Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
March-2021 Volume 21 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2021 Volume 21 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

T‑regulatory cells from patients with rheumatoid arthritis retain suppressor functions in vitro

  • Authors:
    • Daniil Shevyrev
    • Valeriy Tereshchenko
    • Vladimir Kozlov
    • Alexey Sizikov
    • Oksana Chumasova
    • Veroniсa Koksharova
  • View Affiliations / Copyright

    Affiliations: Laboratory of Clinical Immunopathology, Federal State Budgetary Scientific Institution, Research Institute of Fundamental and Clinical Immunology, Novosibirsk 630099, Russia, Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution, Research Institute of Fundamental and Clinical Immunology, Novosibirsk 630099, Russia, Rheumatology Department, Federal State Budgetary Scientific Institution, Research Institute of Fundamental and Clinical Immunology, Novosibirsk 630099, Russia
    Copyright: © Shevyrev et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 209
    |
    Published online on: January 14, 2021
       https://doi.org/10.3892/etm.2021.9641
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Rheumatoid arthritis (RA) is a chronic disease of connective tissue caused by intolerance to self‑antigens. Regulatory T cells (Tregs) are key players in maintaining autotolerance through a variety of suppressor mechanisms. RA is generally believed to develop due to disorders in Tregs; however, there is no consensus on this issue. Thus, the present study focused on phenotypical analysis of Treg cells and their ability to suppress CD4+ and CD8+ cell proliferation. The present study used peripheral blood samples from 21 patients with RA and 22 healthy donors. The CD25+FoxP3+ subpopulation of Tregs was analyzed using flow cytometry to evaluate the expression of CTLA‑4, PD‑L1, HLA‑DR, CCR4, CD86 and RORyt. Tregs suppressor activity was calculated in terms of suppression of the proliferation of CD4+ and CD8+ lymphocytes in vitro. Suppressor activity of the total Treg population did not differ between patients with RA and healthy donors. However, the patients had elevated CD25loFoxP3+ levels and lower CD25hiFoxP3+ levels; in addition, they had more activated Tregs expressing PD‑L1, HLA‑DR, CCR4 and CD86. The surface expression of CTLA‑4 was below the reference level. The patients also had transitional FoxP3+RORyt+ cells and elevated CD4+RORyt+ levels, which were highly correlated with disease activity. These results show that in RA, Treg cells are activated and have an immunosuppressive activity. However, it is the transitional FoxP3+RORyt+ cells and increased CD4+RORyt+ percentages in peripheral blood that appear to be associated with the pathological conversion of some Treg cells into Th‑17. This process appears to be key in RA pathogenesis.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

View References

1 

Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, Kavanaugh A, McInnes IB, Solomon DH, Strand V and Yamamoto K: Rheumatoid arthritis. Nat Rev Dis Primers. 4(18001)2018.PubMed/NCBI View Article : Google Scholar

2 

Fang Q, Zhou C and Nandakumar KS: Molecular and cellular pathways contributing to joint damage in rheumatoid arthritis. Mediators Inflamm. 2020(3830212)2020.PubMed/NCBI View Article : Google Scholar

3 

Shevyrev D and Tereshchenko V: Treg heterogeneity, function, and homeostasis. Front Immunol. 10(3100)2020.PubMed/NCBI View Article : Google Scholar

4 

Ehrenstein MR, Evans JG, Singh A, Moore S, Warnes G, Isenberg DA and Mauri C: Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J Exp Med. 200:277–285. 2004.PubMed/NCBI View Article : Google Scholar

5 

Morita T, Shima Y, Wing JB, Sakaguchi S, Ogata A and Kumanogoh A: The proportion of regulatory T cells in patients with rheumatoid arthritis: A Meta-analysis. PLoS One. 11(e0162306)2016.PubMed/NCBI View Article : Google Scholar

6 

Zhang X, Zhang X, Zhuang L, Xu C, Li T, Zhang G and Liu Y: Decreased regulatory T-cell frequency and interleukin-35 levels in patients with rheumatoid arthritis. Exp Ther Med. 16:5366–5372. 2018.PubMed/NCBI View Article : Google Scholar

7 

Abazaa N, EL-kabarityb RH and Abo-Shadyb RA: Deficient or abundant but unable to fight? Estimation of circulating FoxP3+ T regulatory cells and their counteracting FoxP3-in rheumatoid arthritis and correlation with disease activity. Egypt Rheum. 35:185–192. 2013.

