|
1
|
Auyeung KK, Han QB and Ko JK:
Astragalus membranaceus: A review of its protection against
inflammation and gastrointestinal cancers. Am J Chin Med. 44:1–22.
2016.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Wang Z, Xia Q, Liu X, Liu W, Huang W, Mei
X, Luo J, Shan M, Lin R, Zou D and Ma Z: Phytochemistry,
pharmacology, quality control and future research of Forsythia
suspensa (Thunb.) Vahl: A review. J Ethnopharmacol. 210:318–339.
2018.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Shi JF, Luo YY, Li JX, Luo RF, Chen L, Li
J, Zhang JM and Fu CM: Research progress on anti-tumor effects and
mechanisms of triptolide and its combined application. China J Chin
Mater Med. 44:3391–3398. 2019.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Noel P, Von Hoff DD, Saluja AK, Velagapudi
M, Borazanci E and Han M: Triptolide and its derivatives as cancer
therapies. Trends Pharmacol Sci. 40:327–341. 2019.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Yan P and Sun X: Triptolide: A new star
for treating human malignancies. J Cancer Res Ther. 14
(Suppl):S271–S275. 2018.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Huang G, Yuan K, Zhu Q, Zhang S, Lu Q, Zhu
M, Sheng H, Yu R, Luo G and Xu A: Triptolide inhibits the
inflammatory activities of neutrophils to ameliorate chronic
arthritis. Mol Immunol. 101:210–220. 2018.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Huang SH, Lin GJ, Chu CH, Yu JC, Chen TW,
Chen YW, Chien MW, Chu CC and Sytwu HK: Triptolide ameliorates
autoimmune diabetes and prolongs islet graft survival in nonobese
diabetic mice. Pancreas. 42:442–451. 2013.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Zheng CX, Chen ZH, Zeng CH, Qin WS, Li LS
and Liu ZH: Triptolide protects podocytes from puromycin
aminonucleoside induced injury in vivo and in vitro. Kidney Int.
74:596–612. 2008.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Yu H, Shi L, Zhao S, Sun Y, Gao Y, Sun Y
and Qi G: Triptolide attenuates myocardial ischemia/reperfusion
injuries in rats by inducing the activation of Nrf2/HO-1 defense
pathway. Cardiovasc Toxicol. 16:325–335. 2016.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Xi C, Peng S, Wu Z, Zhou Q and Zhou J:
Toxicity of triptolide and the molecular mechanisms involved.
Biomed Pharmacother. 90:531–541. 2017.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Chen SR, Dai Y, Zhao J, Lin L and Wang Y
and Wang Y: A mechanistic overview of triptolide and celestrol,
natural products from Tripterygium wilfordii Hook F. Front
Pharmacol. 9(104)2018.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Yuan K, Li X, Lu Q, Zhu Q, Jiang H, Wang
T, Huang G and Xu A: Application and mechanisms of triptolide in
the treatment of inflammatory diseases-a review. Front Pharmacol.
10(1469)2019.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Wei YM, Wang YH, Xue HQ, Luan ZH, Liu BW
and Ren JH: Triptolide, A potential autophagy modulator. Chin J
Integr Med. 25:233–240. 2019.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Jin W, Wang J, Liu CP, Wang HW and Xu RM:
Structural basis for pri-miRNA recognition by Drosha. Mol Cell.
78:423–433. 2020.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Olejniczak M, Kotowska-Zimmer A and
Krzyzosiak W: Stress-induced changes in miRNA biogenesis and
functioning. Cell Mol Life Sci. 75:177–191. 2018.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Dexheimer PJ and Cochella L: MicroRNAs:
From mechanism to organism. Front Cell Dev Biol.
8(409)2020.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Rupaimoole R and Slack FJ: MicroRNA
therapeutics: Towards a new era for the management of cancer and
other diseases. Nat Rev Drug Discov. 16:203–222. 2017.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Liu Q, Wang W, Li F, Yu D, Xu C and Hu H:
Triptolide inhibits breast cancer cell metastasis through inducing
the expression of miR-146a, a negative regulator of Rho GTPase.
