Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
March-2022 Volume 23 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2022 Volume 23 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Update on the etiopathogenesis of psoriasis (Review)

  • Authors:
    • Daciana Elena Branisteanu
    • Catalina Cojocaru
    • Roxana Diaconu
    • Elena Andrese Porumb
    • Anisia Iuliana Alexa
    • Alin Codrut Nicolescu
    • Ilarie Brihan
    • Camelia Margareta Bogdanici
    • George Branisteanu
    • Andreea Dimitriu
    • Mihail Zemba
    • Nicoleta Anton
    • Mihaela Paula Toader
    • Adrian Grechin
    • Daniel Constantin Branisteanu
  • View Affiliations / Copyright

    Affiliations: Department of Dermatology, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania, Department of Dermatology, Railway Clinical Hospital, 700506 Iasi, Romania, Department of Dermatology, ‘Sf. Spiridon’ Clinical Emergency County Hospital, 700111 Iasi, Romania, Department of Ophthalmology, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania, Department of Dermatology, ‘Roma’ Medical Center for Diagnosis and Treatment, 011773 Bucharest, Romania, Department of Dermatology, Dermatology Clinic, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania, Department of Ophthalmology, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania, Department of Dermatology, ‘Arcadia’ Hospitals and Medical Centers, 700620 Iasi, Romania, Department of Ophthalmology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania, Department of Oral Dermatology, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania, Department of Ophthalmology, ‘Sf. Spiridon’ Clinical Emergency County Hospital, 700111 Iasi, Romania
    Copyright: © Branisteanu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 201
    |
    Published online on: January 5, 2022
       https://doi.org/10.3892/etm.2022.11124
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Psoriasis is one of the most common immune-mediated chronic inflammatory skin disorders, involving hyperproliferative keratinocytes and infiltration of T cells, dendritic cells, macrophages, and neutrophils. Multiple factors appear to play important roles in the pathogenesis of psoriasis. These environmental (e.g., infectious agents and trauma), genetic, and immunologic factors are reviewed in this article. Although the pathogenesis of psoriasis remains to be established, data suggesting immune cell dysregulation in the skin are available. The involvement of the immune system, particularly T cells, in the etiopathogenesis of psoriasis is discussed in this review, indicating a potential justification for innovative treatment intervention. Besides describing pathogenic T cells, the aim of the review was to assess the function of newly identified antimicrobial peptides (AMPs), interleukin (IL)‑23, IL‑17, and tissue resident memory cells (TRMs), and their role in psoriasis. Furthermore, new insights were presented regarding TRMs, a recently identified subset of memory T cells, and the role they play in the local memory of disease, making them a potential new therapeutic target in psoriasis. Finally, current developments in T‑cell research and cytokine‑targeted therapy for psoriasis treatment are reviewed.
View Figures
View References

1 

Tokuyama M and Mabuchi T: New treatment addressing the pathogenesis of psoriasis. Int J Mol Sci. 21(7488)2020.PubMed/NCBI View Article : Google Scholar

2 

Griffiths CE and Barker JN: Pathogenesis and clinical features of psoriasis. Lancet. 370:263–271. 2007.PubMed/NCBI View Article : Google Scholar

3 

Nestle FO, Kaplan DH and Barker J: Psoriasis. N Engl J Med. 361:496–509. 2009.PubMed/NCBI View Article : Google Scholar

4 

Parisi R, Symmons DPM, Griffiths CE and Ashcroft DM: Identification and Management of Psoriasis and Associated ComorbidiTy (IMPACT) project team. Global epidemiology of psoriasis: A systematic review of incidence and prevalence. J Invest Dermatol. 133:377–385. 2013.PubMed/NCBI View Article : Google Scholar

5 

Rachakonda TD, Schupp CW and Armstrong AW: Psoriasis prevalence among adults in the United States. J Am Acad Dermatol. 70:512–516. 2014.PubMed/NCBI View Article : Google Scholar

6 

Parisi R, Iskandar IYK, Kontopantelis E, Augustin M, Griffiths CEM and Ashcroft DM: Global Psoriasis Atlas. National, regional, and worldwide epidemiology of psoriasis: Systematic analysis and modelling study. BMJ. 369(m1590)2020.PubMed/NCBI View Article : Google Scholar

7 

Michalek IM, Loring B and John SM: A systematic review of worldwide epidemiology of psoriasis. J Eur Acad Dermatol Venereol. 31:205–212. 2017.PubMed/NCBI View Article : Google Scholar

8 

Dand N, Mahil SK, Capon F, Smith CH, Simpson MA and Barker JN: Psoriasis and Genetics. Acta Derm Venereol. 100(adv00030)2020.PubMed/NCBI View Article : Google Scholar

9 

O'Rielly DD, Jani M, Rahman P and Elder JT: The genetics of psoriasis and psoriatic arthritis. J Rheumatol. (Suppl 95):46–50. 2019.PubMed/NCBI View Article : Google Scholar

10 

Weiss G, Shemer A and Trau H: The Koebner phenomenon: Review of the literature. J Eur Acad Dermatol Venereol. 16:241–248. 2002.PubMed/NCBI View Article : Google Scholar

11 

Malhotra SK and Mehta V: Role of stressful life events in induction or exacerbation of psoriasis and chronic urticaria. Indian J Dermatol Venereol Leprol. 74:594–599. 2008.PubMed/NCBI View Article : Google Scholar

12 

Basavaraj KH, Ashok NM, Rashmi R and Praveen TK: The role of drugs in the induction and/or exacerbation of psoriasis. Int J Dermatol. 49:1351–1361. 2010.PubMed/NCBI View Article : Google Scholar

13 

Fry L and Baker BS: Triggering psoriasis: The role of infections and medications. Clin Dermatol. 25:606–615. 2007.PubMed/NCBI View Article : Google Scholar

14 

Higgins E: Alcohol, smoking and psoriasis. Clin Exp Dermatol. 25:107–110. 2000.PubMed/NCBI View Article : Google Scholar

15 

Armstrong AW, Harskamp CT and Armstrong EJ: The association between psoriasis and obesity: A systematic review and meta-analysis of observational studies. Nutr Diabetes. 2(e54)2012.PubMed/NCBI View Article : Google Scholar

16 

Balato N, Di Costanzo L, Patruno C, Patrì A and Ayala F: Effect of weather and environmental factors on the clinical course of psoriasis. Occup Environ Med. 70(600)2013.PubMed/NCBI View Article : Google Scholar

17 

López-Estebaranz JL, Sánchez-Carazo JL and Sulleiro S: Effect of a family history of psoriasis and age on comorbidities and quality of life in patients with moderate to severe psoriasis: Results from the ARIZONA study. J Dermatol. 43:395–401. 2016.PubMed/NCBI View Article : Google Scholar

18 

Duffy DL, Spelman LS and Martin NG: Psoriasis in Australian twins. J Am Acad Dermatol. 29:428–434. 1993.PubMed/NCBI View Article : Google Scholar

19 

Trembath RC, Clough RL, Rosbotham JL, Jones AB, Camp RD, Frodsham A, Browne J, Barber R, Terwilliger J, Lathrop GM and Barker JN: Identification of a major susceptibility locus on chromosome 6p and evidence for further disease loci revealed by a two stage genome-wide search in psoriasis. Hum Mol Genet. 6:813–820. 1997.PubMed/NCBI View Article : Google Scholar

