|
1
|
National Pharmacopoeia Committee.
Pharmacopoeia of the people's Republic of China, volume I (2010
edition), pp186, 2010.
|
|
2
|
Jiao WH, Gao H, Zhao F, Lin HW, Pan YM,
Zhou GX and Yao XS: Anti-inflammatory alkaloids from the stems of
Picrasma quassioides BENNET. Chem Pharm Bull (Tokyo).
59:359–364. 2011.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Liang WF: Anti-snake bite action of
Picrasma quassioides. Zhong Yao Tong Bao. 12(54)1987.PubMed/NCBI(In Chinese).
|
|
4
|
Mohd Jamil MDH, Taher M, Susanti D, Rahman
MA and Zakaria ZA: Phytochemistry, traditional use and
pharmacological activity of Picrasma quassioides: A critical
reviews. Nutrients. 12(2584)2020.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Jung YS, Eun CS, Jung YT, Kim HJ and Yu
MH: Anti-inflammatory effects of Picrasma quassioides (D.
DON) BENN leaves extracts. J Life Sci. 23:629–636. 2013.
|
|
6
|
Liu C, Cheng RR, Yang L, Song ZC and Wang
ZT: Inhibition of CYP450 enzymes by quassinoids from Picrasma
quassioides leaves. Phytochem Lett. 30:138–142. 2019.
|
|
7
|
Jiao WH, Gao H, Li CY, Zhou GX, Kitanaka
S, Ohmura A and Yao XS: Beta-carboline alkaloids from the stems of
Picrasma quassioides. Magn Reson Chem. 48:490–495.
2010.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Sung Y, Koike K, Nikaido T, Ohmoto T and
Sankawa U: Inhibitors of cyclic AMP phosphodiesterase in
Picrasma quassioides Bennet, and inhibitory activities of
related beta-carboline alkaloids. Chem Pharm Bull (Tokyo).
32:1872–1877. 1984.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Zhao WY, Song XY, Zhao L, Zou CX, Zhou WY,
Lin B, Yao GD, Huang XX and Song SJ: Quassinoids from Picrasma
quassioides and their neuroprotective effects. J Nat Prod.
82:714–723. 2019.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Xu J, Xiao D, Lin QH, He JF, Liu WY, Xie
N, Feng F and Qu W: Cytotoxic tirucallane and apotirucallane
triterpenoids from the stems of Picrasma quassioides. J Nat
Prod. 79:1899–1910. 2016.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Aggarwal NR, King LS and D'Alessio FR:
Diverse macrophage populations mediate acute lung inflammation and
resolution. Am J Physiol Lung Cell Mol Physiol. 306:L709–L725.
2014.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Fahy JV: Type 2 inflammation in
asthma-present in most, absent in many. Nat Rev Immunol. 15:57–65.
2015.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Lontchi-Yimagou E, Sobngwi E, Matsha TE
and Kengne AP: Diabetes mellitus and inflammation. Curr Diab Rep.
13:435–444. 2013.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Agita A and Alsagaff MT: Inflammation,
immunity, and hypertension. Acta Med Indones. 49:158–165.
2017.PubMed/NCBI
|
|
15
|
Mason A, Holmes C and Edwards CJ:
Inflammation and dementia: Using rheumatoid arthritis as a model to
develop treatments? Autoimmun Rev. 17:919–925. 2018.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Taleb S: Inflammation in atherosclerosis.
Arch Cardiovasc Dis. 109:708–715. 2016.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Fonceca AM, Zosky GR, Bozanich EM, Sutanto
EN, Kicic A, McNamara PS, Knight DA, Sly PD, Turner DJ and Stick
SM: Accumulation mode particles and LPS exposure induce TLR-4
dependent and independent inflammatory responses in the lung.
Respir Res. 19(15)2018.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Olmos-Ortiz A, Déciga-García M,
Preciado-Martínez E, Bermejo-Martínez L, Flores-Espinosa P,
Mancilla-Herrera I, Irles C, Helguera-Repetto AC, Quesada-Reyna B,
Goffin V, et al: Prolactin decreases LPS-induced inflammatory
cytokines by inhibiting TLR-4/NFκB signaling in the human placenta.