Oncol Res. 27:1043–1050. 2019.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Peng A, Huang X, Liu R, Wang X and Zhuang
J: Triptolide inhibits the inflammatory response of monocytes from
rheumatoid arthritis patients by regulating miR-155. Chin J Cell
Mol Immunol. 30:635–638. 2014.PubMed/NCBI
|
|
20
|
Feng Y, Zheng C, Zhang Y, Xing C, Cai W,
Li R, Chen J and Duan Y: Triptolide inhibits preformed
fibril-induced microglial activation by targeting the
microRNA155-5p/SHIP1 pathway. Oxid Med Cell Longev.
2019(6527638)2019.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Zhao X, Tang X, Yan Q, Song H, Li Z, Wang
D, Chen H and Sun L: Triptolide ameliorates lupus via the induction
of miR-125a-5p mediating Treg upregulation. Int Immunopharmacol.
71:14–21. 2019.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Yang Q, Sun M, Chen Y, Lu Y, Ye Y, Song H,
Xu X, Shi S and Wang J: Triptolide protects podocytes from
TGF-β-induced injury by preventing miR-30 downregulation. Am J
Transl Res. 9:5150–5159. 2017.PubMed/NCBI
|
|
23
|
Wang SR, Chen X, Ling S, Ni RZ, Guo H and
Xu JW: MicroRNA expression, targeting, release dynamics and
early-warning biomarkers in acute cardiotoxicity induced by
triptolide in rats. Biomed Pharmacother. 111:1467–1477.
2019.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Li SG, Shi QW, Yuan LY, Qin LP, Wang Y,
Miao YQ, Chen Z, Ling CQ and Qin WX: C-Myc-dependent repression of
two oncogenic miRNA clusters contributes to triptolide-induced cell
death in hepatocellular carcinoma cells. J Exp Clin Cancer Res.
37(51)2018.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Reno TA, Kim JY and Raz DJ: Triptolide
inhibits lung cancer cell migration, invasion, and metastasis. Ann
Thorac Surg. 100:1817–1825. 2015.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Kalla R, Ventham NT, Kennedy NA, Quintana
JF, Nimmo ER, Buck AH and Satsangi J: MicroRNAs: New players in
IBD. Gut. 64:504–517. 2015.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Michlewski G and Caceres JF:
Post-transcriptional control of miRNA biogenesis. RNA. 25:1–16.
2019.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Saliminejad K, Khorram Khorshid HR,
Soleymani Fard S and Ghaffari SH: An overview of microRNAs:
Biology, functions, therapeutics, and analysis methods. J Cell
Physiol. 234:5451–5465. 2019.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Vishnoi A and Rani S: miRNA biogenesis and
regulation of diseases: An overview. Methods Mol Biol. 1509:1–10.
2017.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Yates LA, Norbury CJ and Gilbert RJ: The
long and short of microRNA. Cell. 153:516–519. 2013.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Turner MJ and Slack FJ: Transcriptional
control of microRNA expression in C elegans: Promoting
better understanding. RNA Biol. 6:49–53. 2009.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Kedde M, Strasser MJ, Boldajipour B, Oude
Vrielink JA, Slanchev K, le Sage C, Nagel R, Voorhoeve PM, van
Duijse J, Orom UA, et al: RNA-binding protein Dnd1 inhibits
microRNA access to target mRNA. Cell. 131:1273–1286.
2007.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Krol J, Loedige I and Filipowicz W: The
widespread regulation of microRNA biogenesis, function and decay.
Nat Rev Genet. 11:597–610. 2010.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Qi Y and Li J: Triptolide inhibits the
growth and migration of colon carcinoma cells by down-regulation of
miR-191. Exp Mol Pathol. 107:23–31. 2019.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Wu CW, Wang SG, Lin ML and Chen SS:
Downregulation of miR-144 by triptolide enhanced p85α-PTEN complex
formation causing S phase arrest of human nasopharyngeal carcinoma
cells. Eur J Pharmacol. 855:137–148. 2019.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Chen M, Wang JM, Wang D, Wu R and Hou HW:
Triptolide inhibits migration and proliferation of fibroblasts from
ileocolonic anastomosis of patients with Crohn's disease via
regulating the miR161/HSP70 pathway. Mol Med Rep. 19:4841–4851.
