Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
January-2022 Volume 23 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2022 Volume 23 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Lactobacillus plantarum induces innate cytokine responses that potentially provide a protective benefit against COVID‑19: A single‑arm, double‑blind, prospective trial combined with an in vitro cytokine response assay

  • Authors:
    • Yasunari Kageyama
    • Yasuhiro Nishizaki
    • Koichi Aida
    • Katsuyuki Yayama
    • Tomoka Ebisui
    • Tetsu Akiyama
    • Tsutomu Nakamura
  • View Affiliations / Copyright

    Affiliations: Takanawa Clinic, Tokyo 108‑0074, Japan, Tokai University Hospital, Isehara‑shi, Kanagawa 259‑1193, Japan, Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113‑0032, Japan
    Copyright: © Kageyama et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 20
    |
    Published online on: November 2, 2021
       https://doi.org/10.3892/etm.2021.10942
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Intestinal microbiota can indirectly modulate airway physiology and immunity through the gut‑lung axis. Recent microbiome studies indicate that patients with coronavirus disease 2019 (COVID‑19) exhibit a specific intestinal dysbiosis that is closely associated with the disease pathophysiology. Therefore, rebalancing the intestinal microbiome using probiotics may be effective for controlling COVID‑19. However, the rationale for using probiotics in COVID‑19 remains unclear. In the present study, an in vitro cytokine response assay was conducted, followed by a single‑arm, double‑blind, prospective trial to evaluate the immunological efficacy of probiotic lactic acid bacteria against COVID‑19. The present study focused on Lactobacillus plantarum (L. plantarum), Bifidobacterium longum and Lactococcus lactis ssp. lactis, which exhibit robust protective effects against infection with respiratory RNA viruses. Considering the feasibility of long‑term daily intake for prophylactic purposes, healthy uninfected individuals were enrolled as subjects. Our previous pilot trial demonstrated that oral Qingfei Paidu decoction (QFPD), a Chinese herbal medicine formulated specifically against COVID‑19, upregulates plasma TNF‑α, IL‑1β, IL‑18 and IL‑8. Therefore, the present study utilized the cytokine changes induced by QFPD to define the innate cytokine index QICI [=(TNF‑α) x (IL‑1β) x (IL‑18) x (IL‑8)/(IL‑6)] as an indicator of the anti‑COVID‑19 immunomodulatory potential of the lactic acid bacteria. A total of 20 eligible volunteers were enrolled, 18 of whom completed the intervention. L. plantarum demonstrated a strikingly high innate cytokine index in all subjects in the in vitro cytokine response assay. In the subsequent trial, oral intake of L. plantarum significantly increased the innate cytokine index (mean fold change, 17‑fold; P=0.0138) and decreased the plasma level of IL‑6 (P=0.0128), a key driver of complex immune dysregulation in COVID‑19, as compared with the baseline. The cytokine index increased in 16 of 18 subjects (88.9%) with considerable individual differences in the fold change (1‑ to 128‑fold). In line with these innate cytokine changes, L. plantarum ingestion significantly enhanced the activity of natural killer cells. By contrast, oral B. longum failed to induce a significant increase in the innate cytokine index (mean fold change, 2‑fold; P=0.474) as compared with the baseline. In conclusion, L. plantarum demonstrated superior QFPD‑like immunomodulatory ability and mimicked the blood cytokine environment produced by early immune responses to viral infection. Daily consumption of L. plantarum as an anti‑COVID‑19 probiotic may be a possible option for preventing COVID‑19 during the pandemic. The present study was prospectively registered in the University Hospital Medical Information Network‑Clinical Trials Registry under the trial number UMIN000040479 on 22 May 2020 (https://upload.umin.ac.jp/cgi‑open‑bin/ctr_e/ctr_view.cgi?recptno=R000046202).
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Lukassen S, Chua RL, Trefzer T, Kahn NC, Schneider MA, Muley T, Winter H, Meister M, Veith C, Boots AW, et al: SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. 39(e105114)2020.PubMed/NCBI View Article : Google Scholar

2 

Sungnak W, Huang N, Bécavin C, Berg M, Queen R, Litvinukova M, Talavera-López C, Maatz H, Reichart D, Sampaziotis F, et al: SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 26:681–687. 2020.PubMed/NCBI View Article : Google Scholar