Mol Hum Reprod. 25:660–667. 2019.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Lai JL, Liu YH, Liu C, Qi MP, Liu RN, Zhu
XF, Zhou QG, Chen YY, Guo AZ and Hu CM: Indirubin inhibits
LPS-induced inflammation via TLR4 abrogation mediated by the NF-κB
and MAPK signaling pathways. Inflammation. 40:1–12. 2017.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Yu Q, Zeng K, Ma X, Song F, Jiang Y, Tu P
and Wang X: Resokaempferol-mediated anti-inflammatory effects on
activated macrophages via the inhibition of JAK2/STAT3, NF-κB and
JNK/p38 MAPK signaling pathways. Int Immunopharmacol. 38:104–114.
2016.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Kwon MY, Park J, Kim SM, Lee J, Cho H,
Park JH and Han IO: An alpha-lipoic acid-decursinol hybrid compound
attenuates lipopolysaccharide-mediated inflammation in BV2 and
RAW264.7 cells. BMB Rep. 52:508–513. 2019.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Liang M, Wang X, Yuan Y, Zhou Q, Tong C
and Jiang W: Different effect of glutamine on macrophage tumor
necrosis factor-alpha release and heat shock protein 72 expression
in vitro and in vivo. Acta Biochim Biophys Sin (Shanghai).
41:171–177. 2009.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Balkwill F: TNF-alpha in promotion and
progression of cancer. Cancer Metastasis Rev. 25:409–416.
2006.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Floros T and Tarhini AA: Anticancer
cytokines: Biology and clinical effects of interferon-α2,
interleukin (IL)-2, IL-15, IL-21, and IL-12. Semin Oncol.
42:539–548. 2015.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Nagayama M, Niwa K, Nagayama T, Ross ME
and Iadecola C: The cyclooxygenase-2 inhibitor NS-398 ameliorates
ischemic brain injury in wild-type mice but not in mice with
deletion of the inducible nitric oxide synthase gene. J Cereb Blood
Flow Metab. 19:1213–1219. 1999.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Shin NR, Shin IS, Jeon CM, Hong JM, Oh SR,
Hahn KW and Ahn KS: Inhibitory effects of Picrasma
quassioides (D. Don) Benn. On airway inflammation in a murine
model of allergic asthma. Mol Med Rep. 10:1495–1500.
2014.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Zhao F, Gao Z, Jiao W, Chen L, Chen L and
Yao X: In vitro anti-inflammatory effects of beta-carboline
alkaloids, isolated from Picrasma quassioides, through
inhibition of the iNOS pathway. Planta Med. 78:1906–1911.
2012.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Wirtz S, Popp V, Kindermann M, Gerlach K,
Weigmann B, Fichtner-Feigl S and Neurath MF: Chemically induced
mouse models of acute and chronic intestinal inflammation. Nat
Protoc. 12:1295–1309. 2017.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Zhao W, He J, Zhang Y, Ito Y, Su Q and Sun
W: Preparative isolation and purification of alkaloids from
Picrasma quassioides (D. Don) Benn. By high-speed
countercurrent chromatography. J Liq Chromatogr Relat Technol.
35:1597–1606. 2012.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Liu P, Li H, Luan R, Huang G, Liu Y, Wang
M, Chao Q, Wang L, Li D, Fan H, et al: Identification of
β-carboline and canthinone alkaloids as anti-inflammatory agents
but with different inhibitory profile on the expression of iNOS and
COX-2 in lipopolysaccharide-activated RAW 264.7 macrophages. J Nat
Med. 73:124–130. 2019.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Fan H, Qi D, Yang M, Fang H, Liu K and
Zhao F: In vitro and in vivo anti-inflammatory effects of
4-methoxy-5-hydroxycanthin-6-one, a natural alkaloid from
Picrasma quassioides. Phytomedicine. 20:319–323.
2013.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Zhao W, Yu J, Su Q, Liang J, Zhao L, Zhang
Y and Sun W: Antihypertensive effects of extract from Picrasma
quassioides (D. Don) Benn. In spontaneously hypertensive rats.
J Ethnopharmacol. 145:187–192. 2013.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Liu JF, Shao M, Zhai DW, Liu K and Wu LJ:
Protective effect of 4-methoxy-5-hydroxycanthin-6-one, a natural
alkaloid, on dextran sulfate sodium-induced rat colitis. Planta
Med. 75:142–145. 2009.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Noldin VF, de Oliveira Martins DT,
Marcello CM, da Silva Lima JC, Delle Monache F and Cechinel Filho
V: Phytochemical and antiulcerogenic properties of rhizomes from
Simaba ferruginea St. Hill. (Simaroubaceae). Z Naturforsch C J
Biosci. 60:701–706. 2005.PubMed/NCBI View Article : Google Scholar
|
|
35
|
de Souza Almeida ES, Filho VC, Niero R,
Clasen BK, Balogun SO and de Oliveira Martins DT: Pharmacological
mechanisms underlying the anti-ulcer activity of methanol extract
and canthin-6-one of Simaba ferruginea A. St-Hil. in animal models.