2019.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Qian K, Zhang L and Shi K: Triptolide
prevents osteoarthritis via inhibiting hsa-miR-20b.
Inflammopharmacology. 27:109–119. 2019.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Xue M, Cheng Y, Han F, Chang Y, Yang Y, Li
X and Chen L, Lu Y, Sun B and Chen L: Triptolide attenuates renal
tubular epithelial-mesenchymal transition via the
miR-188-5p-mediated PI3K/AKT pathway in diabetic kidney disease.
Int J Biol Sci. 14:1545–1557. 2018.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Han F, Wang S, Chang Y, Li C, Yang J, Han
Z, Chang B, Sun B and Chen L: Triptolide prevents extracellular
matrix accumulation in experimental diabetic kidney disease by
targeting microRNA-137/Notch1 pathway. J Cell Physiol.
233:2225–2237. 2018.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Cao Y, Guo Y, Wang Y, Cao Y, Zong R, Huang
C and Liu J: Drug-containing serum of Xinfeng capsules protect
against H9C2 from death by enhancing miRNA-21 and inhibiting
toll-like receptor 4/phosphorylated p-38 (p-p38)/p-p65 signaling
pathway and proinflammatory cytokines expression. J Tradit Chin
Med. 38:359–365. 2018.PubMed/NCBI
|
|
41
|
Cao YX, Huang D, Liu J, Zong RK, Wan L,
Huang CB, Zhang WD and Wang Y: A novel chinese medicine, xinfeng
capsule, modulates proinflammatory cytokines via regulating the
toll-like receptor 4 (TLR4)/Mitogen-activated protein kinase
(MAPK)/Nuclear Kappa B (NF-κB) signaling pathway in an adjuvant
arthritis rat model. Med Sci Monit. 25:6767–6774. 2019.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Xu X, Tian L and Zhang Z: Triptolide
inhibits angiogenesis in microvascular endothelial cells through
regulation of miR-92a. J Physiol Biochem. 75:573–583.
2019.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Liang H, Zhang S and Li Z: Ginsenoside Rg3
protects mouse leydig cells against triptolide by downregulation of
miR-26a. Drug Des Devel Ther. 13:2057–2066. 2019.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Mamoori A, Gopalan V and Lam AK: Role of
miR-193a in cancer: Complexity and factors control the patterns of
its expression. Curr Cancer Drug Targets. 18:618–628.
2018.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Svoronos AA, Engelman DM and Slack FJ:
OncomiR or tumor suppressor? The duplicity of microRNAs in cancer.
Cancer Res. 76:3666–3670. 2016.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Meng HT, Zhu L, Ni WM, You LS, Jin J and
Qian WB: Triptolide inhibits the proliferation of cells from
lymphocytic leukemic cell lines in association with downregulation
of NF-kappaB activity and miR-16-1*. Acta Pharmacol Sin.
32:503–511. 2011.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Xiang W, Yang CY and Bai L: Mcl-1
inhibiton in cancer treatment. Onco Targets Ther. 11:7301–7314.
2018.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Chen Z, Sangwan V, Banerjee S, Mackenzie
T, Dudeja V, Li X, Wang H, Vickers SM and Saluja AK: miR-204
mediated loss of Myeloid cell leukemia-1 results in pancreatic
cancer cell death. Mol Cancer. 12(105)2013.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Roufayel R and Kadry S: Molecular
chaperone HSP70 and key regulators of apoptosis - a review. Curr
Mol Med. 19:315–325. 2019.PubMed/NCBI View Article : Google Scholar
|
|
50
|
MacKenzie TN, Mujumdar N, Banerjee S,
Sangwan V, Sarver A, Vickers S, Subramanian S and Saluja AK:
Triptolide induces the expression of miR-142-3p: A negative
regulator of heat shock protein 70 and pancreatic cancer cell
proliferation. Mol Cancer Ther. 12:1266–1275. 2013.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Hang S, Wang X and Li H: Triptolide
inhibits viability and migration while promotes apoptosis in
nephroblastoma cells by regulation of miR-193b-3p. Exp Mol Pathol.