8 

Walter GJ, Evans HG, Menon B, Gullick NJ, Kirkham BW, Cope AP, Geissmann F and Taams LS: Interaction with activated monocytes enhances cytokine expression and suppressive activity of human CD4+CD45ro+CD25+CD127low regulatory T cells. Arthritis Rheum. 65:627–638. 2013.PubMed/NCBI View Article : Google Scholar

9 

Kanjana K, Paisooksantivatana K, Matangkasombut P, Chevaisrakul P and Lumjiaktase P: Efficient short-term expansion of human peripheral blood regulatory T cells for co-culture suppression assay. J Immunoassay Immunochem. 40:573–589. 2019.PubMed/NCBI View Article : Google Scholar

10 

Walter GJ, Fleskens V, Frederiksen KS, Rajasekhar M, Menon B, Gerwien JG, Evans HG and Taams LS: Phenotypic, functional, and gene expression profiling of peripheral CD45RA+ and CD45RO+ CD4+CD25+CD127low treg cells in patients with chronic rheumatoid arthritis. Arthritis Rheumatol. 68:103–116. 2016.PubMed/NCBI View Article : Google Scholar

11 

Nie H, Zheng Y, Li R, Guo TB, He D, Fang L, Liu X, Xiao L, Chen X, Wan B, et al: Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis. Nat Med. 19:322–328. 2013.PubMed/NCBI View Article : Google Scholar

12 

Zhang N, Schröppel B, Lal G, Jakubzick C, Mao X, Chen D, Yin N, Jessberger R, Ochando JC, Ding Y and Bromberg JS: Regulatory T cells sequentially migrate from inflamed tissues to draining lymph nodes to suppress the alloimmune response. Immunity. 30:458–469. 2009.PubMed/NCBI View Article : Google Scholar

13 

Baecher-Allan C, Wolf E and Hafler DA: MHC class II expression identifies functionally distinct human regulatory T cells. J Immunol. 176:4622–4631. 2006.PubMed/NCBI View Article : Google Scholar

14 

Shevyrev DV, Blinova EA and Kozlov VA: The influence of humoral factors of homeostatic proliferation on t-regulatory cells in vitro. Bull Siberian Med. 18:286–293. 2019.

15 

Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, Baker J, Jeffery LE, Kaur S, Briggs Z, et al: Trans-endocytosis of CD80 and CD86: A molecular basis for the cell-extrinsic function of CTLA-4. Science. 332:600–603. 2011.PubMed/NCBI View Article : Google Scholar

16 

Basdeo SA, Moran B, Cluxton D, Canavan M, McCormick J, Connolly M, Orr C, Mills KH, Veale DJ, Fearon U and Fletcher JM: Polyfunctional, pathogenic CD161+ Th17 lineage cells are resistant to regulatory T cell-mediated suppression in the context of autoimmunity. J Immunol. 195:528–540. 2015.PubMed/NCBI View Article : Google Scholar

17 

Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-hora M, Kodama T, Tanaka S, Bluestone JA and Takayanagi H: Pathogenic conversion of Foxp3+ T-cells into TH17 cells in autoimmune arthritis. Nat Med. 20:62–70. 2014.PubMed/NCBI View Article : Google Scholar

18 

Korn T, Bettelli E, Oukka M and Kuchroo VK: IL-17 and Th17 cells. Annu Rev Immunol. 27:485–517. 2009.PubMed/NCBI View Article : Google Scholar

