|
1
|
Znaor A, Lortet-Tieulent J, Laversanne MA,
Jemal A and Bray F: International variations and trends in renal
cell carcinoma incidence and mortality. Eur Urol. 67:519–530.
2015.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Saad AM, Gad MM, Al-Husseini MJ, Ruhban
IA, Sonbol MB and Ho TH: Trends in renal-cell carcinoma incidence
and mortality in the United States in the last 2 decades: A
SEER-based study. Clin Genitourin Cancer. 17:46–57.e5.
2019.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Poprach A, Bortlíček Z, Büchler T,
Melichar B, Lakomý R, Vyzula R, Brabec P, Svoboda M, Dušek L and
Gregor J: Patients with advanced and metastatic renal cell
carcinoma treated with targeted therapy in the Czech Republic:
Twenty cancer centres, six agents, one database. Med Oncol.
29:3314–3320. 2012.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Padala SA and Barsouk A, Thandra KC,
Saginala K, Mohammed A, Vakiti A, Rawla P and Barsouk A:
Epidemiology of renal cell carcinoma. World J Oncol. 11:79–87.
2020.PubMed/NCBI View Article : Google Scholar
|
|
5
|
World Health Organization: Globocan 2020.
Cancer Today. Data visualization tools for exploring the global
cancer burden in 2020. https://gco.iarc.fr/today/data/factsheets/populations/642-romania-fact-sheets.
Accessed August, 2020.
|
|
6
|
Bălan DG, Balcangiu-Stroescu AE, Tănăsescu
MD, Diaconescu AC, Răducu L, Mihai A, Tănase M, Stănescu II and
Ionescu D: Nutritional intervention in patients with diabetic renal
disease-a brief presentation. Rev Chim Buchar. 69:4078–4082.
2018.
|
|
7
|
Măndiță A, Timofte D, Balcangiu-Stroescu
AE, Bălan DG, Răducu L, Tănăsescu MD, Diaconescu AC, Dragoș D,
Coșconel I and Ionescu D: Treatment of high blood pressure in
patients with chronic renal disease. Rev Chim Buchar. 70:993–995.
2019.
|
|
8
|
Totan A, Balcangiu-Stroescu AE, Melescanu
Imre M, Miricescu D, Balan DG, Stanescu II, Ionescu D, Timofte D,
Tanasescu MD and Greabu M: XOR-possible correlations with oxidative
stress and inflammation markers in the context of diabetic kidney
disease. Rev Chim Buchar. 70:1396–1398. 2019.
|
|
9
|
Alicic RC, Rooney MT and Tuttle KR:
Diabetic kidney disease: Challenges, progress, and possibilities.
Clin J Am Soc Nephrol. 12:2032–2045. 2017.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Disthabanchong S: Vascular calcification
in chronic kidney disease: Pathogenesis and clinical implication.
World J Nephrol. 6:43–53. 2012.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Timofte D, Ionescu D, Medrihan L, Măndiță
A, Rășină A and Damian L: Vascular calcification and bone disease
in hemodialysis patients assessment, association and risk factors.
Nephrology Dialysis Transplantation; Oxford Univ Press. 22:325–326.
2007.
|
|
12
|
Timofte D, Dragoș D, Balcangiu-Stroescu A,
Tănăsescu M, Bălan DG, Răducu L, Tulin A, Stiru O and Ionescu D:
Abdominal aortic calcification in predialysis patients:
Contribution of traditional and uremia-related risk factors. Exp
Ther Med. 20:97–102. 2020.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Timofte D, Măndiță A, Balcangiu-Stroescu
AE, Bălan DG, Răducu L, Tănăsescu MD, Diaconescu AC, Dorin D,
Coșconel CI and Ionescu D: Hyperuricemia and cardiovascular
diseases-clinical and paraclinical correlations. Rev Chim Buchar.
