12(e0176984)2017.PubMed/NCBI View Article : Google Scholar

94 

Artunc F and Risler T: Serum erythropoietin concentrations and responses to anaemia in patients with or without chronic kidney disease. Nephrol Dial Transplant. 22:2900–2908. 2007.PubMed/NCBI View Article : Google Scholar

95 

Smith ER, Cai MM, McMahon LP and Holt SG: Biological variability of plasma intact and C-terminal FGF23 measurements. J Clin Endocrinol Metab. 97:3357–3365. 2012.PubMed/NCBI View Article : Google Scholar

96 

Shimada T, Urakawa I, Isakova T, Yamazaki Y, Epstein M, Wesseling-Perry K, Wolf M, Salusky IB and Jüppner H: Circulating fibroblast growth factor 23 in patients with end-stage renal disease treated by peritoneal dialysis is intact and biologically active. J Clin Endocrinol Metab. 95:578–585. 2010.PubMed/NCBI View Article : Google Scholar

97 

Kalyanasundaram A and Fedorov VV: Fibroblast growth factor 23: A novel key to find hidden substrates of atrial fibrillation? Circulation. 130:295–297. 2014.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang R, Wang S, Yang F, Ma S, Lu X, Kan C and Zhang J: Crosstalk of fibroblast growth factor 23 and anemia‑related factors during the development and progression of CKD (Review). Exp Ther Med 22: 1159, 2021.
APA
Zhang, R., Wang, S., Yang, F., Ma, S., Lu, X., Kan, C., & Zhang, J. (2021). Crosstalk of fibroblast growth factor 23 and anemia‑related factors during the development and progression of CKD (Review). Experimental and Therapeutic Medicine, 22, 1159. https://doi.org/10.3892/etm.2021.10593
MLA
Zhang, R., Wang, S., Yang, F., Ma, S., Lu, X., Kan, C., Zhang, J."Crosstalk of fibroblast growth factor 23 and anemia‑related factors during the development and progression of CKD (Review)". Experimental and Therapeutic Medicine 22.4 (2021): 1159.
Chicago
Zhang, R., Wang, S., Yang, F., Ma, S., Lu, X., Kan, C., Zhang, J."Crosstalk of fibroblast growth factor 23 and anemia‑related factors during the development and progression of CKD (Review)". Experimental and Therapeutic Medicine 22, no. 4 (2021): 1159. https://doi.org/10.3892/etm.2021.10593
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang R, Wang S, Yang F, Ma S, Lu X, Kan C and Zhang J: Crosstalk of fibroblast growth factor 23 and anemia‑related factors during the development and progression of CKD (Review). Exp Ther Med 22: 1159, 2021.
APA
Zhang, R., Wang, S., Yang, F., Ma, S., Lu, X., Kan, C., & Zhang, J. (2021). Crosstalk of fibroblast growth factor 23 and anemia‑related factors during the development and progression of CKD (Review). Experimental and Therapeutic Medicine, 22, 1159. https://doi.org/10.3892/etm.2021.10593
MLA
Zhang, R., Wang, S., Yang, F., Ma, S., Lu, X., Kan, C., Zhang, J."Crosstalk of fibroblast growth factor 23 and anemia‑related factors during the development and progression of CKD (Review)". Experimental and Therapeutic Medicine 22.4 (2021): 1159.
Chicago
Zhang, R., Wang, S., Yang, F., Ma, S., Lu, X., Kan, C., Zhang, J."Crosstalk of fibroblast growth factor 23 and anemia‑related factors during the development and progression of CKD (Review)". Experimental and Therapeutic Medicine 22, no. 4 (2021): 1159. https://doi.org/10.3892/etm.2021.10593
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team