J Ethnopharmacol. 134:630–636. 2011.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Sasaki T, Li W, Higai K and Koike K:
Canthinone alkaloids are novel protein tyrosine phosphatase 1B
inhibitors. Bioorg Med Chem Lett. 25:1979–1981. 2015.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Ono H: Molecular mechanisms of
hypothalamic insulin resistance. Int J Mol Sci.
20(1317)2019.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Legrand N, Bretscher CL, Zielke S, Wilke
B, Daude M, Fritz B, Diederich WE and Adhikary T: PPARβ/δ recruits
NCOR and regulates transcription reinitiation of ANGPTL4. Nucleic
Acids Res. 47:9573–9591. 2019.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Jiao WH, Gao H, Li CY, Zhao F, Jiang RW,
Wang Y, Zhou GX and Yao XS: Quassidines A-D, bis-beta-carboline
alkaloids from the stems of Picrasma quassioides. J Nat
Prod. 73:167–171. 2010.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Zhao S, Kanno Y, Li W, Sasaki T, Zhang X,
Wang J, Cheng M, Koike K, Nemoto K and Li H: Identification of
picrasidine C as a subtype-selective PPARα agonist. J Nat Prod.
79:3127–3133. 2016.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Zhao S, Kanno Y, Li W, Wakatabi H, Sasaki
T, Koike K, Nemoto K and Li H: Picrasidine N Is a subtype-selective
PPARβ/δ agonist. J Nat Prod. 79:879–885. 2016.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Chong HC, Chan JS, Goh CQ, Gounko NV, Luo
B, Wang X, Foo S, Wong MT, Choong C, Kersten S and Tan NS:
Angiopoietin-like 4 stimulates STAT3-mediated iNOS expression and
enhances angiogenesis to accelerate wound healing in diabetic mice.
Mol Ther. 22:1593–1604. 2014.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Georgiadi A, Wang Y, Stienstra R,
Tjeerdema N, Janssen A, Stalenhoef A, van der Vliet JA, de Roos A,
Tamsma JT, Smit JW, et al: Overexpression of angiopoietin-like
protein 4 protects against atherosclerosis development.
Arterioscler Thromb Vasc Biol. 33:1529–1537. 2013.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Zhao F, Chen L, Bi C, Zhang M, Jiao W and
Yao X: In vitro anti-inflammatory effect of picrasmalignan A by the
inhibition of iNOS and COX-2 expression in LPS-activated macrophage
RAW 264.7 cells. Mol Med Rep. 8:1575–1579. 2013.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Jemal A, Center MM, DeSantis C and Ward
EM: Global patterns of cancer incidence and mortality rates and
trends. Cancer Epidemiol Biomarkers Prev. 19:1893–1907.
2010.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Subramani R, Nandy SB, Pedroza DA and
Lakshmanaswamy R: Role of growth hormone in breast cancer.
Endocrinology. 158:1543–1555. 2017.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Takano T: Natural history of thyroid
cancer (Review). Endocr J. 64:237–244. 2017.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Pramesh CS, Mistry RC and Laskar SG:
Neoadjuvant chemoradiotherapy in resectable oesophageal cancer.
Lancet Oncol. 6:824–826. 2005.
|
|
49
|
Siddiqui NS, Godara A, Byrne MM and Saif
MW: Capecitabine for the treatment of pancreatic cancer. Expert
Opin Pharmacother. 20:399–409. 2019.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Suroowan S and Mahomoodally MF: Herbal
medicine of the 21st century: A focus on the chemistry,
pharmacokinetics and toxicity of five widely advocated
phytotherapies. Curr Top Med Chem. 19:2718–2738. 2019.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Sun Y, Xun K, Wang Y and Chen X: A
systematic review of the anticancer properties of berberine, a
natural product from Chinese herbs. Anticancer Drugs. 20:757–769.