70:1045–1046. 2019.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Epingeac ME, Gaman MA, Diaconu C, Gad M
and Gaman AM: The evaluation of oxidative stress in obesity. Rev
Chim Buchar. 70:2241–2244. 2019.
|
|
15
|
Diaconu C: Midaortic syndrome in a young
man. Cor et Vasa. 59:e171–e173. 2017.
|
|
16
|
Balcangiu-Stroescu AE, Tănăsescu MD,
Diaconescu A, Răducu L, Constantin AM, Bălan DG, Țărmure V and
Ionescu D: Cardiovascular comorbidities, inflammation and serum
albumin levels in a group of hemodialysis patients. Rev Chim
Buchar. 69:926–929. 2019.
|
|
17
|
Diaconu C: Treatment of Diabetes in
Patients with Heart Failure. The 3rd International Conference on
Interdisciplinary Management of Diabetes Mellitus and its
Complications-Diabetes Mellitus in Internal Medicine, INTERDIAB
2017 Proceedings. Serafinceanu C, Negoita O and Elian V (eds).
Niculescu, Bucharest, pp170-177, 2017.
|
|
18
|
Balcangiu-Stroescu AE, Tănăsescu MD,
Diaconescu AC, Răducu L, Bălan DG, Mihai A, Tănase M, Stănescu II
and Ionescu D: Diabetic nephropathy: A concise assessment of the
causes, risk factors and implications in diabetic patients. Rev
Chim Buchar. 69:3118–3121. 2018.
|
|
19
|
Husseinzadeh HD and Garcia JA: Therapeutic
rationale for mTOR inhibition in advanced renal cell carcinoma.
Curr Clin Pharmacol. 6:214–221. 2011.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Chen H, Zhu D, Zheng Z, Cai Y, Chen Z and
Xie W: CEP55 promotes epithelial-mesenchymal transition in renal
cell carcinoma through PI3K/AKT/mTOR pathway. Clin Transl Oncol.
21:939–949. 2019.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Xiang RF, Wang Y, Zhang N, Xu WB, Cao Y,
Tong J, Li JM, Wu YL and Yan H: MK2206 enhances the cytocidal
effects of bufalin in multiple myeloma by inhibiting the AKT/mTOR
pathway. Cell Death Dis. 8(e2776)2017.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Martini M, de Santis MC, Braccini L,
Gulluni F and Hirsch E: PI3K/AKT signalling pathway and cancer: An
updated review. Ann Med. 46:372–383. 2014.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Costa RLB, Han HS and Gradishar WJ:
Targeting the PI3K/AKT/mTOR pathway in triple-negative breast
cancer: A review. Breast Cancer Res Treat. 69:397–406.
2018.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Sathe A and Nawroth R: Targeting the
PI3K/AKT/mTOR pathway in bladder cancer. Methods Mol Biol.
1655:335–350. 2018.PubMed/NCBI View Article : Google Scholar
|
|
25
|
O'Donnell JS, Massi D, Teng MW and Mandala
M: PI3K-AKT-mTOR inhibition in cancer immunotherapy, redux. Semin
Cancer Biol. 48:91–103. 2018.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Chamcheu JC, Roy T, Uddin MB,
Banang-Mbeumi S, Chamcheu RN, Walker AL, Liu YY and Huang S: Role
and therapeutic targeting of the PI3K/AKT/mTOR signaling pathway in
skin cancer: A review of current status and future trends on
natural and synthetic Agents therapy. Cells. 8(803)2019.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Bertacchini J, Heidari N, Mediani L,
Capitani S, Shahjahani M, Ahmadzadeh A and Saki N: Targeting
PI3K/AKT/mTOR network for treatment of leukemia. Cell Mol Life Sci.
72:2337–2347. 2015.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Aggarwal S, John S, Sapra L, Sharma SC and
Das SN: Targeted disruption of PI3K/AKT/mTOR signaling pathway, via
PI3K inhibitors, promotes growth inhibitory effects in oral cancer
cells. Cancer Chemother Pharmacol. 83:451–461. 2019.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Li Z, Liu J, Que L and Tang X: The
immunoregulatory protein B7-H3 promotes aerobic glycolysis in oral
squamous carcinoma via PI3K/AKT/mTOR pathway. J Cancer.
10:5770–5784. 2019.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Graupera M and Potente M: Regulation of
angiogenesis by PI3K signaling networks. Exp Cell Res.
319:1348–1355. 2013.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Carnero A, Blanco-Aparicio C, Renner O,
Link W and Leal JF: The PTEN/PI3K/AKT signalling pathway in cancer,
therapeutic implications. Curr Cancer Drug Targets. 8:187–198.