3 

Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, Cao Y, Yousif AS, Bals J, Hauser BM, et al: SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 181:1016–1035.e19. 2020.PubMed/NCBI View Article : Google Scholar

4 

Lee JJ, Kopetz S, Vilar E, Shen JP, Chen K and Maitra A: Relative abundance of SARS-CoV-2 entry genes in the enterocytes of the lower gastrointestinal tract. Genes (Basel). 11(645)2020.PubMed/NCBI View Article : Google Scholar

5 

Zang R, Gomez Castro MF, McCune BT, Zeng Q, Rothlauf PW, Sonnek NM, Liu Z, Brulois KF, Wang X, Greenberg HB, et al: TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol. 5(eabc3582)2020.PubMed/NCBI View Article : Google Scholar

6 

Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J, Breugem TI, Ravelli RBG, Paul van Schayck J, Mykytyn AZ, Duimel HQ, et al: SARS-CoV-2 productively infects human gut enterocytes. Science. 369:50–54. 2020.PubMed/NCBI View Article : Google Scholar

7 

Xiao F, Tang M, Zheng X, Liu Y, Li X and Shan H: Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 158:1831–1833.e3. 2020.PubMed/NCBI View Article : Google Scholar

8 

Zhou J, Li C, Liu X, Chiu MC, Zhao X, Wang D, Wei Y, Lee A, Zhang AJ, Chu H, et al: Infection of bat and human intestinal organoids by SARS-CoV-2. Nat Med. 26:1077–1083. 2020.PubMed/NCBI View Article : Google Scholar

9 

Chen Y, Chen L, Deng Q, Zhang G, Wu K, Ni L, Yang Y, Liu B, Wang W, Wei C, et al: The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients. J Med Virol. 92:833–840. 2020.PubMed/NCBI View Article : Google Scholar

10 

Kipkorir V, Cheruiyot I, Ngure B, Misiani M and Munguti J: Prolonged SARS-CoV-2 RNA detection in anal/rectal swabs and stool specimens in COVID-19 patients after negative conversion in nasopharyngeal RT-PCR test. J Med Virol. 92:2328–2331. 2020.PubMed/NCBI View Article : Google Scholar

11 

Wu Y, Guo C, Tang L, Hong Z, Zhou J, Dong X, Yin H, Xiao Q, Tang Y, Qu X, et al: Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol. 5:434–435. 2020.PubMed/NCBI View Article : Google Scholar

12 

Gu J, Han B and Wang J: COVID-19: Gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology. 158:1518–1519. 2020.PubMed/NCBI View Article : Google Scholar

13 

Wong SH, Lui RN and Sung JJ: Covid-19 and the digestive system. J Gastroenterol Hepatol. 35:744–748. 2020.PubMed/NCBI View Article : Google Scholar

14 

Yang L and Tu L: Implications of gastrointestinal manifestations of COVID-19. Lancet Gastroenterol Hepatol. 5:629–630. 2020.PubMed/NCBI View Article : Google Scholar

15 

Budden KF, Gellatly SL, Wood DL, Cooper MA, Morrison M, Hugenholtz P and Hansbro PM: Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol. 15:55–63. 2017.PubMed/NCBI View Article : Google Scholar

16 

Dumas A, Bernard L, Poquet Y, Lugo-Villarino G and Neyrolles O: The role of the lung microbiota and the gut-lung axis in respiratory infectious diseases. Cell Microbiol. 20(e12966)2018.PubMed/NCBI View Article : Google Scholar

17 

Zhang D, Li S, Wang N, Tan HY, Zhang Z and Feng Y: The cross-talk between gut microbiota and lungs in common lung diseases. Front Microbiol. 11(301)2020.PubMed/NCBI View Article : Google Scholar

18 

Gu S, Chen Y, Wu Z, Chen Y, Gao H, Lv L, Guo F, Zhang X, Luo R, Huang C, et al: Alterations of the gut microbiota in patients with coronavirus disease 2019 or H1N1 influenza. Clin Infect Dis. 71:2669–2678. 2020.PubMed/NCBI View Article : Google Scholar

19 

Gou W, Fu Y, Yue L, Chen GD, Cai X, Shuai M, Xu F, Yi X, Chen H, Zhu Y, et al: Gut microbiota may underlie the predisposition of healthy individuals to COVID-19. J Genet Genomics. 48:792–802. 2021.