2009.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Sun W, Yu J, Gao H, Wu X, Wang S, Hou Y,
Lu JJ and Chen X: Inhibition of lung cancer by
2-Methoxy-6-Acetyl-7-methyljuglone through induction of necroptosis
by targeting receptor-interacting protein 1. Antioxid Redox Signal.
31:93–108. 2019.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Wang Q, Mo J, Zhao C, Huang K, Feng M, He
W, Wang J, Chen S, Xie Z, Ma J and Fan S: Raddeanin A suppresses
breast cancer-associated osteolysis through inhibiting osteoclasts
and breast cancer cells. Cell Death Dis. 9(376)2018.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Zang M, Hu L, Zhang B, Zhu Z, Li J, Zhu Z,
Yan M and Liu B: Luteolin suppresses angiogenesis and vasculogenic
mimicry formation through inhibiting notch1-VEGF signaling in
gastric cancer. Biochem Biophys Res Commun. 490:913–919.
2017.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Yang S, Li X, Dou H, Hu Y, Che C and Xu D:
Sesamin induces A549 cell mitophagy and mitochondrial apoptosis via
a reactive oxygen species-mediated reduction in mitochondrial
membrane potential. Korean J Physiol Pharmacol. 24:223–232.
2020.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Ni Y, Zhang H and Li Z and Li Z:
Connective tissue growth factor (CCN2) inhibits TNF-α-induced
apoptosis by enhancing autophagy through the Akt and Erk pathways
in osteoblasts. Pharmazie. 75:213–217. 2020.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Wang HF, Wang ZQ, Ding Y, Piao MH, Feng
CS, Chi GF, Luo YN and Ge PF: Endoplasmic reticulum stress
regulates oxygen-glucose deprivation-induced parthanatos in human
SH-SY5Y cells via improvement of intracellular ROS. CNS Neurosci
Ther. 24:29–38. 2018.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Matt S and Hofmann TG: The DNA
damage-induced cell death response: A roadmap to kill cancer cells.
Cell Mol Life Sci. 73:2829–2850. 2016.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Liao NC, Shih YL, Chou JS, Chen KW, Chen
YL, Lee MH, Peng SF, Leu SJ and Chung JG: Cardamonin induces cell
cycle arrest, apoptosis and alters apoptosis associated gene
expression in WEHI-3 mouse leukemia cells. Am J Chin Med.
47:635–656. 2019.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Sun Y, Liu WZ, Liu T, Feng X, Yang N and
Zhou HF: Signaling pathway of MAPK/ERK in cell proliferation,
differentiation, migration, senescence and apoptosis. J Recept
Signal Transduct Res. 35:600–604. 2015.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Su D, Zhou Y, Hu S, Guan L, Shi C, Wang Q,
Chen Y, Lu C, Li Q and Ma X: Role of GAB1/PI3K/AKT signaling high
glucose-induced cardiomyocyte apoptosis. Biomed Pharmacother.
93:1197–1204. 2017.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Yang X, Tang S, Li D, Yu X, Wang F and
Xiao X: DIDS inhibits overexpression BAK1-induced mitochondrial
apoptosis through GSK3β/β-catenin signaling pathway. J Cell
Physiol. 233:5070–5077. 2018.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Lee HE, Choi ES, Shin JA, Kim LH, Cho NP
and Cho SD: Apoptotic effect of methanol extract of Picrasma
quassioides by regulating specificity protein 1 in human
cervical cancer cells. Cell Biochem Funct. 32:229–235.
2014.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Gong YX, Liu Y, Jin YH, Jin MH, Han YH, Li
J, Shen GN, Xie DP, Ren CX, Yu LY, et al: Picrasma
quassioides extract elevates the cervical cancer cell apoptosis
through ROS-mitochondrial axis activated p38 MAPK signaling
pathway. In Vivo. 34:1823–1833. 2020.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Xie DP, Gong YX, Jin YH, Ren CX, Liu Y,
Han YH, Jin MH, Zhu D, Pan QZ, Yu LY, et al: Anti-tumor properties
of Picrasma quassioides extracts in H-RasG12V
liver cancer are mediated through ROS-dependent mitochondrial
dysfunction. Anticancer Res. 40:3819–3830. 2020.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Xiao X, Si X, Tong X and Li G: Ultrasonic
microwave-assisted extraction coupled with high-speed
counter-current chromatography for the preparation of nigakinones
from Picrasma quassioides (D. Don) Benn. Phytochem Anal.