2008.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Fresno Vara JA, Casado E, de Castro J,
Cejas P, Belda-Iniesta C and González-Barón M: PI3K/AKT signalling
pathway and cancer. Cancer Treat Rev. 30:193–204. 2004.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Araki N, Hatae T, Furukawa A and Swanson
JA: Phosphoinositide-3-kinase independent contractile activities
associated with Fcgamma-receptor-mediated phagocytosis and
macropinocytosis in macrophages. J Cell Sci. 116:247–257.
2003.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Zhang J, Yu XH, Yan YG, Wang C and Wang
WJ: PI3K/AKT signaling in osteosarcoma. Clin Chim Acta.
444:182–192. 2015.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Regan MM and Phillip AD: AKT-dependent and
independent mechanisms of mTOR regulation in cancer. Cell Signal.
21:656–664. 2009.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Sarbassov DD, Guertin DA, Ali SM and
Sabatini DM: Phosphorylation and regulation of AKT/PKB by the
rictor-mTOR complex. Science. 307:1098–1101. 2005.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Krycer JR, Sharpe LJ, Luu W and Brown AJ:
The AKT-SREBP nexus: Cell signaling meets lipid metabolism. Trends
Endocrinol Metab. 21:268–276. 2010.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Abeyrathna P and Su Y: The critical role
of AKT in cardiovascular function. Vascul Pharmacol. 74:38–48.
2015.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Nicholson KM and Anderson NG: The protein
kinase B/AKT signalling pathway in human malignancy. Cell Signal.
14:381–395. 2002.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Brazil DP, Yang ZZ and Hemmings BA:
Advances in protein kinase B signalling: AKTion on multiple fronts.
Trends Biochem Sci. 29:233–242. 2004.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Hers I, Vincent EE and Tavaré JM: AKT
signalling in health and disease. Cell Signal. 23:1515–1527.
2011.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Meric-Bernstam F and Gonzalez-Angulo AM:
Targeting the mTOR signaling network for cancer therapy. J Clin
Oncol. 27:2278–2287. 2009.PubMed/NCBI View Article : Google Scholar
|
|
43
|
JIlha J, Espírito-Santo CC and de Freitas
GR: mTOR signaling pathway and protein synthesis: From training to
aging and muscle autophagy. Adv Exp Med Bio. 1088:139–151.
2018.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Ayuk SM and Abrahamse H: mTOR signaling
pathway in cancer targets photodynamic therapy in vitro. Cells.
8(431)2019.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Battelli C and Cho DC: mTOR inhibitors in
renal cell carcinoma. Therapy. 8:359–367. 2011.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Guertin DA and Sabatini DM: Defining the
role of mTOR in cancer. Cancer Cell. 12:9–22. 2007.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Saxton RA and Sabatini DM: mTOR signaling
in growth, metabolism, and disease. Cell. 168:960–976.
2017.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Laplante M and Sabatini DM: mTOR signaling
in growth control and disease. Cell. 149:274–293. 2012.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Inoki K, Zhu T and Guan KL: TSC2 mediates
cellular energy response to control cell growth and survival. Cell.
115:577–590. 2003.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Cornu M, Albert V and Hall MN: mTOR in
aging, metabolism, and cancer. Curr Opin Genet Dev. 23:53–62.
2013.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Stallone G, Infante B, Prisciandaro C and
Grandaliano G: mTOR and aging: An old fashioned dress. Int J Mol
Sci. 20(2774)2019.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Wullschleger K, Loewith R and Hall EB: TOR
signaling in growth and metabolism. Cell. 124:471–484.
2006.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Fredrichkson RM, Mushynski WE and
Sonenberg N: Phosphorylation of translation initiation factor
eIf-4E is induced in a Ras-dependent manner during nerve growth
factor-mediated PC 12 cell differentiation. Mol Cell Biol.
12:1239–1247. 1992.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Martin CK and Borden KL: The oncogene
eIF4E: Using biochemical insights to target cancer. J Interferon
Cytokine Res. 33:227–238. 2013.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Ben-Sahra I, Hoxhaj G, Ricoult SJH, Asara
JM and Manning BD: mTORC1 induces purine synthesis through control
of the mitochondrial tetrahydrofolate cycle. Science. 351:728–733.