20 

Zuo T, Liu Q, Zhang F, Lui GC, Tso EY, Yeoh YK, Chen Z, Boon SS, Chan FK, Chan PK, et al: Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut. 70:276–284. 2021.PubMed/NCBI View Article : Google Scholar

21 

Zuo T, Zhang F, Lui GCY, Yeoh YK, Li AYL, Zhan H, Wan Y, Chung ACK, Cheung CP, Chen N, et al: Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology. 159:944–955.e8. 2020.PubMed/NCBI View Article : Google Scholar

22 

Lehtoranta L, Pitkaranta A and Korpela R: Probiotics in respiratory virus infections. Eur J Clin Microbiol Infect Dis. 33:1289–1302. 2014.PubMed/NCBI View Article : Google Scholar

23 

Lei WT, Shih PC, Liu SJ, Lin CY and Yeh TL: Effect of probiotics and prebiotics on immune response to influenza vaccination in adults: A systematic review and meta-analysis of randomized controlled trials. Nutrients. 9(1175)2017.PubMed/NCBI View Article : Google Scholar

24 

Luoto R, Ruuskanen O, Waris M, Kalliomaki M, Salminen S and Isolauri E: Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: A randomized, placebo-controlled trial. J Allergy Clin Immunol. 133:405–413. 2014.PubMed/NCBI View Article : Google Scholar

25 

Turner RB, Woodfolk JA, Borish L, Steinke JW, Patrie JT, Muehling LM, Lahtinen S and Lehtinen MJ: Effect of probiotic on innate inflammatory response and viral shedding in experimental rhinovirus infection-a randomised controlled trial. Benef Microbes. 8:207–215. 2017.PubMed/NCBI View Article : Google Scholar

26 

Yeh TL, Shih PC, Liu SJ, Lin CH, Liu JM, Lei WT and Lin CY: The influence of prebiotic or probiotic supplementation on antibody titers after influenza vaccination: A systematic review and meta-analysis of randomized controlled trials. Drug Des Devel Ther. 12:217–230. 2018.PubMed/NCBI View Article : Google Scholar

27 

Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, Jordan TX, Oishi K, Panis M, Sachs D, et al: Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 181:1036–1045.e9. 2020.PubMed/NCBI View Article : Google Scholar

28 

Cao X: COVID-19: Immunopathology and its implications for therapy. Nat Rev Immunol. 20:269–270. 2020.PubMed/NCBI View Article : Google Scholar

29 

Giamarellos-Bourboulis EJ, Netea MG, Rovina N, Akinosoglou K, Antoniadou A, Antonakos N, Damoraki G, Gkavogianni T, Adami ME, Katsaounou P, et al: Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe. 27:992–1000.e3. 2020.PubMed/NCBI View Article : Google Scholar

30 

Chong HX, Yusoff NAA, Hor YY, Lew LC, Jaafar MH, Choi SB, Yusoff MSB, Wahid N, Abdullah MFIL, Zakaria N, et al: Lactobacillus plantarum DR7 improved upper respiratory tract infections via enhancing immune and inflammatory parameters: A randomized, double-blind, placebo-controlled study. J Dairy Sci. 102:4783–4797. 2019.PubMed/NCBI View Article : Google Scholar

31 

Rask C, Adlerberth I, Berggren A, Ahren IL and Wold AE: Differential effect on cell-mediated immunity in human volunteers after intake of different lactobacilli. Clin Exp Immunol. 172:321–332. 2013.PubMed/NCBI View Article : Google Scholar

32 

Kechaou N, Chain F, Gratadoux JJ, Blugeon S, Bertho N, Chevalier C, Le Goffic R, Courau S, Molimard P, Chatel JM, et al: Identification of one novel candidate probiotic Lactobacillus plantarum strain active against influenza virus infection in mice by a large-scale screening. Appl Environ Microbiol. 79:1491–1499. 2013.PubMed/NCBI View Article : Google Scholar

33 

Park MK, Ngo V, Kwon YM, Lee YT, Yoo S, Cho YH, Hong SM, Hwang HS, Ko EJ, Jung YJ, et al: Lactobacillus plantarum DK119 as a probiotic confers protection against influenza virus by modulating innate immunity. PLoS One. 8(e75368)2013.PubMed/NCBI View Article : Google Scholar