108:80–88. 2019.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Zhang H, Li H, Liu Z, Ge A, Guo E, Liu S
and Chen Z: Triptolide inhibits the proliferation and migration of
medulloblastoma Daoy cells by upregulation of microRNA-138. J Cell
Biochem. 119:9866–9877. 2018.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Yao C, Li H and Zhang W: Triptolide
inhibits benign prostatic epithelium viability and migration and
induces apoptosis via upregulation of microRNA-218. Int J
Immunopathol Pharmacol. 32(2058738418812349)2018.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Liu Q, Wang W, Yang X, Zhao D, Li F and
Wang H: miRNA-146a inhibits cell migration and invasion by
targeting RhoA in breast cancer. Oncol Rep. 36:189–196.
2016.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Hu H, Tang J, Liu C and Cen Y: miR-23b
promotes the migration of keratinocytes through downregulating
TIMP3. J Surg Res. 254:102–109. 2020.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Wang J, Zhou F, Yin L, Zhao L, Zhang Y and
Wang J: MicroRNA-199b targets the regulation of ZEB1 expression to
inhibit cell proliferation, migration and invasion in non-small
cell lung cancer. Mol Med Rep. 16:5007–5014. 2017.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Charles S, Raj V, Arokiaraj J and Mala K:
Caveolin1/protein arginine methyltransferase1/sirtuin1 axis as a
potential target against endothelial dysfunction. Pharmacol Res.
119:1–11. 2017.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Philips BJ, Kumar A, Burki S, Ryan JP,
Noda K and D'Cunha J: Triptolide-induced apoptosis in non-small
cell lung cancer via a novel miR204-5p/Caveolin-1/Akt-mediated
pathway. Oncotarget. 11:2793–2806. 2020.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Cao Y: Adipocyte and lipid metabolism in
cancer drug resistance. J Clin Invest. 129:3006–3017.
2019.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Gomes BC, Rueff J and Rodrigues AS:
MicroRNAs and cancer drug resistance. Methods Mol Biol.
1395:137–162. 2016.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Pfeffer SR, Yang CH and Preffer LM: The
role of miR-21 in cancer. Drug Dev Res. 76:270–277. 2015.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Li X, Zang A, Jia Y, Zhang J, Fan W, Feng
J, Duan M, Zhang L, Huo R, Jiao J and Zhu X: Triptolide reduces
proliferation and enhances apoptosis of human non-small cell lung
cancer cells through PTEN by targeting miR-21. Mol Med Rep.
13:2763–2768. 2016.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Li H, Hui L, Xu W, Shen H, Chen Q, Long L
and Zhu X: Triptolide modulates the sensitivity of K562/A02 cells
to adriamycin by regulating miR-21 expression. Pharm Biol.
50:1233–1240. 2012.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Wang R, Ma X, Su S and Liu Y: Triptolide
antagonized the cisplatin resistance in human ovarian cancer cell
line A2780/CP70 via hsa-mir-6751. Future Med Chem. 10:1947–1955.
2018.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Huang X, Yang M and Jin J: Triptolide
enhances the sensitivity of multiple myeloma cells to dexamethasone
via microRNAs. Leuk Lymphoma. 53:1188–1195. 2012.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Jiang C, Fang X, Zhang H, Wang X, Li M,
Jiang W, Tian F, Zhu L and Bian Z: Triptolide inhibits the growth
of osteosarcoma by regulating microRNA-181a via targeting PTEN gene
in vivo and vitro. Tumour Biol. 39(1010428317697556)2017.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Jiang J, Song X, Yang J, Lei K, Ni Y, Zhou
F and Sun L: Triptolide inhibits proliferation and migration of
human neuroblastoma SH-SY5Y cells by upregulating MicroRNA-181a.
Oncol Res. 26:1235–1243. 2018.PubMed/NCBI View Article : Google Scholar
|
|
68
|
O'Connell RM, Rao DS and Baltimore D:
microRNA regulation of inflammatory responses. Annu Rev Immunol.