2016.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Düvel K, Yecies JL, Menon S, Raman P,
Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S,
et al: Activation of a metabolic gene regulatory network downstream
of mTOR complex 1. Mol Cell. 39:171–183. 2010.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Kim J, Kundu M, Viollet B and Guan KL:
AMPK and mTOR regulate autophagy through direct phosphorylation of
Ulk1. Nat Cell Biol. 13:132–141. 2011.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Tripathi DN, Chowdhury R, Trudel LJ, Tee
AR, Slack RS, Walker CL and Wogan GN: Reactive nitrogen species
regulate autophagy through ATM-AMPK-TSC2-mediated suppression of
mTORC1. Proc Natl Acad Sci USA. 110:E2950–E2957. 2013.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Settembre C, Zoncu R, Medina DL, Vetrini
F, Erdin S, Erdin S, Huynh T, Ferron M, Karsenty G, Vellard MC, et
al: A lysosome-to-nucleus signalling mechanism senses and regulates
the lysosome via mTOR and TFEB. EMBO J. 31:1095–1108.
2012.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Zhao J, Zhai B, Gygi SP and Goldberg AL:
mTOR inhibition activates overall protein degradation by the
ubiquitin proteasome system as well as by autophagy. Proc Natl Acad
Sci USA. 112:15790–15797. 2015.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Rousseau A and Bertolotti A: An
evolutionarily conserved pathway controls proteasome homeostasis.
Nature. 536:184–189. 2016.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Fingar DC, Richardson CJ, Tee AR, Cheatham
L, Tsou C and Blenis J: mTOR controls cell cycle progression
through its cell growth effectors S6K1 and 4EBP1/eukaryotic
translation factor 4E. Mol Cell Biol. 24:200–216. 2004.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Cai H, Dong LQ and Liu F: Recent advances
in adipose mTOR signaling and function: Therapeutic prospects.
Trends Pharmacol Sci. 37:303–317. 2016.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Inoki K and Guan KL: Complexity of the TOR
signaling network. Trends Cell Biol. 16:206–212. 2006.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Kumar A, Kumari N, Gupta V and Prasad R:
Renal cell carcinoma: Molecular aspects. Ind J Clin Biochem.
33:246–254. 2018.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Neshat MS, Mellinghoff IK, Tran C, Stiles
B, Thomas G, Petersen R, Frost P, Gibbons JJ, Wu H and Sawyers CL:
Enhanced sensitivity of PTEN-deficient tumors to inhibition of
FRAP/mTOR. Proc Natl Acad Sci USA. 98:10314–10319. 2001.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Jamaspishvili T, Berman DM, Ross AE, Scher
HI, De Marzo AM, Squire JA and Lotan T: Clinical implications of
PTEN loss in prostate cancer. Nat Rev Urol. 15:222–234.
2018.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Sato Y, Yoshizato T, Shiraishi Y, Maekawa
S, Okuno Y, Kamura T, Shimamura T, Sato-Otsubo A, Nagae G, Suzuki
H, et al: Integrated molecular analysis of clear-cell renal cell
carcinoma. Nat Genet. 45:860–867. 2013.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Pantuck AJ, Seligson DB, Klatte T, Yu H,
Leppert JT, Moore L, O'Toole T, Gibbons J, Belldegrun AS and Figlin
RA: Prognostic relevance of the mTOR pathway in renal cell
carcinoma: Implications for molecular patient selection for
targeted therapy. Cancer. 109:2257–2267. 2007.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Damayanti NP, Budka JA, Khella HWZ, Ferris
MW, Ku SY, Kauffman E, Wood AC, Ahmed K, Chintala VN,
Adelaiye-Ogala R, et al: Therapeutic targeting of
TFE3/IRS-1/PI3K/mTOR axis in translocation renal cell carcinoma.
Clin Cancer Res. 24:5977–5989. 2018.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Brugarolas J: Renal-cell
carcinoma-molecular pathways and therapies. N Engl J Med.
356:185–187. 2007.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Robb VA, Karbowniczek M, Klein-Szanto AJ
and Henske EP: Activation of the mTOR signaling pathway in renal
clear cell carcinoma. J Urol1. 77:346–352. 2007.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Hudson CC, Liu M, Chiang GG, Otterness DM,
Loomis DC, Kaper F, Giaccia AJ and Abraham RT: Regulation of
hypoxia-inducible factor 1a expression and function by the
mammalian target of rapamycin. Mol Cell Biol. 22:7004–7014.
2002.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Miikkulainen P, Högel H, Seyednasrollah F,
Rantanen K, Elo LL and Jaakkola PM: Hypoxia-inducible factor
(HIF)-prolyl hydroxylase 3 (PHD3) maintains high HIF2A mRNA levels
in clear cell renal cell carcinoma. J Biol Chem. 294:3760–3771.