20 

Sagoo GS, Tazi-Ahnini R, Barker JWN, Elder JT, Nair RP, Samuelsson L, Traupe H, Trembath RC, Robinson DA and Iles MM: Meta-analysis of genome-wide studies of psoriasis susceptibility reveals linkage to chromosomes 6p21 and 4q28-q31 in Caucasian and Chinese Hans population. J Invest Dermatol. 122:1401–1405. 2004.PubMed/NCBI View Article : Google Scholar

21 

Chen L and Tsai TF: HLA-Cw6 and psoriasis. Br J Dermatol. 178:854–862. 2018.PubMed/NCBI View Article : Google Scholar

22 

Umapathy S, Pawar A, Mitra R, Khuperkar D, Devaraj JP, Ghosh K and Khopkar U: Hla-a and Hla-B alleles associated in psoriasis patients from Mumbai, Western India. Indian J Dermatol. 56:497–500. 2011.PubMed/NCBI View Article : Google Scholar

23 

Nair RP, Duffin KC, Helms C, Ding J, Stuart PE, Goldgar D, Gudjonsson JE, Li Y, Tejasvi T, Feng BJ, et al: Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet. 41:199–204. 2009.PubMed/NCBI View Article : Google Scholar

24 

Cargill M, Schrodi SJ, Chang M, Garcia VE, Brandon R, Callis KP, Matsunami N, Ardlie KG, Civello D, Catanese JJ, et al: A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet. 80:273–290. 2007.PubMed/NCBI View Article : Google Scholar

25 

Garcia VE, Chang M, Brandon R, Li Y, Matsunami N, Callis-Duffin KP, Civello D, Rowland CM, Bui N, Catanese JJ, et al: Detailed genetic characterization of the interleukin-23 receptor in psoriasis. Genes Immun. 9:546–555. 2008.PubMed/NCBI View Article : Google Scholar

26 

Hasegawa H, Mizoguchi I, Chiba Y, Ohashi M, Xu M and Yoshimoto T: Expanding diversity in molecular structures and functions of the IL-6/IL-12 heterodimeric cytokine Family. Front Immunol. 7(479)2016.PubMed/NCBI View Article : Google Scholar

27 

Onoufriadis A, Simpson MA, Pink AE, Di Meglio P, Smith CH, Pullabhatla V, Knight J, Spain SL, Nestle FO, Burden AD, et al: Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. Am J Hum Genet. 89:432–437. 2011.PubMed/NCBI View Article : Google Scholar

28 

Cullen G, Kroshinsky D, Cheifetz AS and Korzenik JR: Psoriasis associated with anti-tumour necrosis factor therapy in inflammatory bowel disease: A new series and a review of 120 cases from the literature. Aliment Pharmacol Ther. 34:1318–1327. 2011.PubMed/NCBI View Article : Google Scholar

29 

Pugliese D, Guidi L, Ferraro PM, Marzo M, Felice C, Celleno L, Landi R, Andrisani G, Pizzolante F, De Vitis I, et al: Paradoxical psoriasis in a large cohort of patients with inflammatory bowel disease receiving treatment with anti-TNF alpha: 5-year follow-up study. Aliment Pharmacol Ther. 42:880–888. 2015.PubMed/NCBI View Article : Google Scholar

30 

Eickstaedt JB, Killpack L, Tung J, Davis D, Hand JL and Tollefson MM: Psoriasis and psoriasiform eruptions in pediatric patients with inflammatory bowel disease treated with Anti-tumor necrosis factor alpha agents. Pediatr Dermatol. 34:253–260. 2017.PubMed/NCBI View Article : Google Scholar

31 

Famenini S and Wu JJ: Infliximab-induced psoriasis in treatment of Crohn's disease-associated ankylosing spondylitis: Case report and review of 142 cases. J Drugs Dermatol. 12:939–943. 2013.PubMed/NCBI

32 

Filoni A, Vestita M, Congedo M, Giudice G, Tafuri S and Bonamonte D: Association between psoriasis and vitamin D: Duration of disease correlates with decreased vitamin D serum levels: An observational case-control study. Medicine (Baltimore). 97(e11185)2018.PubMed/NCBI View Article : Google Scholar

33 

Orgaz-Molina J, Buendía-Eisman A, Arrabal-Polo MA, Ruiz JC and Arias-Santiago S: Deficiency of serum concentration of 25-hydroxyvitamin D in psoriatic patients: A case-control study. J Am Acad Dermatol. 67:931–938. 2012.PubMed/NCBI View Article : Google Scholar

34 

Porumb-Andrese E, Vâță D, Postolică R, Stătescu L, Stătescu C, Grăjdeanu AI, Pătrașcu AI, Popescu IA and Solovastru LG: Association between personality type, affective distress profile and quality of life in patients with psoriasis vs. patients with cardiovascular disease. Exp Ther Med. 18:4967–4973. 2019.PubMed/NCBI View Article : Google Scholar

35 

Cai Y, Fleming C and Yan J: New insights of T cells in the pathogenesis of psoriasis. Cell Mol Immunol. 9:302–309. 2012.PubMed/NCBI View Article : Google Scholar

36 

Coimbra S, Figueiredo A, Castro E, Rocha-Pereira P and Santos-Silva A: The roles of cells and cytokines in the pathogenesis of psoriasis. Int J Dermatol. 51:389–395. 2012.PubMed/NCBI View Article : Google Scholar

37 

Boehncke WH: Etiology and pathogenesis of psoriasis. Rheum Dis Clin North Am. 41:665–675. 2015.PubMed/NCBI View Article : Google Scholar

38 

Lai Y and Gallo RL: AMPed up immunity: How antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 30:131–141. 2009.PubMed/NCBI View Article : Google Scholar

39 

Ogawa E, Sato Y, Minagawa A and Okuyama R: Pathogenesis of psoriasis and development of treatment. J Dermatol. 45:264–272. 2018.PubMed/NCBI View Article : Google Scholar

40 

Rendon A and Schäkel K: Psoriasis pathogenesis and treatment. Int J Mol Sci. 20(1475)2019.PubMed/NCBI View Article : Google Scholar

41 

Eckert RL, Broome AM, Ruse M, Robinson N, Ryan D and Lee K: S100 proteins in the epidermis. J Invest Dermatol. 123:23–33. 2004.PubMed/NCBI View Article : Google Scholar

42 

Büchau AS and Gallo RL: Innate immunity and antimicrobial defense systems in psoriasis. Clin Dermatol. 25:616–624. 2007.PubMed/NCBI View Article : Google Scholar

43 

Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M and Fouser LA: Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med. 203:2271–2279. 2006.PubMed/NCBI View Article : Google Scholar

44 

Jinquan T, Vorum H, Larsen CG, Madsen P, Rasmussen HH, Gesser B, Etzerodt M, Honoré B, Celis JE and Thestrup-Pedersen K: Psoriasin: A novel chemotactic protein. J Invest Dermatol. 107:5–10. 1996.PubMed/NCBI View Article : Google Scholar

