|
1
|
Evans WJ, Morley JE, Argilés J, Bales C,
Baracos V, Guttridge D, Jatoi A, Kalantar-Zadeh K, Lochs H,
Mantovani G, et al: Cachexia: A new definition. Clin Nutr.
27:793–799. 2008.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Holecek M: Muscle wasting in animal models
of severe illness. Int J Exp Pathol. 93:157–171. 2012.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Argilés JM, Busquets S, Stemmler B and
López-Soriano FJ: Cancer cachexia: Understanding the molecular
basis. Nat Rev Cancer. 14:754–762. 2014.PubMed/NCBI View
Article : Google Scholar
|
|
4
|
Nixon DW, Heymsfield SB, Cohen AE, Kutner
MH, Ansley J, Lawson DH and Rudman D: Protein-calorie
undernutrition in hospitalized cancer patients. Am J Med.
68:683–690. 1980.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Fearon KC, Glass DJ and Guttridge DC:
Cancer cachexia: Mediators, signaling, and metabolic pathways. Cell
Metab. 16:153–166. 2012.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Narasimhan A, Ghosh S, Stretch C, Greiner
R, Bathe OF, Baracos V and Damaraju S: Small RNAome profiling from
human skeletal muscle: Novel miRNAs and their targets associated
with cancer cachexia. J Cachexia Sarcopenia Muscle. 8:405–416.
2017.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Anker MS, Holcomb R, Muscaritoli M, von
Haehling S, Haverkamp W, Jatoi A, Morley JE, Strasser F, Landmesser
U, Coats AJS and Anker SD: Orphan disease status of cancer cachexia
in the USA and in the European Union: A systematic review. J
Cachexia Sarcopenia Muscle. 10:22–34. 2019.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Caillet P, Liuu E, Raynaud Simon A,
Bonnefoy M, Guerin O, Berrut G, Lesourd B, Jeandel C, Ferry M,
Rolland Y and Paillaud E: Association between cachexia,
chemotherapy and outcomes in older cancer patients: A systematic
review. Clin Nutr. 36:1473–1482. 2017.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Fearon K, Strasser F, Anker SD, Bosaeus I,
Bruera E, Fainsinger RL, Jatoi A, Loprinzi C, MacDonald N,
Mantovani G, et al: Definition and classification of cancer
cachexia: An international consensus. Lancet Oncol. 12:489–495.
2011.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Thoresen L, Frykholm G, Lydersen S,
Ulveland H, Baracos V, Prado CM, Birdsell L and Falkmer U:
Nutritional status, cachexia and survival in patients with advanced
colorectal carcinoma. Different assessment criteria for nutritional
status provide unequal results. Clin Nutr. 32:65–72.
2013.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Vander Heiden MG, Cantley LC and Thompson
CB: Understanding the Warburg effect: The metabolic requirements of
cell proliferation. Science. 324:1029–1033. 2009.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Phypers B and Pierce JT: Lactate
physiology in health and disease. CEACCP. 6:128–132. 2001.
|
|
13
|
Der-Torossian H, Gourin CG and Couch ME:
Translational implications of novel findings in cancer cachexia:
The use of metabolomics and the potential of cardiac malfunction.
Curr Opin Support Palliat Care. 6:446–450. 2012.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Muscaritoli M, Anker SD, Argilés J, Aversa
Z, Bauer JM, Biolo G, Boirie Y, Bosaeus I, Cederholm T, Costelli P,
et al: Consensus definition of sarcopenia, cachexia and
pre-cachexia: Joint document elaborated by Special Interest Groups
(SIG) ‘cachexia-anorexia in chronic wasting diseases’ and
‘nutrition in geriatrics’. Clin Nutr. 29:154–159. 2010.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Freire PP, Fernandez GJ, Cury SS, de
Moraes D, Oliveira JS, de Oliveira G, Dal-Pai-Silva M, Dos Reis PP
and Carvalho RF: The pathway to cancer cachexia: MicroRNA-Regulated
networks in muscle wasting based on integrative meta-analysis. Int
J Mol Sci. 20(1962)2019.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Schmidt SF, Rohm M, Herzig S and Berriel
Diaz M: Cancer cachexia: More than skeletal muscle wasting. Trends
Cancer. 4:849–860. 2018.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Argilés JM, Anguera A and Stemmler B: A
new look at an old drug for the treatment of cancer cachexia:
Megestrol acetate. Clin Nutr. 32:319–324. 2013.PubMed/NCBI View Article : Google Scholar
|
|
18
|
He WA, Calore F, Londhe P, Canella A,
Guttridge DC and Croce CM: Microvesicles containing miRNAs promote
muscle cell death in cancer cachexia via TLR7. Proc Natl Acad Sci
USA. 111:4525–4529. 2014.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Wang YW, Ma X, Zhang YA, Wang MJ, Yatabe
Y, Lam S, Girard L, Chen JY and Gazdar AF: ITPKA gene body
methylation regulates gene expression and serves as an early
diagnostic marker in lung and other cancers. J Thorac Oncol.