19 

Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ and Littman DR: The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 126:1121–1133. 2006.PubMed/NCBI View Article : Google Scholar

20 

Aletaha D, Ward MM, Machold KP, Nell VP, Stamm T and Smolen JS: Remission and active disease in rheumatoid arthritis: Defining criteria for disease activity states. Arthritis Rheum. 52:2625–2636. 2005.PubMed/NCBI View Article : Google Scholar

21 

van der Heijde DM, van't Hof M, van Riel PL and van de Putte LB: Development of a disease activity score based on judgment in clinical practice by rheumatologists. J Rheumatol. 20:579–581. 1993.PubMed/NCBI

22 

Scott PJ and Huskisson EC: Measurement of functional capacity with visual analogue scales. Rheumatol Rehabil. 16:257–259. 1977.PubMed/NCBI View Article : Google Scholar

23 

Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO III, Birnbaum NS, Burmester GR, Bykerk VP, Cohen MD, et al: 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 62:2569–2581. 2010.PubMed/NCBI View Article : Google Scholar

24 

Böyum A: Isolation of leucocytes from human blood. Further observations. Methylcellulose, dextran, and ficoll as erythrocyteaggregating agents. Scand J Clin Lab Invest Suppl. 97:31–50. 1968.PubMed/NCBI

25 

Böyum A: Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 97:77–89. 1968.PubMed/NCBI

26 

Collison LW and Vignali DA: In vitro Treg suppression assays. Methods Mol Biol. 707:21–37. 2011.PubMed/NCBI View Article : Google Scholar

27 

Mahmud SA, Manlove LS and Farrar MA: Interleukin-2 and STAT5 in regulatory T cell development and function. JAKSTAT. 2(e23154)2013.PubMed/NCBI View Article : Google Scholar

28 

Hua J, Inomata T, Chen Y, Foulsham W, Stevenson W, Shiang T, Bluestone JA and Dana R: Pathological conversion of regulatory T cells is associated with loss of allotolerance. Sci Rep. 8(7059)2018.PubMed/NCBI View Article : Google Scholar

29 

Ivanov II, Zhou L and Littman DR: Transcriptional regulation of Th17 cell differentiation. Semin Immunol. 19:409–417. 2007.PubMed/NCBI View Article : Google Scholar

30 

Tada Y, Ono N, Suematsu R, Tashiro S, Sadanaga Y, Tokuda Y, Ono Y, Nakao Y, Maruyama A, Ohta A and Koarada S: The balance between Foxp3 and Ror-γt expression in peripheral blood is altered by tocilizumab and abatacept in patients with rheumatoid arthritis. BMC Musculoskelet Disord. 17(290)2016.PubMed/NCBI View Article : Google Scholar

31 

Kugyelka R, Kohl Z, Olasz K, Mikecz K, Rauch TA, Glant TT and Boldizsar F: Enigma of IL-17 and Th17 cells in rheumatoid arthritis and in autoimmune animal models of arthritis. Mediators Inflamm. 2016(6145810)2016.PubMed/NCBI View Article : Google Scholar

32 

Kim BS, Lu H, Ichiyama K, Chen X, Zhang YB, Mistry NA, Tanaka K, Lee YH, Nurieva R, Zhang L, et al: Generation of RORγt+ Antigen-Specific T regulatory 17 cells from Foxp3+ precursors in autoimmunity. Cell Rep. 21:195–207. 2017.PubMed/NCBI View Article : Google Scholar

33 

Rossetti M, Spreafico R, Consolaro A, Leong JY, Chua C, Massa M, Saidin S, Magni-Manzoni S, Arkachaisri T, Wallace CA, et al: TCR repertoire sequencing identifies synovial Treg cell clonotypes in the bloodstream during active inflammation in human arthritis. Ann Rheum Dis. 76:435–441. 2017.PubMed/NCBI View Article : Google Scholar