34 

Kawashima T, Hayashi K, Kosaka A, Kawashima M, Igarashi T, Tsutsui H, Tsuji NM, Nishimura I, Hayashi T and Obata A: Lactobacillus plantarum strain YU from fermented foods activates Th1 and protective immune responses. Int Immunopharmacol. 11:2017–2024. 2011.PubMed/NCBI View Article : Google Scholar

35 

Kikuchi Y, Kunitoh-Asari A, Hayakawa K, Imai S, Kasuya K, Abe K, Adachi Y, Fukudome S, Takahashi Y and Hachimura S: Oral administration of Lactobacillus plantarum strain AYA enhances IgA secretion and provides survival protection against influenza virus infection in mice. PLoS One. 9(e86416)2014.PubMed/NCBI View Article : Google Scholar

36 

Kim DH, Chung WC, Chun SH, Han JH, Song MJ and Lee KW: Enhancing the natural killer cell activity and anti-influenza effect of heat-treated Lactobacillus plantarum nF1-fortified yogurt in mice. J Dairy Sci. 101:10675–10684. 2018.PubMed/NCBI View Article : Google Scholar

37 

Maeda N, Nakamura R, Hirose Y, Murosaki S, Yamamoto Y, Kase T and Yoshikai Y: Oral administration of heat-killed Lactobacillus plantarum L-137 enhances protection against influenza virus infection by stimulation of type I interferon production in mice. Int Immunopharmacol. 9:1122–1125. 2009.PubMed/NCBI View Article : Google Scholar

38 

Park S, Kim JI, Bae JY, Yoo K, Kim H, Kim IH, Park MS and Lee I: Effects of heat-killed Lactobacillus plantarum against influenza viruses in mice. J Microbiol. 56:145–149. 2018.PubMed/NCBI View Article : Google Scholar

39 

Takeda S, Takeshita M, Kikuchi Y, Dashnyam B, Kawahara S, Yoshida H, Watanabe W, Muguruma M and Kurokawa M: Efficacy of oral administration of heat-killed probiotics from Mongolian dairy products against influenza infection in mice: Alleviation of influenza infection by its immunomodulatory activity through intestinal immunity. Int Immunopharmacol. 11:1976–1983. 2011.PubMed/NCBI View Article : Google Scholar

40 

Kawahara T, Takahashi T, Oishi K, Tanaka H, Masuda M, Takahashi S, Takano M, Kawakami T, Fukushima K, Kanazawa H and Suzuki T: Consecutive oral administration of Bifidobacterium longum MM-2 improves the defense system against influenza virus infection by enhancing natural killer cell activity in a murine model. Microbiol Immunol. 59:1–12. 2015.PubMed/NCBI View Article : Google Scholar

41 

Namba K, Hatano M, Yaeshima T, Takase M and Suzuki K: Effects of Bifidobacterium longum BB536 administration on influenza infection, influenza vaccine antibody titer, and cell-mediated immunity in the elderly. Biosci Biotechnol Biochem. 74:939–945. 2010.PubMed/NCBI View Article : Google Scholar

42 

Sugimura T, Takahashi H, Jounai K, Ohshio K, Kanayama M, Tazumi K, Tanihata Y, Miura Y, Fujiwara D and Yamamoto N: Effects of oral intake of plasmacytoid dendritic cells-stimulative lactic acid bacterial strain on pathogenesis of influenza-like illness and immunological response to influenza virus. Br J Nutr. 114:727–733. 2015.PubMed/NCBI View Article : Google Scholar

43 

Shi HY, Zhu X, Li WL, Mak JWY, Wong SH, Zhu ST, Guo SL, Chan FKL, Zhang ST and Ng SC: Modulation of gut microbiota protects against viral respiratory tract infections: A systematic review of animal and clinical studies. Eur J Nutr: Apr 14, 2021 (Epub ahead of print).