45 

Harder J and Schröder JM: Psoriatic scales: A promising source for the isolation of human skin-derived antimicrobial proteins. J Leukoc Biol. 77:476–486. 2005.PubMed/NCBI View Article : Google Scholar

46 

Morizane S and Gallo RL: Antimicrobial peptides in the pathogenesis of psoriasis. J Dermatol. 39:225–230. 2012.PubMed/NCBI View Article : Google Scholar

47 

Frohm M, Agerberth B, Ahangari G, Stâhle-Bäckdahl M, Lidén S, Wigzell H and Gudmundsson G: The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem. 272:15258–15263. 1997.PubMed/NCBI View Article : Google Scholar

48 

Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B, Cao W, Wang YH, Su B, Nestle FO, et al: Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 449:564–569. 2007.PubMed/NCBI View Article : Google Scholar

49 

Morizane S, Yamasaki K, Mühleisen B, Kotol PF, Murakami M, Aoyama Y, Iwatsuki K, Hata T and Gallo RL: Cathelicidin antimicrobial peptide LL-37 in psoriasis enables keratinocyte reactivity against TLR9 Ligands. J Invest Dermatol. 132:135–143. 2012.PubMed/NCBI View Article : Google Scholar

50 

Hänsel A, Günther C, Ingwersen J, Starke J, Schmitz M, Bachmann M, Meurer M, Rieber EP and Schäkel K: Human slan (6-sulfo LacNAc) dendritic cells are inflammatory dermal dendritic cells in psoriasis and drive strong Th17/Th1 T-cell responses. J Allergy Clin Immunol. 127:787–794.e1-e9. 2011.PubMed/NCBI View Article : Google Scholar

51 

Mabuchi T and Hirayama N: Binding affinity and interaction of LL-37 with HLA-C*06:02 in psoriasis. J Invest Dermatol. 136:1901–1903. 2016.PubMed/NCBI View Article : Google Scholar

52 

Arakawa A, Siewert K, Stöhr J, Besgen P, Kim SM, Rühl G, Nickel J, Vollmer S, Thomas P, Krebs S, et al: Melanocyte antigen triggers autoimmunity in human psoriasis. J Exp Med. 212:2203–2212. 2015.PubMed/NCBI View Article : Google Scholar

53 

Krueger JG: An autoimmune ‘attack’ on melanocytes triggers psoriasis and cellular hyperplasia. J Exp Med. 212:2186. 2015.PubMed/NCBI View Article : Google Scholar

54 

Nishimoto S, Kotani H, Tsuruta S, Shimizu N, Ito M, Shichita T, Morita R, Takahashi H, Amagai M and Yoshimura A: Th17 cells carrying TCR recognizing epidermal autoantigen induce psoriasis-like skin inflammation. J Immunol. 191:3065–3072. 2013.PubMed/NCBI View Article : Google Scholar

55 

Chiricozzi A, Romanelli P, Volpe E, Borsellino G and Romanelli M: Scanning the immunopathogenesis of psoriasis. Int J Mol Sci. 19(E179)2018.PubMed/NCBI View Article : Google Scholar

56 

Fuentes-Duculan J, Bonifacio KM, Hawkes JE, Kunjravia N, Cueto I, Li X, Gonzalez J, Garcet S and Krueger JG: Autoantigens ADAMTSL5 and LL37 are significantly upregulated in active Psoriasis and localized with keratinocytes, dendritic cells and other leukocytes. Exp Dermatol. 26:1075–1082. 2017.PubMed/NCBI View Article : Google Scholar

57 

Bonifacio KM, Kunjravia N, Krueger JG and Duculan JF: Cutaneous expression of A Disintegrin-like and Metalloprotease domain containing thrombospondin type 1 motif-like 5 (ADAMTSL5) in psoriasis goes beyond Melanocytes. J Pigment Disord. 3(244)2016.PubMed/NCBI View Article : Google Scholar

58 

Liu YJ: IPC: Professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol. 23:275–306. 2005.PubMed/NCBI View Article : Google Scholar

59 

Benhadou F, Mintoff D and Del Marmol V: Psoriasis: Keratinocytes or immune cells-which is the trigger? Dermatology. 235:91–100. 2019.PubMed/NCBI View Article : Google Scholar

60 

Nestle FO, Conrad C, Tun-Kyi A, Homey B, Gombert M, Boyman O, Burg G, Liu YJ and Gilliet M: Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J Exp Med. 202:135–143. 2005.PubMed/NCBI View Article : Google Scholar

61 

van der Fits L, van der Wel LI, Laman JD, Prens EP and Verschuren MCM: In psoriasis lesional skin the type I interferon signaling pathway is activated, whereas interferon-alpha sensitivity is unaltered. J Invest Dermatol. 122:51–60. 2004.PubMed/NCBI View Article : Google Scholar

62 

Gilliet M, Conrad C, Geiges M, Cozzio A, Thürlimann W, Burg G, Nestle FO and Dummer R: Psoriasis triggered by toll-like receptor 7 agonist imiquimod in the presence of dermal plasmacytoid dendritic cell precursors. Arch Dermatol. 140:1490–1495. 2004.PubMed/NCBI View Article : Google Scholar

63 

Vinter H, Iversen L, Steiniche T, Kragballe K and Johansen C: Aldara®-induced skin inflammation: Studies of patients with psoriasis. Br J Dermatol. 172:345–353. 2015.PubMed/NCBI View Article : Google Scholar

64 

Takeda K, Kaisho T and Akira S: Toll-like receptors. Annu Rev Immunol. 21:335–376. 2003.PubMed/NCBI View Article : Google Scholar

65 

Honda K, Ohba Y, Yanai H, Negishi H, Mizutani T, Takaoka A, Taya C and Taniguchi T: Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature. 434:1035–1040. 2005.PubMed/NCBI View Article : Google Scholar

66 

Lande R, Botti E, Jandus C, Dojcinovic D, Fanelli G, Conrad C, Chamilos G, Feldmeyer L, Marinari B, Chon S, et al: The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat Commun. 5(5621)2014.PubMed/NCBI View Article : Google Scholar

67 

Farkas A and Kemény L: Interferon-α in the generation of monocyte-derived dendritic cells: Recent advances and implications for dermatology. Br J Dermatol. 165:247–254. 2011.PubMed/NCBI View Article : Google Scholar

68 

Lowes MA, Chamian F, Abello MV, Fuentes-Duculan J, Lin SL, Nussbaum R, Novitskaya I, Carbonaro H, Cardinale I, Kikuchi T, et al: Increase in TNF-alpha and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a). Proc Natl Acad Sci USA. 102:19057–19062. 2005.PubMed/NCBI View Article : Google Scholar

69 

Zaba LC, Cardinale I, Gilleaudeau P, Sullivan-Whalen M, Suárez-Fariñas M, Fuentes-Duculan J, Novitskaya I, Khatcherian A, Bluth MJ, Lowes MA and Krueger JG: Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med. 204:3183–3194. 2007.PubMed/NCBI View Article : Google Scholar

70 

Zaba LC, Krueger JG and Lowes MA: Resident and ‘inflammatory’ dendritic cells in human skin. J Invest Dermatol. 129:302–308. 2009.PubMed/NCBI View Article : Google Scholar