11:1469–1481. 2016.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Lee DE, Brown JL, Rosa-Caldwell ME,
Blackwell TA, Perry RA Jr, Brown LA, Khatri B, Seo D, Bottje WG,
Washington TA, et al: Cancer cachexia-induced muscle atrophy:
Evidence for alterations in microRNAs important for muscle size.
Physiol Genomics. 49:253–260. 2017.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Camargo RG, Quintas Teixeira Ribeiro H,
Geraldo MV, Matos-Neto E, Neves RX, Carnevali LC Jr, Donatto FF,
Alcântara PS, Ottoch JP and Seelaender M: Cancer cachexia and
MicroRNAs. Mediators Inflamm. 2015(367561)2015.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Li X, Wang S, Zhu R, Li H, Han Q and Zhao
RC: Lung tumor exosomes induce a pro-inflammatory phenotype in
mesenchymal stem cells via NFκB-TLR signaling pathway. J Hematol
Oncol. 9(42)2016.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Ha M and Kim VN: Regulation of microRNA
biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014.PubMed/NCBI View
Article : Google Scholar
|
|
24
|
Lee RC, Feinbaum RL and Ambros V: The C.
elegans heterochronic gene lin-4 encodes small RNAs with antisense
complementarity to lin-14. Cell. 75:843–854. 1993.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Stegeman S, Amankwah E, Klein K, O'Mara
TA, Kim D, Lin HY, Permuth-Wey J, Sellers TA, Srinivasan S, Eeles
R, et al: A Large-scale analysis of genetic variants within
putative miRNA binding sites in prostate cancer. Cancer Discov.
5:368–379. 2015.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek
SH and Kim VN: MicroRNA genes are transcribed by RNA polymerase II.
EMBO J. 23:4051–4060. 2004.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Denli AM, Tops BB, Plasterk RH, Ketting RF
and Hannon GJ: Processing of primary microRNAs by the
Microprocessor complex. Nature. 432:231–235. 2004.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Wilson RC, Tambe A, Kidwell MA, Noland CL,
Schneider CP and Doudna JA: Dicer-TRBP complex formation ensures
accurate mammalian microRNA biogenesis. Mol Cell. 57:397–407.
2015.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Gregory RI, Chendrimada TP, Cooch N and
Shiekhattar R: Human RISC couples microRNA biogenesis and
posttranscriptional gene silencing. Cell. 123:631–640.
2005.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Thomson DW, Bracken CP and Goodall GJ:
Experimental strategies for microRNA target identification. Nucleic
Acids Res. 39:6845–6853. 2011.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Eisenberg I, Eran A, Nishino I, Moggio M,
Lamperti C, Amato AA, Lidov HG, Kang PB, North KN,
Mitrani-Rosenbaum S, et al: Distinctive patterns of microRNA
expression in primary muscular disorders. Proc Natl Acad Sci USA.
104:17016–17021. 2007.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Soares RJ, Cagnin S, Chemello F,
Silvestrin M, Musaro A, De Pitta C, Lanfranchi G and Sandri M:
Involvement of microRNAs in the regulation of muscle wasting during
catabolic conditions. J Biol Chem. 289:21909–21925. 2014.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Poy MN, Eliasson L, Krutzfeldt J, Kuwajima
S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P
and Stoffel M: A pancreatic islet-specific microRNA regulates
insulin secretion. Nature. 432:226–230. 2004.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Zhou X, Hu S, Zhang Y, Du G and Li Y: The
mechanism by which noncoding RNAs regulate muscle wasting in cancer
cachexia. Precision Clin Med. 4:136–147. 2021.
|
|
35
|
Marceca GP, Nigita G, Calore F and Croce
CM: MicroRNAs in skeletal muscle and hints on their potential role
in muscle wasting during cancer cachexia. Front Oncol.