30:295–312. 2012.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Mahesh G and Biswas R: miRNA-155: A master
regulator of inflammation. J Interferon Cytokine Res. 39:321–330.
2019.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Matta R, Wang X, Ge H, Ray W, Nelin LD and
Liu Y: Triptolide induces anti-inflammatory cellular responses. Am
J Transl Res. 1:267–282. 2009.PubMed/NCBI
|
|
71
|
Tang H, Mao J, Ye X, Zhang F, Kerr WG,
Zheng T and Zhu Z: SHIP-1, a target of miR-155, regulates
endothelial cell responses in lung fibrosis. FASEB J. 34:2011–2023.
2020.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Wu R, Li Y, Guo Z, Gong J, Zhu W, Li N and
Li J: Triptolide ameliorates ileocolonic anastomosis inflammation
in IL-10 deficient mice by mechanism involving suppression of
miR-155/SHIP-1 signaling pathway. Mol Immunol. 56:340–346.
2013.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Hou HW, Wang JM, Wang D, Wu R and Ji ZL:
Triptolide exerts protective effects against fibrosis following
ileocolonic anastomosis by mechanisms involving the miR-16-1/HSP70
pathway in IL-10-deficient mice. Int J Mol Med. 40:337–346.
2017.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Lee GR: The balance of Th17 versus Treg
cells in autoimmunity. Int J Mol Sci. 19(730)2018.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Li XY, Wang SS, Han Z, Han F, Chang YP,
Yang Y, Xue M, Sun B and Chen LM: Triptolide restores autophagy to
alleviate diabetic renal fibrosis through the
miR-141-3p/PTEN/Akt/mTOR pathway. Mol Ther Nucleic Acids. 9:48–56.
2017.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Jiang CB, Wei MG, Tu Y, Zhu H, Li CQ, Jing
WM and Sun W: Triptolide attenuates podocyte injury by regulating
expression of miRNA-344b-3p and miRNA-30b-3p in rats with
adriamycin-induced nephropathy. Evid Based Complement Alternat Med.
2015(107814)2015.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Ignarski M, Islam R and Muller RU: Long
non-coding RNAs in kidney disease. Int J Mol Sci.
20(3276)2019.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Bonauer A, Carmona G, Iwasaki M, Mione M,
Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K, et
al: MicroRNA-92a controls angiogenesis and functional recovery of
ischemic tissues in mice. Science. 324:1710–1713. 2009.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Zhang L, Zhou M, Qin G, Weintraub NL and
Tang Y: miR-92a regulates viability and angiogenesis of endothelial
cells under oxidative stress. Biochem Biophys Res Commun.
446:952–958. 2014.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Marrone AK, Beland FA and Pogribny IP: The
role for microRNAs in drug toxicity and in safety assessment.
Expert Opin Drug Metab Toxicol. 11:601–611. 2015.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Ichihara S, Li P, Mise N, Suzuki Y, Izuoka
K, Nakajima T, Gonzalez F and Ichihara G: Ablation of aryl
hydrocarbon receptor promotes angiotensin II-induced cardiac
fibrosis through enhanced c-Jun/HIF-1α signaling. Arch Toxicol.
93:1543–1553. 2019.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Nam HS, Hwang KS, Jeong YM, Ryu JI, Choi
TY, Bae MA, Son WC, You KH, Son HY and Kim CH: Expression of
miRNA-122 induced by liver toxicants in Zebrafish. Biomed Res Int.
2016(1473578)2016.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Vliegenthart ADB, Wei C, Buckley C,
Berends C, de Potter CMJ, Schneemann S, Del Pozo J, Tucker C,
Mullins JJ, Webb DJ and Dear JW: Characterization of
triptolide-induced hepatotoxicity by imaging and transcriptomics in
a novel Zebrafish model. Toxicol Sci. 159:380–391. 2017.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Cheng B, Zhu Q, Lin W and Wang L:
MicroRNA-122 inhibits epithelial-mesenchymal transition of hepatic
stellate cells induced by the TGF-β1/Smad signaling pathway. Exp
Ther Med. 17:284–290. 2019.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Yuan Y, Tong L and Wu S: microRNA and
NF-kappa B. Adv Exp Med Biol. 887:157–170. 2015.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Ichikawa D, Komatsu S, Konishi H and
Otsuji E: Circulating microRNA in digestive tract cancers.