71 

Martini E, Wikén M, Cheuk S, Gallais Sérézal I, Baharom F, Ståhle M, Smed-Sörensen A and Eidsmo L: Dynamic changes in resident and infiltrating epidermal dendritic cells in active and resolved psoriasis. J Invest Dermatol. 137:865–873. 2017.PubMed/NCBI View Article : Google Scholar

72 

McKenzie BS, Kastelein RA and Cua DJ: Understanding the IL-23-IL-17 immune pathway. Trends Immunol. 27:17–23. 2006.PubMed/NCBI View Article : Google Scholar

73 

Wang F, Lee E, Lowes MA, Haider AS, Fuentes-Duculan J, Abello MV, Chamian F, Cardinale I and Krueger JG: Prominent production of IL-20 by CD68+/CD11c+ myeloid-derived cells in psoriasis: Gene regulation and cellular effects. J Invest Dermatol. 126:1590–1599. 2006.PubMed/NCBI View Article : Google Scholar

74 

Nickoloff BJ: The cytokine network in psoriasis. Arch Dermatol. 127:871–884. 1991.PubMed/NCBI

75 

Reich K, Nestle FO, Papp K, Ortonne JP, Evans R, Guzzo C, Li S, Dooley LT and Griffiths CE: EXPRESS study investigators. Infliximab induction and maintenance therapy for moderate-to-severe psoriasis: A phase III, multicentre, double-blind trial. Lancet. 366:1367–1374. 2005.PubMed/NCBI View Article : Google Scholar

76 

Yao Y, Richman L, Morehouse C, de los Reyes M, Higgs BW, Boutrin A, White B, Coyle A, Krueger J, Kiener PA and Jallal B: Type I interferon: Potential therapeutic target for psoriasis? PLoS One. 3(e2737)2008.PubMed/NCBI View Article : Google Scholar

77 

Funk J, Langeland T, Schrumpf E and Hanssen LE: Psoriasis induced by interferon-alpha. Br J Dermatol. 125:463–465. 1991.PubMed/NCBI View Article : Google Scholar

78 

Ketikoglou I, Karatapanis S, Elefsiniotis I, Kafiri G and Moulakakis A: Extensive psoriasis induced by pegylated interferon alpha-2b treatment for chronic hepatitis B. Eur J Dermatol. 15:107–109. 2005.PubMed/NCBI

79 

Patel U, Mark NM, Machler BC and Levine VJ: Imiquimod 5% cream induced psoriasis: A case report, summary of the literature and mechanism. Br J Dermatol. 164:670–672. 2011.PubMed/NCBI View Article : Google Scholar

80 

van der Fits L, Mourits S, Voerman JS, Kant M, Boon L, Laman JD, Cornelissen F, Mus AM, Florencia E, Prens EP and Lubberts E: Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol. 182:5836–5845. 2009.PubMed/NCBI View Article : Google Scholar

81 

Hida S, Ogasawara K, Sato K, Abe M, Takayanagi H, Yokochi T, Sato T, Hirose S, Shirai T, Taki S and Taniguchi T: CD8(+) T cell-mediated skin disease in mice lacking IRF-2, the transcriptional attenuator of interferon-alpha/beta signaling. Immunity. 13:643–655. 2000.PubMed/NCBI View Article : Google Scholar

82 

Tracey D, Klareskog L, Sasso EH, Salfeld JG and Tak PP: Tumor necrosis factor antagonist mechanisms of action: A comprehensive review. Pharmacol Ther. 117:244–279. 2008.PubMed/NCBI View Article : Google Scholar

83 

Uyemura K, Yamamura M, Fivenson DF, Modlin RL and Nickoloff BJ: The cytokine network in lesional and lesion-free psoriatic skin is characterized by a T-helper type 1 cell-mediated response. J Invest Dermatol. 101:701–705. 1993.PubMed/NCBI View Article : Google Scholar

84 

Mocanu M, Toader MP, Rezus E and Taranu T: Aspects concerning patient adherence to anti-TNFα therapy in psoriasis: A decade of clinical experience. Exp Ther Med. 18:4987–4992. 2019.PubMed/NCBI View Article : Google Scholar

85 

Menter A, Tyring SK, Gordon K, Kimball AB, Leonardi CL, Langley RG, Strober BE, Kaul M, Gu Y, Okun M and Papp K: Adalimumab therapy for moderate to severe psoriasis: A randomized, controlled phase III trial. J Am Acad Dermatol. 58:106–115. 2008.PubMed/NCBI View Article : Google Scholar

86 

Papp KA, Tyring S, Lahfa M, Prinz J, Griffiths CE, Nakanishi AM, Zitnik R, van de Kerkhof PCM and Melvin L: Etanercept psoriasis study group. A global phase III randomized controlled trial of etanercept in psoriasis: Safety, efficacy, and effect of dose reduction. Br J Dermatol. 152:1304–1312. 2005.PubMed/NCBI View Article : Google Scholar

87 

Blauvelt A, Reich K, Lebwohl M, Burge D, Arendt C, Peterson L, Drew J, Rolleri R and Gottlieb AB: Certolizumab pegol for the treatment of patients with moderate-to-severe chronic plaque psoriasis: Pooled analysis of week 16 data from three randomized controlled trials. J Eur Acad Dermatol Venereol. 33:546–552. 2019.PubMed/NCBI View Article : Google Scholar

88 

Lee E, Trepicchio WL, Oestreicher JL, Pittman D, Wang F, Chamian F, Dhodapkar M and Krueger JG: Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med. 199:125–130. 2004.PubMed/NCBI View Article : Google Scholar

89 

Haider AS, Lowes MA, Suárez-Fariñas M, Zaba LC, Cardinale I, Khatcherian A, Novitskaya I, Wittkowski KM and Krueger JG: Identification of cellular pathways of ‘type 1,’ Th17 T cells, and TNF- and inducible nitric oxide synthase-producing dendritic cells in autoimmune inflammation through pharmacogenomic study of cyclosporine A in psoriasis. J Immunol. 180:1913–1920. 2008.PubMed/NCBI View Article : Google Scholar

90 

Mahil SK, Capon F and Barker JN: Update on psoriasis immunopathogenesis and targeted immunotherapy. Semin Immunopathol. 38:11–27. 2016.PubMed/NCBI View Article : Google Scholar

91 

Grechin C, Solovăstru LG, Vâță D, Pătrașcu AI, Grăjdeanu AI and Porumb-Andrese E: Inflammatory marker alteration in response to systemic therapies in psoriasis. Exp Ther Med. 20:42–46. 2020.PubMed/NCBI View Article : Google Scholar

92 

Chan JR, Blumenschein W, Murphy E, Diveu C, Wiekowski M, Abbondanzo S, Lucian L, Geissler R, Brodie S, Kimball AB, et al: IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J Exp Med. 203:2577–2587. 2006.PubMed/NCBI View Article : Google Scholar

93 

Chamian F, Lowes MA, Lin SL, Lee E, Kikuchi T, Gilleaudeau P, Sullivan-Whalen M, Cardinale I, Khatcherian A, Novitskaya I, et al: Alefacept reduces infiltrating T cells, activated dendritic cells, and inflammatory genes in psoriasis vulgaris. Proc Natl Acad Sci USA. 102:2075–2080. 2005.PubMed/NCBI View Article : Google Scholar