10(607196)2020.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Kim DH: Nutritional issues in patients
with cancer. Intest Res. 17:455–462. 2019.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Zhu X, Burfeind KG, Michaelis KA, Braun
TP, Olson B, Pelz KR, Morgan TK and Marks DL: MyD88 signalling is
critical in the development of pancreatic cancer cachexia. J
Cachexia Sarcopenia Muscle. 10:378–390. 2019.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Du L, Dong F, Guo L, Hou Y, Yi F, Liu J
and Xu D: Interleukin-1β increases permeability and upregulates the
expression of vascular endothelial-cadherin in human renal
glomerular endothelial cells. Mol Med Rep. 11:3708–3714.
2015.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Lobb RJ, Lima LG and Möller A: Exosomes:
Key mediators of metastasis and pre-metastatic niche formation.
Semin Cell Dev Biol. 67:3–10. 2017.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Tomasetti M, Lee W, Santarelli L and
Neuzil J: Exosome-derived microRNAs in cancer metabolism: Possible
implications in cancer diagnostics and therapy. Exp Mol Med.
49(e285)2017.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Cordonnier M, Chanteloup G, Isambert N,
Seigneuric R, Fumoleau P, Garrido C and Gobbo J: Exosomes in cancer
theranostic: Diamonds in the rough. Cell Adh Migr. 11:151–163.
2017.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Song W, Yan D, Wei T, Liu Q, Zhou X and
Liu J: Tumor-derived extracellular vesicles in angiogenesis. Biomed
Pharmacother. 102:1203–1208. 2018.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Bilir C, Engin H, Can M, Temi YB and
Demirtas D: The prognostic role of inflammation and hormones in
patients with metastatic cancer with cachexia. Med Oncol.
32(56)2015.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Batista ML Jr, Olivan M, Alcantara PS,
Sandoval R, Peres SB, Neves RX, Silverio R, Maximiano LF, Otoch JP
and Seelaender M: Adipose tissue-derived factors as potential
biomarkers in cachectic cancer patients. Cytokine. 61:532–539.
2013.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Nie M, Deng ZL, Liu J and Wang DZ:
Noncoding RNAs, emerging regulators of skeletal muscle development
and diseases. Biomed Res Int. 2015(676575)2015.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Zhang Y, Yu M and Tian W: Physiological
and pathological impact of exosomes of adipose tissue. Cell Prolif.
49:3–13. 2016.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Lazar I, Clement E, Dauvillier S, Milhas
D, Ducoux-Petit M, LeGonidec S, Moro C, Soldan V, Dalle S, Balor S,
et al: Adipocyte exosomes promote melanoma aggressiveness through
fatty acid oxidation: A novel mechanism linking obesity and cancer.
Cancer Res. 76:4051–4057. 2016.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Falzone L, Grimaldi M, Celentano E,
Augustin LSA and Libra M: Identification of modulated MicroRNAs
associated with breast cancer, diet, and physical activity. Cancers
(Basel). 12(2555)2020.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Fonseca A, Ramalhete SV, Mestre A, Pires
das Neves R, Marreiros A, Castelo-Branco P and Roberto VP:
Identification of colorectal cancer associated biomarkers: An
integrated analysis of miRNA expression. Aging (Albany NY).
13:21991–22029. 2021.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Falzone L, Lupo G, La Rosa GRM, Crimi S,
Anfuso CD, Salemi R, Rapisarda E, Libra M and Candido S:
Identification of novel MicroRNAs and their diagnostic and
prognostic significance in oral cancer. Cancers (Basel).
11(610)2019.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Ren ZP, Hou XB, Tian XD, Guo JT, Zhang LB,
Xue ZQ, Deng JQ, Zhang SW, Pan JY and Chu XY: Identification of
nine microRNAs as potential biomarkers for lung adenocarcinoma.
FEBS Open Bio. 9:315–327. 2019.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Kwon YJ, Cho YE, Cho AR, Choi WJ, Yun S,
Park H, Kim HS, Cashion AK, Gill J, Lee H and Lee JW: The possible
influence of mediterranean diet on extracellular vesicle miRNA
expression in breast cancer survivors. Cancers (Basel).
12(1355)2020.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Giambò F, Leone GM, Gattuso G, Rizzo R,
Cosentino A, Cinà D, Teodoro M, Costa C, Tsatsakis A, Fenga C and
Falzone L: Genetic and epigenetic alterations induced by pesticide
exposure: Integrated analysis of gene expression, microRNA
Expression, and DNA methylation datasets. Int J Environ Res Public
Health. 18(8697)2021.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Filetti V, Falzone L, Rapisarda V,
Caltabiano R, Eleonora Graziano AC, Ledda C and Loreto C:
Modulation of microRNA expression levels after naturally occurring
asbestiform fibers exposure as a diagnostic biomarker of
mesothelial neoplastic transformation. Ecotoxicol Environ Saf.