44 

Wang F, Pan B, Xu S, Xu Z, Zhang T, Zhang Q, Bao Y, Wang Y, Zhang J, Xu C and Xue X: A meta-analysis reveals the effectiveness of probiotics and prebiotics against respiratory viral infection. Biosci Rep. 41(BSR20203638)2021.PubMed/NCBI View Article : Google Scholar

45 

Wei PF (ed): Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 7). Chin Med J (Engl). 133:1087–1095. 2020.PubMed/NCBI View Article : Google Scholar

46 

Cao P, Wu S, Wu T, Deng Y, Zhang Q, Wang K and Zhang Y: The important role of polysaccharides from a traditional Chinese medicine-Lung cleansing and detoxifying decoction against the COVID-19 pandemic. Carbohydr Polym. 240(116346)2020.PubMed/NCBI View Article : Google Scholar

47 

Shi N, Liu B, Liang N, Ma Y, Ge Y, Yi H, Wo H, Gu H, Kuang Y, Tang S, et al: Association between early treatment with Qingfei Paidu decoction and favorable clinical outcomes in patients with COVID-19: A retrospective multicenter cohort study. Pharmacol Res. 161(105290)2020.PubMed/NCBI View Article : Google Scholar

48 

Zhao ZH, Zhou Y, Li WH, Huang QS, Tang ZH and Li H: Analysis of traditional Chinese medicine diagnosis and treatment strategies for COVID-19 based on ‘The Diagnosis and Treatment Program for Coronavirus Disease-2019’ from Chinese Authority. Am J Chin Med. 48:1035–1049. 2020.PubMed/NCBI View Article : Google Scholar

49 

Zhong LLD, Lam WC, Yang W, Chan KW, Sze SCW, Miao J, Yung KKL, Bian Z and Wong VT: Potential targets for treatment of coronavirus disease 2019 (COVID-19): A review of Qing-Fei-Pai-Du-Tang and its major herbs. Am J Chin Med. 48:1051–1071. 2020.PubMed/NCBI View Article : Google Scholar

50 

Xin S, Cheng X, Zhu B, Liao X, Yang F, Song L, Shi Y, Guan X, Su R, Wang J, et al: Clinical retrospective study on the efficacy of Qingfei Paidu decoction combined with Western medicine for COVID-19 treatment. Biomed Pharmacother. 129(110500)2020.PubMed/NCBI View Article : Google Scholar

51 

Kageyama Y, Aida K, Kawauchi K, Morimoto M, Ebisui T, Akiyama T and Nakamura T: Qingfei Paidu decoction, a Chinese herbal medicine against COVID-19, elevates the blood levels of pro-inflammatory cytokines: An open-label, single-arm pilot study. World Acad Sci J. 3(25)2021.

52 

Popkin BM, Du S, Green WD, Beck MA, Algaith T, Herbst CH, Alsukait RF, Alluhidan M, Alazemi N and Shekar M: Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships. Obes Rev. 21(e13128)2020.PubMed/NCBI View Article : Google Scholar

53 

Kompaniyets L, Goodman AB, Belay B, Freedman DS, Sucosky MS, Lange SJ, Gundlapalli AV, Boehmer TK and Blanck HM: Body mass index and risk for COVID-19-related hospitalization, intensive care unit admission, invasive mechanical ventilation, and Death-United States, march-december 2020. MMWR Morb Mortal Wkly Rep. 70:355–361. 2021.PubMed/NCBI View Article : Google Scholar

54 

Elshazli RM, Toraih EA, Elgaml A, El-Mowafy M, El-Mesery M, Amin MN, Hussein MH, Killackey MT, Fawzy MS and Kandil E: Diagnostic and prognostic value of hematological and immunological markers in COVID-19 infection: A meta-analysis of 6320 patients. PLoS One. 15(e0238160)2020.PubMed/NCBI View Article : Google Scholar

55 

Mesas AE, Cavero-Redondo I, Álvarez-Bueno C, Sarriá Cabrera MA, Maffei de Andrade S, Sequí-Dominguez I and Martínez-Vizcaíno V: Predictors of in-hospital COVID-19 mortality: A comprehensive systematic review and meta-analysis exploring differences by age, sex and health conditions. PLoS One. 15(e0241742)2020.PubMed/NCBI View Article : Google Scholar

56 

Zhang X, Tan Y, Ling Y, Lu G, Liu F, Yi Z, Jia X, Wu M, Shi B, Xu S, et al: Viral and host factors related to the clinical outcome of COVID-19. Nature. 583:437–440. 2020.PubMed/NCBI View Article : Google Scholar

57 

Okumura A, Watanabe T, Hayashi K and Yoshida H: Oral administration of distribution-processed Lactobacillus plantarum strain SNK12 protects against influenza virus infection. Jpn Pharmacol Ther. 47:1607–1612. 2019.