94 

Rizzo HL, Kagami S, Phillips KG, Kurtz SE, Jacques SL and Blauvelt A: IL-23-mediated psoriasis-like epidermal hyperplasia is dependent on IL-17A. J Immunol. 186:1495–1502. 2011.PubMed/NCBI View Article : Google Scholar

95 

Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J and Ouyang W: Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature. 445:648–651. 2007.PubMed/NCBI View Article : Google Scholar

96 

Tonel G, Conrad C, Laggner U, Di Meglio P, Grys K, McClanahan TK, Blumenschein WM, Qin JZ, Xin H, Oldham E, et al: Cutting edge: A critical functional role for IL-23 in psoriasis. J Immunol. 185:5688–5691. 2010.PubMed/NCBI View Article : Google Scholar

97 

Lowes MA, Kikuchi T, Fuentes-Duculan J, Cardinale I, Zaba LC, Haider AS, Bowman EP and Krueger JG: Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J Invest Dermatol. 128:1207–1211. 2008.PubMed/NCBI View Article : Google Scholar

98 

Szabo SK, Hammerberg C, Yoshida Y, Bata-Csorgo Z and Cooper KD: Identification and quantitation of interferon-gamma Producing T cells in psoriatic lesions: Localization to Both CD4+ and CD8+ Subsets. J Invest Dermatol. 111:1072–1078. 1998.PubMed/NCBI View Article : Google Scholar

99 

Kulig P, Musiol S, Freiberger SN, Schreiner B, Gyülveszi G, Russo G, Pantelyushin S, Kishihara K, Alessandrini F, Kündig T, et al: IL-12 protects from psoriasiform skin inflammation. Nat Commun. 7(13466)2016.PubMed/NCBI View Article : Google Scholar

100 

Krueger GG, Langley RG, Leonardi C, Yeilding N, Guzzo C, Wang Y, Dooley LT and Lebwohl M: CNTO 1275 Psoriasis Study Group. A human interleukin-12/23 monoclonal antibody for the treatment of psoriasis. N Engl J Med. 356:580–592. 2007.PubMed/NCBI View Article : Google Scholar

101 

Lanna C, Mancini M, Gaziano R, Cannizzaro MV, Galluzzo M, Talamonti M, Rovella V, Annicchiarico-Petruzzelli M, Melino G, Wang Y, et al: Skin immunity and its dysregulation in psoriasis. Cell Cycle. 18:2581–2589. 2019.PubMed/NCBI View Article : Google Scholar

102 

Nikaein A, Phillips C, Gilbert SC, Savino D, Silverman A, Stone MJ and Menter A: Characterization of skin-infiltrating lymphocytes in patients with psoriasis. J Invest Dermatol. 96:3–9. 1991.PubMed/NCBI View Article : Google Scholar

103 

Nickoloff BJ and Wrone-Smith T: Injection of pre-psoriatic skin with CD4+ T cells induces psoriasis. Am J Pathol. 155:145–158. 1999.PubMed/NCBI View Article : Google Scholar

104 

Gottlieb AB, Lebwohl M, Shirin S, Sherr A, Gilleaudeau P, Singer G, Solodkina G, Grossman R, Gisoldi E, Phillips S, et al: Anti-CD4 monoclonal antibody treatment of moderate to severe psoriasis vulgaris: Results of a pilot, multicenter, multiple-dose, placebo-controlled study. J Am Acad Dermatol. 43:595–604. 2000.PubMed/NCBI View Article : Google Scholar

105 

Di Cesare A, Di Meglio P and Nestle FO: The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Invest Dermatol. 129:1339–1350. 2009.PubMed/NCBI View Article : Google Scholar

106 

Chiricozzi A, Guttman-Yassky E, Suárez-Fariñas M, Nograles KE, Tian S, Cardinale I, Chimenti S and Krueger JG: Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. J Invest Dermatol. 131:677–687. 2011.PubMed/NCBI View Article : Google Scholar

107 

Harper EG, Guo C, Rizzo H, Lillis JV, Kurtz SE, Skorcheva I, Purdy D, Fitch E, Iordanov M and Blauvelt A: Th17 cytokines stimulate CCL20 expression in keratinocytes in vitro and in vivo: Implications for psoriasis pathogenesis. J Invest Dermatol. 129:2175–2183. 2009.PubMed/NCBI View Article : Google Scholar

108 

Teunissen MB, Koomen CW, de Waal Malefyt R, Wierenga EA and Bos JD: Interleukin-17 and interferon-gamma synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J Invest Dermatol. 111:645–649. 1998.PubMed/NCBI View Article : Google Scholar

109 

Kagami S, Rizzo HL, Lee JJ, Koguchi Y and Blauvelt A: Circulating Th17, Th22, and Th1 cells are increased in psoriasis. J Invest Dermatol. 130:1373–1383. 2010.PubMed/NCBI View Article : Google Scholar

110 

Tesmer LA, Lundy SK, Sarkar S and Fox DA: Th17 cells in human disease. Immunol Rev. 223:87–113. 2008.PubMed/NCBI View Article : Google Scholar

111 

Priyadarssini M, Divya Priya D, Indhumathi S, Rajappa M, Chandrashekar L and Thappa DM: Immunophenotyping of T cells in the peripheral circulation in psoriasis. Br J Biomed Sci. 73:174–179. 2016.PubMed/NCBI View Article : Google Scholar

112 

Langley RG, Elewski BE, Lebwohl M, Reich K, Griffiths CEM, Papp K, Puig L, Nakagawa H, Spelman L, Sigurgeirsson B, et al: Secukinumab in plaque psoriasis-results of two phase 3 trials. N Engl J Med. 371:326–338. 2014.PubMed/NCBI View Article : Google Scholar

113 

Gordon KB, Blauvelt A, Papp KA, Langley RG, Luger T, Ohtsuki M, Reich K, Amato D, Ball SG, Braun DK, et al: Phase 3 trials of Ixekizumab in Moderate-to-Severe plaque psoriasis. N Engl J Med. 375:345–356. 2016.PubMed/NCBI View Article : Google Scholar

114 

Papp KA, Merola JF, Gottlieb AB, Griffiths CEM, Cross N, Peterson L, Cioffi C and Blauvelt A: Dual neutralization of both interleukin 17A and interleukin 17F with bimekizumab in patients with psoriasis: Results from BE ABLE 1, a 12-week randomized, double-blinded, placebo-controlled phase 2b trial. J Am Acad Dermatol. 79:277–286.e10. 2018.PubMed/NCBI View Article : Google Scholar

115 

Lebwohl M, Strober B, Menter A, Gordon K, Weglowska J, Puig L, Papp K, Spelman L, Toth D, Kerdel F, et al: Phase 3 studies comparing brodalumab with ustekinumab in psoriasis. N Engl J Med. 373:1318–1328. 2015.PubMed/NCBI View Article : Google Scholar

116 

Blauvelt A: T-Helper 17 cells in psoriatic plaques and additional genetic links between IL-23 and Psoriasis. J Invest Dermatol. 128:1064–1067. 2008.PubMed/NCBI View Article : Google Scholar