Gastroenterology. 1421074–1078. (e1071)2012.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Titov DV, Gilman B, He QL, Bhat S, Low WK,
Dang Y, Smeaton M, Demain AL, Miller PS, Kugel JF, et al: XPB, a
subunit of TFIIH, is a target of the natural product triptolide.
Nat Chem Biol. 7:182–188. 2011.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Chauhan AK, Li P, Sun Y, Wani G, Zhu Q and
Wani AA: Spironolactone-induced XPB degradtion requires TFIIH
integrity and ubiquitin-selective segregase VCP/p97. Cell Cycle.
20:81–95. 2021.PubMed/NCBI View Article : Google Scholar
|
|
89
|
He QL, Titov DV, Li J, Tan M, Ye Z, Zhao
Y, Romo D and Liu JO: Covalent modification of a cysteine residue
in the XPB subunit of the general transcription factor TFIIH
through single epoxide cleavage of the transcription inhibitor
triptolide. Angew Chem Int Ed Engl. 54:1859–1863. 2015.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Manzo SG, Zhou ZL, Wang YQ, Marinello J,
He JX, Li YC, Ding J, Capranico G and Miao ZH: Natural product
triptolide mediates cancer cell death by triggering CDK7-dependent
degradation of RNA polymerase II. Cancer Res. 72:5363–5373.
2012.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Abascal-Palacios G, Ramsay EP, Beuron F,
Morris E and Vannini A: Structural basis of RNA polymerase III
transcription initiation. Nature. 553:301–306. 2018.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Liang X, Xie R, Su J, Ye B, Wei S, Liang
Z, Bai R, Chen Z, Li Z and Gao X: Inhibition of RNA polymerase III
transcription by Triptolide attenuates colorectal tumorigenesis. J
Exp Clin Cancer Res. 38(217)2019.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Yamagishi M and Uchimaru K: Targeting EZH2
in cancer therapy. Curr Opin Oncol. 29:375–381. 2017.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Ihira K, Dong P, Xiong Y, Watari H, Konno
Y, Hanley SJ, Noguchi M, Hirata N, Suizu F, Yamada T, et al: EZH2
inhibition suppresses endometrial cancer progression via
miR-361/Twist axis. Oncotarget. 8:13509–13520. 2017.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Tamgue O, Chai CS, Hao L, Zambe JC, Huang
WW, Zhang B, Lei M and Wei YM: Triptolide inhibits histone
methyltransferase EZH2 and modulates the expression of its target
genes in prostate cancer cells. Asian Pac J Cancer Prev.
14:5663–5669. 2013.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Akkoc Y and Gozuacik D: MicroRNAs as major
regulators of the autophagy pathway. Biochim Biophys Acta Mol Cell
Res 1867: Kappa B, 2020.
|
|
97
|
Gibbings D, Mostowy S, Jay F, Schwab Y,
Cossart P and Voinnet O: Selective autophagy degrades DICER and
AGO2 and regulates miRNA activity. Nat Cell Biol. 14:1314–1321.
2012.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Peng K, Li X, Wu C, Wang Y, Yu J, Zhang J,
Gao Q, Zhang W, Zhang Q, Fan Y, et al: Derivation of haploid
trophoblast stem cells via conversion in vitro. iScience.
11:508–518. 2019.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Wang H, Zhang W, Yu J, Wu C, Gao Q, Li X,
Li Y, Zhang J, Tian Y, Tan T, et al: Genetic screening and
multipotency in rhesus monkey haploid neural progenitor cells.
Development. 145(dev160531)2018.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Huang Y, Zhu N, Chen T, Chen W, Kong J,
Zheng W and Ruan J: Triptolide suppressed the microglia activation
to improve spinal cord injury through miR-96/IKKβ/NF-κB pathway.
Spine (Phila Pa 1976). 44:E707–E714. 2019.PubMed/NCBI View Article : Google Scholar
|