34 

Dejaco C, Duftner C, Grubeck-Loebenstein B and Schirmer M: Imbalance of regulatory T cells in human autoimmune diseases. Immunology. 117:289–300. 2006.PubMed/NCBI View Article : Google Scholar

35 

Lee GR: The Balance of Th17 versus Treg cells in autoimmunity. Int J Mol Sci. 19(730)2018.PubMed/NCBI View Article : Google Scholar

36 

Horwitz DA, Fahmy TM, Piccirillo CA and La Cava A: Rebalancing immune homeostasis to treat autoimmune diseases. Trends Immunol. 40:888–908. 2019.PubMed/NCBI View Article : Google Scholar

37 

Shalini PU, Debnath T, Jvs V, Kona LK, Kamaraju SR, Kancherla R and Chelluri LK: A study on FoxP3 and Tregs in paired samples of peripheral blood and synovium in rheumatoid arthritis. Cent Eur J Immunol. 40:431–436. 2015.PubMed/NCBI View Article : Google Scholar

38 

Li N, Wei W, Yin F, Chen M, Ma TR, Wu Q, Zhou JR, Zheng SG and Han J: The abnormal expression of CCR4 and CCR6 on Tregs in rheumatoid arthritis. Int J Clin Exp Med. 8:15043–15053. 2015.PubMed/NCBI

39 

Al-Banna NA, Vaci M, Slauenwhite D, Johnston B and Issekutz TB: CCR4 and CXCR3 play different roles in the migration of T cells to inflammation in skin, arthritic joints, and lymph nodes. Eur J Immunol. 44:1633–1643. 2014.PubMed/NCBI View Article : Google Scholar

40 

Cribbs AP, Kennedy A, Penn H, Read JE, Amjadi P, Green P, Syed K, Manka SW, Brennan FM, Gregory B and Williams RO: Treg cell function in rheumatoid arthritis is compromised by ctla-4 promoter methylation resulting in a failure to activate the indoleamine 2,3-dioxygenase pathway. Arthritis Rheumatol. 66:2344–2354. 2014.PubMed/NCBI View Article : Google Scholar

41 

Flores-Borja F, Jury EC, Mauri C and Ehrenstein MR: Defects in CTLA-4 are associated with abnormal regulatory T cell function in rheumatoid arthritis. Proc Natl Acad Sci USA. 105:19396–19401. 2008.PubMed/NCBI View Article : Google Scholar

42 

Walker LS: Treg and CTLA-4: Two intertwining pathways to immune tolerance. J Autoimmun. 45:49–57. 2013.PubMed/NCBI View Article : Google Scholar

43 

Linsley PS, Bradshaw J, Greene J, Peach R, Bennett KL and Mittler RS: Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity. 4:535–543. 1996.PubMed/NCBI View Article : Google Scholar

44 

Sansom DM: CD28, CTLA-4 and their ligands: Who does what and to whom? Immunology. 101:169–177. 2000.PubMed/NCBI View Article : Google Scholar

45 

Pesenacker AM, Bending D, Ursu S, Wu Q, Nistala K and Wedderburn LR: CD161 defines the subset of FoxP3+ T cells capable of producing proinflammatory cytokines. Blood. 121:2647–2658. 2013.PubMed/NCBI View Article : Google Scholar

46 

Afzali B, Mitchell PJ, Edozie FC, Povoleri GA, Dowson SE, Demandt L, Walter G, Canavan JB, Scotta C, Menon B, et al: CD161 expression characterizes a subpopulation of human regulatory T cells that produces IL-17 in a STAT3-dependent manner. Eur J Immunol. 43:2043–2054. 2013.PubMed/NCBI View Article : Google Scholar

47 

Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, Tanaka S, Kodama T, Akira S, Iwakura Y, et al: Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med. 203:2673–2682. 2006.PubMed/NCBI View Article : Google Scholar

48 

Pappu BP and Dong C: Measurement of interleukin-17. Curr Protoc Immunol: Chapter 6:Unit 6.25, 2007. doi:10.1002/0471142735.im0625s79.