58 

Watanabe T, Hayashi K, Kan T, Ohwaki M and Kawahara T: Anti-influenza virus effects of Enterococcus faecalis KH2 and Lactobacillus plantarum SNK12 RNA. Biosci Microbiota Food Health. 40:43–49. 2021.PubMed/NCBI View Article : Google Scholar

59 

Xiao JZ, Kondo S, Yanagisawa N, Miyaji K, Enomoto K, Sakoda T, Iwatsuki K and Enomoto T: Clinical efficacy of probiotic Bifidobacterium longum for the treatment of symptoms of Japanese cedar pollen allergy in subjects evaluated in an environmental exposure unit. Allergol Int. 56:67–75. 2007.PubMed/NCBI View Article : Google Scholar

60 

Xiao JZ, Kondo S, Yanagisawa N, Takahashi N, Odamaki T, Iwabuchi N, Iwatsuki K, Kokubo S, Togashi H, Enomoto K and Enomoto T: Effect of probiotic Bifidobacterium longum BB536 [corrected] in relieving clinical symptoms and modulating plasma cytokine levels of Japanese cedar pollinosis during the pollen season. A randomized double-blind, placebo-controlled trial. J Investig Allergol Clin Immunol. 16:86–93. 2006.PubMed/NCBI

61 

Iwabuchi N, Xiao JZ, Yaeshima T and Iwatsuki K: Oral administration of Bifidobacterium longum ameliorates influenza virus infection in mice. Biol Pharm Bull. 34:1352–1355. 2011.PubMed/NCBI View Article : Google Scholar

62 

Lau AS, Yanagisawa N, Hor YY, Lew LC, Ong JS, Chuah LO, Lee YY, Choi SB, Rashid F, Wahid N, et al: Bifidobacterium longum BB536 alleviated upper respiratory illnesses and modulated gut microbiota profiles in Malaysian pre-school children. Benef Microbes. 9:61–70. 2018.PubMed/NCBI View Article : Google Scholar

63 

Odamaki T, Sugahara H, Yonezawa S, Yaeshima T, Iwatsuki K, Tanabe S, Tominaga T, Togashi H, Benno Y and Xiao JZ: Effect of the oral intake of yogurt containing Bifidobacterium longum BB536 on the cell numbers of enterotoxigenic Bacteroides fragilis in microbiota. Anaerobe. 18:14–18. 2012.PubMed/NCBI View Article : Google Scholar

64 

Odamaki T, Xiao JZ, Iwabuchi N, Sakamoto M, Takahashi N, Kondo S, Miyaji K, Iwatsuki K, Togashi H, Enomoto T and Benno Y: Influence of Bifidobacterium longum BB536 intake on faecal microbiota in individuals with Japanese cedar pollinosis during the pollen season. J Med Microbiol. 56:1301–1308. 2007.PubMed/NCBI View Article : Google Scholar

65 

Holvoet S, Zuercher AW, Julien-Javaux F, Perrot M and Mercenier A: Characterization of candidate anti-allergic probiotic strains in a model of th2-skewed human peripheral blood mononuclear cells. Int Arch Allergy Immunol. 161:142–154. 2013.PubMed/NCBI View Article : Google Scholar

66 

Medina M, Izquierdo E, Ennahar S and Sanz Y: Differential immunomodulatory properties of Bifidobacterium logum strains: Relevance to probiotic selection and clinical applications. Clin Exp Immunol. 150:531–538. 2007.PubMed/NCBI View Article : Google Scholar

67 

Niers LE, Timmerman HM, Rijkers GT, van Bleek GM, van Uden NO, Knol EF, Kapsenberg ML, Kimpen JL and Hoekstra MO: Identification of strong interleukin-10 inducing lactic acid bacteria which down-regulate T helper type 2 cytokines. Clin Exp Allergy. 35:1481–1489. 2005.PubMed/NCBI View Article : Google Scholar

68 

Hoffmann G, Wirleitner B and Fuchs D: Potential role of immune system activation-associated production of neopterin derivatives in humans. Inflamm Res. 52:313–321. 2003.PubMed/NCBI View Article : Google Scholar

69 

Gieseg SP, Baxter-Parker G and Lindsay A: Neopterin, inflammation, and Oxidative Stress: What could we be missing? Antioxidants (Basel). 7(80)2018.PubMed/NCBI View Article : Google Scholar