117 

Papp KA, Blauvelt A, Bukhalo M, Gooderham M, Krueger JG, Lacour JP, Menter A, Philipp S, Sofen H, Tyring S, et al: Risankizumab versus Ustekinumab for Moderate-to-severe plaque psoriasis. N Engl J Med. 376:1551–1560. 2017.PubMed/NCBI View Article : Google Scholar

118 

Kurzeja M, Rudnicka L and Olszewska M: New interleukin-23 pathway inhibitors in dermatology: Ustekinumab, briakinumab, and secukinumab. Am J Clin Dermatol. 12:113–125. 2011.PubMed/NCBI View Article : Google Scholar

119 

Alunno A, Carubbi F, Cafaro G, Pucci G, Battista F, Bartoloni E, Giacomelli R, Schillaci G and Gerli R: Targeting the IL-23/IL-17 axis for the treatment of psoriasis and psoriatic arthritis. Expert Opin Biol Ther. 15:1727–1737. 2015.PubMed/NCBI View Article : Google Scholar

120 

Papp KA, Menter A, Strober B, Langley RG, Buonanno M, Wolk R, Gupta P, Krishnaswami S, Tan H and Harness JA: Efficacy and safety of tofacitinib, an oral Janus kinase inhibitor, in the treatment of psoriasis: A Phase 2b randomized placebo-controlled dose-ranging study. Br J Dermatol. 167:668–677. 2012.PubMed/NCBI View Article : Google Scholar

121 

Papp K, Gordon K, Thaçi D, Morita A, Gooderham M, Foley P, Girgis IG, Kundu S and Banerjee S: Phase 2 Trial of selective tyrosine kinase 2 inhibition in psoriasis. N Engl J Med. 379:1313–1321. 2018.PubMed/NCBI View Article : Google Scholar

122 

Papp KA, Menter MA, Raman M, Disch D, Schlichting DE, Gaich C, Macias W, Zhang X and Janes JM: A randomized phase 2b trial of baricitinib, an oral Janus kinase (JAK) 1/JAK2 inhibitor, in patients with moderate-to-severe psoriasis. Br J Dermatol. 174:1266–1276. 2016.PubMed/NCBI View Article : Google Scholar

123 

Murphy KM and Reiner SL: The lineage decisions of helper T cells. Nat Rev Immunol. 2:933–944. 2002.PubMed/NCBI View Article : Google Scholar

124 

Wei L, Debets R, Hegmans JJ, Benner R and Prens EP: IL-1 beta and IFN-gamma induce the regenerative epidermal phenotype of psoriasis in the transwell skin organ culture system. IFN-gamma up-regulates the expression of keratin 17 and keratinocyte transglutaminase via endogenous IL-1 production. J Pathol. 187:358–364. 1999.PubMed/NCBI View Article : Google Scholar

125 

Haider AS, Cohen J, Fei J, Zaba LC, Cardinale I, Toyoko K, Ott J and Krueger JG: Insights into gene modulation by therapeutic TNF and IFNgamma antibodies: TNF regulates IFNgamma production by T cells and TNF-regulated genes linked to psoriasis transcriptome. J Invest Dermatol. 128:655–666. 2008.PubMed/NCBI View Article : Google Scholar

126 

Conrad C, Boyman O, Tonel G, Tun-Kyi A, Laggner U, de Fougerolles A, Kotelianski V, Gardner H and Nestle FO: Alpha1beta1 integrin is crucial for accumulation of epidermal T cells and the development of psoriasis. Nat Med. 13:836–842. 2007.PubMed/NCBI View Article : Google Scholar

127 

Ortega C, Fernández-A S, Carrillo JM, Romero P, Molina IJ, Moreno JC and Santamaría M: IL-17-producing CD8+ T lymphocytes from psoriasis skin plaques are cytotoxic effector cells that secrete Th17-related cytokines. J Leukoc Biol. 86:435–443. 2009.PubMed/NCBI View Article : Google Scholar

128 

Liang Y, Pan HF and Ye DQ: IL-17A-producing CD8(+)T cells as therapeutic targets in autoimmunity. Expert Opin Ther Targets. 19:651–661. 2015.PubMed/NCBI View Article : Google Scholar

129 

Opferman JT and Kothari A: Anti-apoptotic BCL-2 family members in development. Cell Death Differ. 25:37–45. 2018.PubMed/NCBI View Article : Google Scholar

130 

Pekarsky Y, Balatti V and Croce CM: BCL2 and miR-15/16: From gene discovery to treatment. Cell Death Differ. 25:21–26. 2018.PubMed/NCBI View Article : Google Scholar

131 

Montero J and Letai A: Why do BCL-2 inhibitors work and where should we use them in the clinic? Cell Death Differ. 25:56–64. 2018.PubMed/NCBI View Article : Google Scholar

132 

Rose AM, Sansom OJ and Inman GJ: Loss of TGF-β signaling drives cSCC from skin stem cells-More evidence. Cell Cycle. 16:386–387. 2017.PubMed/NCBI View Article : Google Scholar

133 

Yuan Y, Ding D, Zhang N, Xia Z, Wang J, Yang H, Guo F and Li B: TNF-α induces autophagy through ERK1/2 pathway to regulate apoptosis in neonatal necrotizing enterocolitis model cells IEC-6. Cell Cycle. 17:1390–1402. 2018.PubMed/NCBI View Article : Google Scholar

134 

Schlaak JF, Buslau M, Jochum W, Hermann E, Girndt M, Gallati H, Meyer zum Büschenfelde KH and Fleischer B: T cells involved in psoriasis vulgaris belong to the Th1 subset. J Invest Dermatol. 102:145–149. 1994.PubMed/NCBI View Article : Google Scholar

135 

Jacob SE, Nassiri M, Kerdel FA and Vincek V: Simultaneous measurement of multiple Th1 and Th2 serum cytokines in psoriasis and correlation with disease severity. Mediators Inflamm. 12:309–313. 2003.PubMed/NCBI View Article : Google Scholar

136 

Fierlbeck G, Rassner G and Müller C: Psoriasis induced at the injection site of recombinant interferon gamma: Results of immunohistologic investigations. Arch Dermatol. 126:351–355. 1990.PubMed/NCBI

137 

Cheuk S, Wikén M, Blomqvist L, Nylén S, Talme T, Ståhle M and Eidsmo L: Epidermal Th22 and Tc17 cells form a localized disease memory in clinically healed psoriasis. J Immunol. 192:3111–3120. 2014.PubMed/NCBI View Article : Google Scholar

138 

Lin WJ, Norris DA, Achziger M, Kotzin BL and Tomkinson B: Oligoclonal expansion of intraepidermal T cells in psoriasis skin lesions. J Invest Dermatol. 117:1546–1553. 2001.PubMed/NCBI View Article : Google Scholar

139 

Takamura S: Niches for the long-term maintenance of tissue-resident memory T cells. Front Immunol. 9(1214)2018.PubMed/NCBI View Article : Google Scholar

140 

Wu H, Liao W, Li Q, Long H, Yin H, Zhao M, Chan V, Lau CS and Lu Q: Pathogenic role of tissue-resident memory T cells in autoimmune diseases. Autoimmun Rev. 17:906–911. 2018.PubMed/NCBI View Article : Google Scholar