49 

Zhao L, Chou Y, Jiang Y, Jiang Z and Chu CQ: Analysis of IL-17 production by flow cytometry and ELISPOT assays. Methods Mol Biol. 1172:243–256. 2014.PubMed/NCBI View Article : Google Scholar

50 

Wehrens EJ, Mijnheer G, Duurland CL, Klein M, Meerding J, van Loosdregt J, de Jager W, Sawitzki B, Coffer PJ, Vastert B, et al: Functional human regulatory T cells fail to control autoimmune inflammation due to PKB/c-Akt hyperactivation in effector cells. Blood. 118:3538–3548. 2011.PubMed/NCBI View Article : Google Scholar

51 

Herrath J, Müller M, Amoudruz P, Janson P, Michaëlsson J, Larsson PT, Trollmo C, Raghavan S and Malmström V: The inflammatory milieu in the rheumatic joint reduces regulatory T-cell function. Eur J Immunol. 41:2279–2290. 2011.PubMed/NCBI View Article : Google Scholar

52 

Zemmour D, Zilionis R, Kiner E, Klein AM, Mathis D and Benoist C: Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nat Immunol. 19:291–301. 2018.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Shevyrev D, Tereshchenko V, Kozlov V, Sizikov A, Chumasova O and Koksharova V: T‑regulatory cells from patients with rheumatoid arthritis retain suppressor functions <em>in vitro</em>. Exp Ther Med 21: 209, 2021.
APA
Shevyrev, D., Tereshchenko, V., Kozlov, V., Sizikov, A., Chumasova, O., & Koksharova, V. (2021). T‑regulatory cells from patients with rheumatoid arthritis retain suppressor functions <em>in vitro</em>. Experimental and Therapeutic Medicine, 21, 209. https://doi.org/10.3892/etm.2021.9641
MLA
Shevyrev, D., Tereshchenko, V., Kozlov, V., Sizikov, A., Chumasova, O., Koksharova, V."T‑regulatory cells from patients with rheumatoid arthritis retain suppressor functions <em>in vitro</em>". Experimental and Therapeutic Medicine 21.3 (2021): 209.
Chicago
Shevyrev, D., Tereshchenko, V., Kozlov, V., Sizikov, A., Chumasova, O., Koksharova, V."T‑regulatory cells from patients with rheumatoid arthritis retain suppressor functions <em>in vitro</em>". Experimental and Therapeutic Medicine 21, no. 3 (2021): 209. https://doi.org/10.3892/etm.2021.9641
Copy and paste a formatted citation
x
Spandidos Publications style
Shevyrev D, Tereshchenko V, Kozlov V, Sizikov A, Chumasova O and Koksharova V: T‑regulatory cells from patients with rheumatoid arthritis retain suppressor functions <em>in vitro</em>. Exp Ther Med 21: 209, 2021.
APA
Shevyrev, D., Tereshchenko, V., Kozlov, V., Sizikov, A., Chumasova, O., & Koksharova, V. (2021). T‑regulatory cells from patients with rheumatoid arthritis retain suppressor functions <em>in vitro</em>. Experimental and Therapeutic Medicine, 21, 209. https://doi.org/10.3892/etm.2021.9641
MLA
Shevyrev, D., Tereshchenko, V., Kozlov, V., Sizikov, A., Chumasova, O., Koksharova, V."T‑regulatory cells from patients with rheumatoid arthritis retain suppressor functions <em>in vitro</em>". Experimental and Therapeutic Medicine 21.3 (2021): 209.
Chicago
Shevyrev, D., Tereshchenko, V., Kozlov, V., Sizikov, A., Chumasova, O., Koksharova, V."T‑regulatory cells from patients with rheumatoid arthritis retain suppressor functions <em>in vitro</em>". Experimental and Therapeutic Medicine 21, no. 3 (2021): 209. https://doi.org/10.3892/etm.2021.9641
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team