70 

Hausen A, Fuchs D, König K and Wachter H: Determination of neopterine in human urine by reversed-phase high-performance liquid chromatography. J Chromatogr. 227:61–70. 1982.PubMed/NCBI View Article : Google Scholar

71 

Gleiss A, Sanchez-Cabo F, Perco P, Tong D and Heinze G: Adaptive trimmed t-statistics for identifying predominantly high expression in a microarray experiment. Stat Med. 30:52–61. 2011.PubMed/NCBI View Article : Google Scholar

72 

Krzywinski M and Altman N: Visualizing samples with box plots. Nat Methods. 11:119–120. 2014.PubMed/NCBI View Article : Google Scholar

73 

Domthong U, Parikh CR, Kimmel PL and Chinchilli VM: Assessment, Serial Evaluation, Subsequent Sequelae of Acute Kidney Injury Consortium. Assessing the agreement of biomarker data in the presence of left-censoring. BMC Nephrol. 15(144)2014.PubMed/NCBI View Article : Google Scholar

74 

Yu X, Lakerveld AJ, Imholz S, Hendriks M, Ten Brink SCA, Mulder HL, de Haan K, Schepp RM, Luytjes W, de Jong MD, et al: Antibody and local cytokine response to respiratory syncytial virus infection in community-dwelling older adults. mSphere. 5:e00577–20. 2020.PubMed/NCBI View Article : Google Scholar

75 

Kanda Y: Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 48:452–458. 2013.PubMed/NCBI View Article : Google Scholar

76 

Faul F, Erdfelder E, Lang AG and Buchner A: G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 39:175–191. 2007.PubMed/NCBI View Article : Google Scholar

77 

Waggoner SN, Reighard SD, Gyurova IE, Cranert SA, Mahl SE, Karmele EP, McNally JP, Moran MT, Brooks TR, Yaqoob F, et al: Roles of natural killer cells in antiviral immunity. Curr Opin Virol. 16:15–23. 2016.PubMed/NCBI View Article : Google Scholar

78 

Björkström NK, Strunz B and Ljunggren HG: Natural killer cells in antiviral immunity. Nat Rev Immunol: Jun 11, 2021 (Epub ahead of print).

79 

Berggren A, Lazou Ahren I, Larsson N and Onning G: Randomised, double-blind and placebo-controlled study using new probiotic lactobacilli for strengthening the body immune defence against viral infections. Eur J Nutr. 50:203–210. 2011.PubMed/NCBI View Article : Google Scholar

80 

International Home Medical (IHM): Plant-origin nano-particled (Pro)-Biogenics immunophilus SNK. Plant-origin nano-sized lactic acid bacterium SNK®. IHM Inc., Tolyo, 2021. https://www.ihmg.jp/nyusan_snk_en/. Accessed October 14, 2021.

81 

Chen N, Xia P, Li S, Zhang T, Wang TT and Zhu J: RNA sensors of the innate immune system and their detection of pathogens. IUBMB Life. 69:297–304. 2017.PubMed/NCBI View Article : Google Scholar

82 

Moreno-Eutimio MA, Lopez-Macias C and Pastelin-Palacios R: Bioinformatic analysis and identification of single-stranded RNA sequences recognized by TLR7/8 in the SARS-CoV-2, SARS-CoV, and MERS-CoV genomes. Microbes Infect. 22:226–229. 2020.PubMed/NCBI View Article : Google Scholar

83 

Slaats J, Ten Oever J, van de Veerdonk FL and Netea MG: IL-1β/IL-6/CRP and IL-18/ferritin: Distinct inflammatory programs in infections. PLoS Pathog. 12(e1005973)2016.PubMed/NCBI View Article : Google Scholar

84 

Mick E, Kamm J, Pisco AO, Ratnasiri K, Babik JM, Castañeda G, DeRisi JL, Detweiler AM, Hao SL, Kangelaris KN, et al: Upper airway gene expression reveals suppressed immune responses to SARS-CoV-2 compared with other respiratory viruses. Nat Commun. 11(5854)2020.PubMed/NCBI View Article : Google Scholar

85 

van der Made CI, Simons A, Schuurs-Hoeijmakers J, van den Heuvel G, Mantere T, Kersten S, van Deuren RC, Steehouwer M, van Reijmersdal SV, Jaeger M, et al: Presence of genetic variants among young men with severe COVID-19. JAMA. 324:663–673. 2020.PubMed/NCBI View Article : Google Scholar