23:540–546. 2012.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Kwon HS, Lee H, Lee JS, Lee K, Choi JH and
Jang DS: Two new β-carboline alkaloids from the stems of
Picrasma quassioides. Arch Pharm Res. 41:513–518.
2018.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Lai ZQ, Liu WH, Ip SP, Liao HJ, Yi YY, Qin
Z, Lai XP, Su ZR and Lin ZX: Seven alkaloids from Picrasma
quassioides and their cytotoxic activities. Chem Nat Compd.
50:884–888. 2014.
|
|
69
|
Kuo PC, Shi LS, Damu AG, Su CR, Huang CH,
Ke CH, Wu JB, Lin AJ, Bastow KF, Lee KH and Wu TS: Cytotoxic and
antimalarial beta-carboline alkaloids from the roots of Eurycoma
longifolia. J Nat Prod. 66:1324–1327. 2003.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Jiang MX and Zhou YJ: Canthin-6-one
alkaloids from Picrasma quassioides and their cytotoxic
activity. J Asian Nat Prod Res. 10:1009–1012. 2008.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Daoud A, Song J, Xiao F and Shang J:
B-9-3, a novel β-carboline derivative exhibits anti-cancer activity
via induction of apoptosis and inhibition of cell migration in
vitro. Eur J Pharmacol. 724:219–230. 2014.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Jiao WH, Chen GD, Gao H, Li J, Gu BB, Xu
TT, Yu HB, Shi GH, Yang F, Yao XS and Lin HW: (±)-Quassidines I and
J, two pairs of cytotoxic bis-β-carboline alkaloid enantiomers from
Picrasma quassioides. J Nat Prod. 78:125–130.
2015.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Yamashita N, Kondo M, Zhao S, Li W, Koike
K, Nemoto K and Kanno Y: Picrasidine G decreases viability of
MDA-MB 468 EGFR-overexpressing triple-negative breast cancer cells
through inhibition of EGFR/STAT3 signaling pathway. Bioorg Med Chem
Lett. 27:2608–2612. 2017.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Zhao WY, Chen JJ, Zou CX, Zhang YY, Yao
GD, Wang XB, Huang XX, Lin B and Song SJ: New tirucallane
triterpenoids from Picrasma quassioides with their potential
antiproliferative activities on hepatoma cells. Bioorg Chem.
84:309–318. 2019.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Guo E, Hu Y, Du T, Zhu H, Chen L, Qu W,
Zhang J, Xie N, Liu W, Feng F and Xu J: Effects of Picrasma
quassioides and its active constituents on Alzheimer's disease
in vitro and in vivo. Bioorg Chem. 92(103258)2019.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Koe BK and Lebel LA: Contrasting effects
of ethyl beta-carboline-3-carboxylate (beta CCE) and diazepam on
cerebellar cyclic GMP content and antagonism of both effects by Ro
15-1788, a specific benzodiazepine receptor blocker. Eur J
Pharmacol. 90:97–102. 1983.PubMed/NCBI View Article : Google Scholar
|
|
77
|
File SE and Lister RG: Interactions of
ethyl-beta- carboline-3-carboxylate and Ro 15-1788 with CGS 8216 in
an animal model of anxiety. Neurosci Lett. 39:91–94.
1983.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Manzoor S and Hoda N: A comprehensive
review of monoamine oxidase inhibitors as anti-Alzheimer's disease
agents: A review. Eur J Med Chem. 206(112787)2020.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Kumar MJ and Andersen JK: Perspectives on
MAO-B in aging and neurological disease: Where do we go from here?
Mol Neurobiol. 30:77–89. 2004.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Singh A, Kukreti R, Saso L and Kukreti S:
Oxidative stress: A key modulator in neurodegenerative diseases.
Molecules. 24(1583)2019.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Simpson DSA and Oliver PL: ROS generation
in microglia: Understanding oxidative stress and inflammation in
neurodegenerative disease. Antioxidants (Basel).
9(743)2020.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Kerr JS, Adriaanse BA, Greig NH, Mattson
MP, Cader MZ, Bohr VA and Fang EF: Mitophagy and Alzheimer's
disease: Cellular and molecular mechanisms. Trends Neurosci.
40:151–166. 2017.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Reniers J, Robert S, Frederick R, Masereel
B, Vincent S and Wouters J: Synthesis and evaluation of β-carboline
derivatives as potential monoamine oxidase inhibitors. Bioorg Med
Chem. 19:134–144. 2011.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Sasaki T, Li W, Ohmoto T and Koike K:
Evaluation of canthinone alkaloids as cerebral protective agents.