141 

Clark RA, Chong B, Mirchandani N, Brinster NK, Yamanaka KI, Dowgiert RK and Kupper TS: The vast majority of CLA+ T cells are resident in normal skin. J Immunol. 176:4431–4439. 2006.PubMed/NCBI View Article : Google Scholar

142 

Casey KA, Fraser KA, Schenkel JM, Moran A, Abt MC, Beura LK, Lucas PJ, Artis D, Wherry EJ, Hogquist K, et al: Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J Immunol. 188:4866–4875. 2012.PubMed/NCBI View Article : Google Scholar

143 

Mackay LK, Rahimpour A, Ma JZ, Collins N, Stock AT, Hafon ML, Vega-Ramos J, Lauzurica P, Mueller SN, Stefanovic T, et al: The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. Nat Immunol. 14:1294–1301. 2013.PubMed/NCBI View Article : Google Scholar

144 

Owczarczyk Saczonek A, Krajewska-Włodarczyk M, Kasprowicz-Furmańczyk M and Placek W: Immunological memory of psoriatic lesions. Int J Mol Sci. 21(625)2020.PubMed/NCBI View Article : Google Scholar

145 

Milner JJ and Goldrath AW: Transcriptional programming of tissue-resident memory CD8+ T cells. Curr Opin Immunol. 51:162–169. 2018.PubMed/NCBI View Article : Google Scholar

146 

Eberle FC, Brück J, Holstein J, Hirahara K and Ghoreschi K: Recent advances in understanding psoriasis. F1000Res. 5(F1000 Faculty Rev-770)2016.PubMed/NCBI View Article : Google Scholar

147 

Patra V, Laoubi L, Nicolas JF, Vocanson M and Wolf P: A Perspective on the interplay of ultraviolet-radiation, skin microbiome and skin resident memory TCRαβ+ cells. Front Med (Lausanne). 5(166)2018.PubMed/NCBI View Article : Google Scholar

148 

Clark RA: Resident memory T cells in human health and disease. Sci Transl Med. 7(269rv1)2015.PubMed/NCBI View Article : Google Scholar

149 

Mueller SN, Zaid A and Carbone FR: Tissue-Resident T Cells: Dynamic players in skin immunity. Front Immunol. 5(332)2014.PubMed/NCBI View Article : Google Scholar

150 

Corgnac S, Boutet M, Kfoury M, Naltet C and Mami-Chouaib F: The Emerging Role of CD8+ tissue resident memory T (TRM) cells in antitumor immunity: A unique functional contribution of the CD103 integrin. Front Immunol. 9(1904)2018.PubMed/NCBI View Article : Google Scholar

151 

Kurihara K, Fujiyama T, Phadungsaksawasdi P, Ito T and Tokura Y: Significance of IL-17A-producing CD8+CD103+ skin resident memory T cells in psoriasis lesion and their possible relationship to clinical course. J Dermatol Sci. 95:21–27. 2019.PubMed/NCBI View Article : Google Scholar

152 

Walsh D, Borges da Silva H, Beura L, Peng C, Hamilton S, Masopust D and Jameson S: The functional requirement for CD69 in establishment of resident memory CD8 + T cells varies with tissue location. J Immunol. 203:946–955. 2019.PubMed/NCBI View Article : Google Scholar

153 

Mackay LK, Braun A, Macleod BL, Collins N, Tebartz C, Bedoui S, Carbone FR and Gebhardt T: Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention. J Immunol. 194:2059–2063. 2015.PubMed/NCBI View Article : Google Scholar

154 

Schenkel JM and Masopust D: Tissue-resident memory T cells. Immunity. 41:886–897. 2014.PubMed/NCBI View Article : Google Scholar

155 

Cheuk S, Schlums H, Gallais Sérézal I, Martini E, Chiang SC, Marquardt N, Gibbs A, Detlofsson E, Introini A, Forkel M, et al: CD49a expression defines Tissue-resident CD8+ T cells poised for cytotoxic function in human skin. Immunity. 46:287–300. 2017.PubMed/NCBI View Article : Google Scholar

156 

Seidel JA, Vukmanovic-Stejic M, Muller-Durovic B, Patel N, Fuentes-Duculan J, Henson SM, Krueger JG, Rustin MHA, Nestle FO, Lacy KE and Akbar AN: Skin resident memory CD8+ T cells are phenotypically and functionally distinct from circulating populations and lack immediate cytotoxic function. Clin Exp Immunol. 194:79–92. 2018.PubMed/NCBI View Article : Google Scholar

157 

Petrelli A and van Wijk F: CD8(+) T cells in human autoimmune arthritis: The unusual suspects. Nat Rev Rheumatol. 12:421–428. 2016.PubMed/NCBI View Article : Google Scholar

158 

Ritchlin C: Tissue-resident memory T cells: Sequestered immune sensors and effectors of inflammation in Spondyloarthritis. Arthritis Rheumatol. 72:379–382. 2020.PubMed/NCBI View Article : Google Scholar

159 

Adachi T, Kobayashi T, Sugihara E, Yamada T, Ikuta K, Pittaluga S, Saya H, Amagai M and Nagao K: Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma. Nat Med. 21:1272–1279. 2015.PubMed/NCBI View Article : Google Scholar

160 

Diani M, Galasso M, Cozzi C, Sgambelluri F, Altomare A, Cigni C, Frigerio E, Drago L, Volinia S, Granucci F, et al: Blood to skin recirculation of CD4+ memory T cells associates with cutaneous and systemic manifestations of psoriatic disease. Clin Immunol. 180:84–94. 2017.PubMed/NCBI View Article : Google Scholar

161 

Matos TR, O'Malley JT, Lowry EL, Hamm D, Kirsch IR, Robins HS, Kupper TS, Krueger JG and Clark RA: Clinically resolved psoriatic lesions contain psoriasis-specific IL-17-producing αβ T cell clones. J Clin Invest. 127:4031–4041. 2017.PubMed/NCBI View Article : Google Scholar

162 

Meglio PD, Villanova F, Navarini AA, Mylonas A, Tosi I, Nestle FO and Conrad C: Targeting CD8+ T cells prevents psoriasis development. J Allergy Clin Immunol. 138:274–276.e6. 2016.PubMed/NCBI View Article : Google Scholar

163 

Farber DL, Yudanin NA and Restifo NP: Human memory T cells: Generation, compartmentalization and homeostasis. Nat Rev Immunol. 14:24–35. 2014.PubMed/NCBI View Article : Google Scholar

164 

Boyman O, Hefti HP, Conrad C, Nickoloff BJ, Suter M and Nestle FO: Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis Factor-alpha. J Exp Med. 199:731–736. 2004.PubMed/NCBI View Article : Google Scholar

165 

Campbell JJ, Clark RA, Watanabe R and Kupper TS: Sezary syndrome and mycosis fungoides arise from distinct T-cell subsets: A biologic rationale for their distinct clinical behaviors. Blood. 116:767–771. 2010.PubMed/NCBI View Article : Google Scholar

166 

Gallais Sérézal I, Classon C, Cheuk S, Barrientos-Somarribas M, Wadman E, Martini E, Chang D, Landén NX, Ehrström M, Nylén S and Eidsmo L: Resident T cells in resolved psoriasis steer tissue responses that stratify clinical outcome. J Invest Dermatol. 138:1754–1763. 2018.PubMed/NCBI View Article : Google Scholar