86 

Liu C, Martins AJ, Lau WW, Rachmaninoff N, Chen J, Imberti L, Mostaghimi D, Fink DL, Burbelo PD, Dobbs K, et al: Time-resolved systems immunology reveals a late juncture linked to fatal COVID-19. Cell. 184:1836–1857.e22. 2021.PubMed/NCBI View Article : Google Scholar

87 

Sahoo D, Katkar GD, Khandelwal S, Behroozikhah M, Claire A, Castillo V, Tindle C, Fuller M, Taheri S, Rogers TF, et al: AI-guided discovery of the invariant host response to viral pandemics. EBioMedicine. 68(103390)2021.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Kageyama Y, Nishizaki Y, Aida K, Yayama K, Ebisui T, Akiyama T and Nakamura T: <em>Lactobacillus plantarum</em> induces innate cytokine responses that potentially provide a protective benefit against COVID‑19: A single‑arm, double‑blind, prospective trial combined with an <em>in vitro</em> cytokine response assay. Exp Ther Med 23: 20, 2022.
APA
Kageyama, Y., Nishizaki, Y., Aida, K., Yayama, K., Ebisui, T., Akiyama, T., & Nakamura, T. (2022). <em>Lactobacillus plantarum</em> induces innate cytokine responses that potentially provide a protective benefit against COVID‑19: A single‑arm, double‑blind, prospective trial combined with an <em>in vitro</em> cytokine response assay. Experimental and Therapeutic Medicine, 23, 20. https://doi.org/10.3892/etm.2021.10942
MLA
Kageyama, Y., Nishizaki, Y., Aida, K., Yayama, K., Ebisui, T., Akiyama, T., Nakamura, T."<em>Lactobacillus plantarum</em> induces innate cytokine responses that potentially provide a protective benefit against COVID‑19: A single‑arm, double‑blind, prospective trial combined with an <em>in vitro</em> cytokine response assay". Experimental and Therapeutic Medicine 23.1 (2022): 20.
Chicago
Kageyama, Y., Nishizaki, Y., Aida, K., Yayama, K., Ebisui, T., Akiyama, T., Nakamura, T."<em>Lactobacillus plantarum</em> induces innate cytokine responses that potentially provide a protective benefit against COVID‑19: A single‑arm, double‑blind, prospective trial combined with an <em>in vitro</em> cytokine response assay". Experimental and Therapeutic Medicine 23, no. 1 (2022): 20. https://doi.org/10.3892/etm.2021.10942
Copy and paste a formatted citation
x
Spandidos Publications style
Kageyama Y, Nishizaki Y, Aida K, Yayama K, Ebisui T, Akiyama T and Nakamura T: <em>Lactobacillus plantarum</em> induces innate cytokine responses that potentially provide a protective benefit against COVID‑19: A single‑arm, double‑blind, prospective trial combined with an <em>in vitro</em> cytokine response assay. Exp Ther Med 23: 20, 2022.
APA
Kageyama, Y., Nishizaki, Y., Aida, K., Yayama, K., Ebisui, T., Akiyama, T., & Nakamura, T. (2022). <em>Lactobacillus plantarum</em> induces innate cytokine responses that potentially provide a protective benefit against COVID‑19: A single‑arm, double‑blind, prospective trial combined with an <em>in vitro</em> cytokine response assay. Experimental and Therapeutic Medicine, 23, 20. https://doi.org/10.3892/etm.2021.10942
MLA
Kageyama, Y., Nishizaki, Y., Aida, K., Yayama, K., Ebisui, T., Akiyama, T., Nakamura, T."<em>Lactobacillus plantarum</em> induces innate cytokine responses that potentially provide a protective benefit against COVID‑19: A single‑arm, double‑blind, prospective trial combined with an <em>in vitro</em> cytokine response assay". Experimental and Therapeutic Medicine 23.1 (2022): 20.
Chicago
Kageyama, Y., Nishizaki, Y., Aida, K., Yayama, K., Ebisui, T., Akiyama, T., Nakamura, T."<em>Lactobacillus plantarum</em> induces innate cytokine responses that potentially provide a protective benefit against COVID‑19: A single‑arm, double‑blind, prospective trial combined with an <em>in vitro</em> cytokine response assay". Experimental and Therapeutic Medicine 23, no. 1 (2022): 20. https://doi.org/10.3892/etm.2021.10942
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team