2019.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Fiorini C, Massari F, Pedron S, Sanavio S,
Ciccarese C, Porcaro AB, Artibani W, Bertoldo F, Zampini C, Sava T,
et al: Methods to identify molecular expression of mTOR pathway: A
Rationale approach to stratify patients affected by clear cell
renal cell carcinoma for more likely response to mTOR inhibitors.
Am J Cancer Res. 4:907–915. 2014.PubMed/NCBI
|
|
76
|
Pantuck AJ, Zeng G, Belldegrun AS and
Figlin RA: Pathobiology, prognosis, and targeted therapy for renal
cell carcinoma: Exploiting the hypoxia-induced pathway. Clin Cancer
Res. 9:4641–4652. 2003.PubMed/NCBI
|
|
77
|
Baba M, Hirai S, Yamada-Okabe H, Hamada K,
Tabuchi H, Kobayashi K, Kondo K, Yoshida M, Yamashita A, Kishida T,
et al: Loss of von Hippel-Lindau protein causes cell density
dependent deregulation of cyclinD1 expression through
hypoxia-inducible factor. Oncogene. 22:2728–2738. 2003.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Zatyka M, da Silva NF, Clifford SC, Morris
MR, Wiesener MS, Eckardt KU, Houlston RS, Richards FM, Latif F and
Maher ER: Identification of cyclin D1 and other novel targets for
the von Hippel-Lindau tumor suppressor gene by expression array
analysis and investigation of cyclin D1 genotype as a modifier in
von Hippel-Lindau disease. Cancer Res. 62:3803–3811.
2002.PubMed/NCBI
|
|
79
|
Toschini A, Edelstein J, Rockwell P, Ohh M
and Foster DA: HIF alpha expression in HVL-deficient renal cancer
cells is dependent on phospholipase D. Oncogene. 27:2746–2753.
2008.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Carew JS, Kelly KR and Nawrocki ST:
Mechanisms of mTOR inhibitor resistance in cancer therapy. Target
Oncol. 6:17–22. 2011.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Pal SK and Quinn DI: Differentiating mTOR
inhibitors in renal cell carcinoma. Cancer Treat Rev. 39:709–719.
2013.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Konings IR, Verweij J, Wiemer EA and
Sleijfer S: The applicability of mTOR inhibition in solid tumors.
Curr Cancer Drug Targets. 9:439–450. 2009.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Motzer RJ, Escudier B, Oudard S, Hutson
TE, Porta C, Bracarda S, Grünwald V, Thompson JA, Figlin RA,
Hollaender N, et al: Efficacy of everolimus in advanced renal cell
carcinoma: A double-blind, randomised, placebo-controlled phase III
trial. Lancet. 372:449–56. 2008.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Bedke J, Gauler T, Grünwald V, Hegele A,
Herrmann E, Hinz S, Janssen J, Schmitz S, Schostak M, Tesch H, et
al: Systemic therapy in metastatic renal cell carcinoma. World J
Urol. 35:179–188. 2017.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Hudes G, Carducci M, Tomczak P, Dutcher J,
Figlin R, Kapoor A, Staroslawska E, Sosman J, McDermott D, Bodrogi
I, et al: Temsirolimus, interferon alfa, or both for advanced
renal-cell carcinoma. N Engl J Med. 356:2271–2281. 2007.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Park I, Lee SH and Lee JL: A Multicenter
phase II trial of axitinib in patients with recurrent or metastatic
non-clear-cell renal cell carcinoma who had failed prior treatment
with Temsirolimus. Clin Genitourin Cancer. 16:e997–e1002.
2018.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Tegos T, Tegos K, Dimitriadou A and
Dimitriadis G: Current and emerging first-line systemic therapies
in metastatic clear-cell renal cell carcinoma. J BUON.
24:1340–1353. 2019.PubMed/NCBI
|
|
88
|
Ye X, Ruan JW, Huang H, Huang WP, Zhang Y
and Zhang F: PI3K-AKT-mTOR inhibition by GNE-477 inhibits renal
cell carcinoma cell growth in vitro and in vivo. Aging (Albany NY).
12:9489–9499. 2020.PubMed/NCBI View Article : Google Scholar
|