167 

Sérézal IG, Hoffer E, Ignatov B, Martini E, Zitti B, Ehrström M and Eidsmo L: A skewed pool of resident T cells triggers psoriasis-associated tissue responses in never-lesional skin from patients with psoriasis. J Allergy Clin Immunol. 143:1444–1454. 2019.PubMed/NCBI View Article : Google Scholar

168 

Vo S, Watanabe R, Koguchi-Yoshioka H, Matsumura Y, Ishitsuka Y, Nakamura Y, Okiyama N, Fujisawa Y and Fujimoto M: CD8 resident memory T cells with interleukin 17A-producing potential are accumulated in disease-naïve nonlesional sites of psoriasis possibly in correlation with disease duration. Br J Dermatol. 181:410–412. 2019.PubMed/NCBI View Article : Google Scholar

169 

Diani M, Altomare G and Reali E: T Helper cell subsets in clinical manifestations of psoriasis. J Immunol Res. 2016(e7692024)2016.PubMed/NCBI View Article : Google Scholar

170 

Bosè F, Petti L, Diani M, Moscheni C, Molteni S, Altomare A, Rossi RL, Talarico D, Fontana R, Russo V, et al: Inhibition of CCR7/CCL19 axis in lesional skin is a critical event for clinical remission induced by TNF blockade in patients with psoriasis. Am J Pathol. 183:413–421. 2013.PubMed/NCBI View Article : Google Scholar

171 

Watanabe R: Protective and pathogenic roles of resident memory T cells in human skin disorders. J Dermatol Sci. 95:2–7. 2019.PubMed/NCBI View Article : Google Scholar

172 

Sgambelluri F, Diani M, Altomare A, Frigerio E, Drago L, Granucci F, Banfi G, Altomare G and Reali E: A role for CCR5(+)CD4 T cells in cutaneous psoriasis and for CD103(+) CCR4(+) CD8 Teff cells in the associated systemic inflammation. J Autoimmun. 70:80–90. 2016.PubMed/NCBI View Article : Google Scholar

173 

Chen L and Shen Z: Tissue-resident memory T cells and their biological characteristics in the recurrence of inflammatory skin disorders. Cell Mol Immunol. 17:64–75. 2020.PubMed/NCBI View Article : Google Scholar

174 

Pan Y and Kupper TS: Metabolic reprogramming and longevity of tissue-resident memory T cells. Front Immunol. 9(1347)2018.PubMed/NCBI View Article : Google Scholar

175 

Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang LS, Jones RG and Choi Y: Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature. 460:103–107. 2009.PubMed/NCBI View Article : Google Scholar

176 

Cui G, Staron MM, Gray SM, Ho PC, Amezquita RA, Wu J and Kaech SM: IL-7-induced glycerol transport and TAG synthesis promotes memory CD8+ T cell longevity. Cell. 161:750–761. 2015.PubMed/NCBI View Article : Google Scholar

177 

Pan Y, Tian T, Park CO, Lofftus SY, Mei S, Liu X, Luo C, O'Malley JT, Gehad A, Teague JE, et al: Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature. 543:252–256. 2017.PubMed/NCBI View Article : Google Scholar

178 

Esmaeili B, Mansouri P, Doustimotlagh AH and Izad M: Redox imbalance and IL-17 responses in memory CD4+ T cells from patients with psoriasis. Scand J Immunol. 89(e12730)2019.PubMed/NCBI View Article : Google Scholar

179 

Karamehic J, Zecevic L, Resic H, Jukic M, Jukic T, Ridjic O, Panjeta M and Coric J: Immunophenotype lymphocyte of peripheral blood in patients with psoriasis. Med Arch. 68:236–238. 2014.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Branisteanu DE, Cojocaru C, Diaconu R, Porumb EA, Alexa AI, Nicolescu AC, Brihan I, Bogdanici CM, Branisteanu G, Dimitriu A, Dimitriu A, et al: Update on the etiopathogenesis of psoriasis (Review). Exp Ther Med 23: 201, 2022.
APA
Branisteanu, D.E., Cojocaru, C., Diaconu, R., Porumb, E.A., Alexa, A.I., Nicolescu, A.C. ... Branisteanu, D.C. (2022). Update on the etiopathogenesis of psoriasis (Review). Experimental and Therapeutic Medicine, 23, 201. https://doi.org/10.3892/etm.2022.11124
MLA
Branisteanu, D. E., Cojocaru, C., Diaconu, R., Porumb, E. A., Alexa, A. I., Nicolescu, A. C., Brihan, I., Bogdanici, C. M., Branisteanu, G., Dimitriu, A., Zemba, M., Anton, N., Toader, M. P., Grechin, A., Branisteanu, D. C."Update on the etiopathogenesis of psoriasis (Review)". Experimental and Therapeutic Medicine 23.3 (2022): 201.
Chicago
Branisteanu, D. E., Cojocaru, C., Diaconu, R., Porumb, E. A., Alexa, A. I., Nicolescu, A. C., Brihan, I., Bogdanici, C. M., Branisteanu, G., Dimitriu, A., Zemba, M., Anton, N., Toader, M. P., Grechin, A., Branisteanu, D. C."Update on the etiopathogenesis of psoriasis (Review)". Experimental and Therapeutic Medicine 23, no. 3 (2022): 201. https://doi.org/10.3892/etm.2022.11124
Copy and paste a formatted citation
x
Spandidos Publications style
Branisteanu DE, Cojocaru C, Diaconu R, Porumb EA, Alexa AI, Nicolescu AC, Brihan I, Bogdanici CM, Branisteanu G, Dimitriu A, Dimitriu A, et al: Update on the etiopathogenesis of psoriasis (Review). Exp Ther Med 23: 201, 2022.
APA
Branisteanu, D.E., Cojocaru, C., Diaconu, R., Porumb, E.A., Alexa, A.I., Nicolescu, A.C. ... Branisteanu, D.C. (2022). Update on the etiopathogenesis of psoriasis (Review). Experimental and Therapeutic Medicine, 23, 201. https://doi.org/10.3892/etm.2022.11124
MLA
Branisteanu, D. E., Cojocaru, C., Diaconu, R., Porumb, E. A., Alexa, A. I., Nicolescu, A. C., Brihan, I., Bogdanici, C. M., Branisteanu, G., Dimitriu, A., Zemba, M., Anton, N., Toader, M. P., Grechin, A., Branisteanu, D. C."Update on the etiopathogenesis of psoriasis (Review)". Experimental and Therapeutic Medicine 23.3 (2022): 201.
Chicago
Branisteanu, D. E., Cojocaru, C., Diaconu, R., Porumb, E. A., Alexa, A. I., Nicolescu, A. C., Brihan, I., Bogdanici, C. M., Branisteanu, G., Dimitriu, A., Zemba, M., Anton, N., Toader, M. P., Grechin, A., Branisteanu, D. C."Update on the etiopathogenesis of psoriasis (Review)". Experimental and Therapeutic Medicine 23, no. 3 (2022): 201. https://doi.org/10.3892/etm.2022.11124
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team