Bioorg Med Chem Lett. 26:4992–4995. 2016.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Zhu C, Deng G and Lin C: Study on chemical
constituents of Picrasma quassioides. Zhongguo Zhong Yao Za
Zhi. 36:886–890. 2011.PubMed/NCBI(In Chinese).
|
|
86
|
Matsuzaki T, Fukamiya N, Okano M, Fujita
T, Tagahara K and Lee KH: Picrasinoside H, a new quassinoid
glucoside, and related compounds from the stem wood of Picrasma
ailanthoides. J Nat Prod. 54:844–848. 1991.PubMed/NCBI View Article : Google Scholar
|
|
87
|
He C, Wang Y, Yang T, Wang H, Liao H and
Liang D: Quassinoids with insecticidal activity against
diaphorina citri kuwayama and neuroprotective activities
from Picrasma quassioides. J Agric Food Chem. 68:117–127.
2020.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Houël E, Stien D, Bourdy G and Deharo E:
Quassinoids: anticancer and antimalarial activities. In: Natural
Products: Phytochemistry, Botany and Metabolism of Alkaloids,
Phenolics and Terpenes. Ramawat KG and Mérillon JM (eds). Berlin,
Heidelberg: Springer Berlin Heidelberg, pp3775-3802, 2013.
|
|
89
|
Houël E, Bertani S, Bourdy G, Deharo E,
Jullian V, Valentin A, Chevalley S and Stien D: Quassinoid
constituents of Quassia amara L. leaf herbal tea. Impact on its
antimalarial activity and cytotoxicity. J Ethnopharmacol.
126:114–118. 2009.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Niiho Y, Mitsunaga K, Koike K and Ohmoto
T: Studies on the gastric antiulcer components from the woods of
Picrasma quassioides (simaroubaceae). Nat Med. 48:116–121.
1994.
|
|
91
|
Teja Sri K, Bhargavi S, Ushasri S,
Amareswara Reddy B and Geethika Priscilla M: Antiulcer herbal
drugs-A compilation. Int J Uni Pharm Bio Sci. 2:285–297. 2013.
|
|
92
|
Huang X, Su Z, Shen X, Tang Q, Xie Y, Liu
Z and Lai X: Determination of andrographolides and alkaloids in
Xiaoyanlidan tablets by RP-HPLC. Chin Tradit Pat Med. 6:451–454.
2003.
|
|
93
|
Yang N, Xiong A, Wang R, Yang L and Wang
Z: Quality evaluation of traditional Chinese medicine compounds in
Xiaoyan Lidan tablets: Fingerprint and quantitative analysis using
UPLC-MS. Molecules. 21(83)2016.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Renliu X: TLC identification and
determination of deoxyandrographolide of compound kumuxiaoyan
tablets. Chin Tradit Pat Med, 1992.
|
|
95
|
Saiin C, Rattanajak R, Kamchonwongpaisan
S, Ingkaninan K, Sukontason K, Baramee A and Sirithunyalug B:
Isolation and in vitro antimalarial activity of hexane extract from
Thai Picrasma javanica B1 stembark. Southeast Asian J Trop
Med Public Health. 34 (Suppl 2):S51–S55. 2003.PubMed/NCBI
|
|
96
|
Rahman S, Fukamiya N, Okano M, Tagahara K
and Lee KH: Anti-tuberculosis activity of quassinoids. Chem Pharm
Bull (Tokyo). 45:1527–1529. 1997.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Ohmoto T, Nikaido T, Koike K, Kohda K and
Sankawa U: Inhibition of adenosine 3',5'-cyclic monophosphate
phosphodiesterase by alkaloids. II. Chem Pharm Bull (Tokyo).
36:4588–4592. 1988.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Zhao L, Zhao Y, Guo L and Zhang L:
Pharmacokinetic and bioavailability study of
5-hydroxy-4-methoxycanthin-6-one, a typical canthinone alkaloid, in
rats using ultra-high performance liquid
chromatography/electrospray ionization tandem mass spectrometry.
Biomed Chromatogr. 34(e4830)2020.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Xuan YH and Jin Y, Row KH and Jin Y:
Antioxidant and anticancer activities of extracts from Picrasma
quassioides (D. Don) Benn. Asian J Chem. 22:7219–7226.
2010.
|