198(110640)2020.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Kemik O, Sumer A, Kemik AS, Hasirci I,
Purisa S, Dulger AC, Demiriz B and Tuzun S: The relationship among
acute-phase response proteins, cytokines and hormones in cachectic
patients with colon cancer. World J Surg Oncol.
8(85)2010.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Guo L, Dong F, Hou Y, Cai W, Zhou X, Huang
AL, Yang M, Allen TD and Liu J: Dihydroartemisinin inhibits
vascular endothelial growth factor-induced endothelial cell
migration by a p38 mitogen-activated protein kinase-independent
pathway. Exp Ther Med. 8:1707–1712. 2014.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Wei T, Jia J, Wada Y, Kapron CM and Liu J:
Dose dependent effects of cadmium on tumor angiogenesis.
Oncotarget. 8:44944–44959. 2017.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Gao P, Wang LL, Liu J, Dong F, Song W,
Liao L, Wang B, Zhang W, Zhou X, Xie Q, et al: Dihydroartemisinin
inhibits endothelial cell tube formation by suppression of the
STAT3 signaling pathway. Life Sci. 242(117221)2020.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Liu J, Ren Y, Hou Y, Zhang C, Wang B, Li
X, Sun R and Liu J: Dihydroartemisinin induces endothelial cell
autophagy through suppression of the Akt/mTOR Pathway. J Cancer.
10:6057–6064. 2019.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Xie Q, Cheng Z, Chen X, Lobe CG and Liu J:
The role of Notch signalling in ovarian angiogenesis. J Ovarian
Res. 10(13)2017.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Kim KJ, Li B, Winer J, Armanini M, Gillett
N, Phillips HS and Ferrara N: Inhibition of vascular endothelial
growth factor-induced angiogenesis suppresses tumour growth in
vivo. Nature. 362:841–844. 1993.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Liu J, Li Y, Dong F, Li L, Masuda T, Allen
TD and Lobe CG: Trichostatin A suppresses lung adenocarcinoma
development in Grg1 overexpressing transgenic mice. Biochem Biophys
Res Commun. 463:1230–1236. 2015.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Muralidharan-Chari V, Clancy J, Plou C,
Romao M, Chavrier P, Raposo G and D'Souza-Schorey C: ARF6-regulated
shedding of tumor cell-derived plasma membrane microvesicles. Curr
Biol. 19:1875–1885. 2009.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Sabry D, El-Deek SEM, Maher M, El-Baz MAH,
El-Bader HM, Amer E, Hassan EA, Fathy W and El-Deek HEM: Role of
miRNA-210, miRNA-21 and miRNA-126 as diagnostic biomarkers in
colorectal carcinoma: Impact of HIF-1α-VEGF signaling pathway. Mol
Cell Biochem. 454:177–189. 2019.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Cheng J, Chen Y, Zhao P, Liu X, Dong J, Li
J, Huang C, Wu R and Lv Y: Downregulation of miRNA-638 promotes
angiogenesis and growth of hepatocellular carcinoma by targeting
VEGF. Oncotarget. 7:30702–30711. 2016.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Yamada N, Tsujimura N, Kumazaki M,
Shinohara H, Taniguchi K, Nakagawa Y, Naoe T and Akao Y: Colorectal
cancer cell-derived microvesicles containing microRNA-1246 promote
angiogenesis by activating Smad 1/5/8 signaling elicited by PML
down-regulation in endothelial cells. Biochim Biophys Acta.
1839:1256–1272. 2014.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Tisdale MJ: Cancer cachexia. Curr Opin
Gastroenterol. 26:146–151. 2010.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Bilodeau PA, Coyne ES and Wing SS: The
ubiquitin proteasome system in atrophying skeletal muscle: Roles
and regulation. Am J Physiol Cell Physiol. 311:C392–C403.
2016.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Reed SA, Sandesara PB, Senf SM and Judge
AR: Inhibition of FoxO transcriptional activity prevents muscle
fiber atrophy during cachexia and induces hypertrophy. FASEB J.
26:987–1000. 2012.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Xu J, Li R, Workeneh B, Dong Y, Wang X and
Hu Z: Transcription factor FoxO1, the dominant mediator of muscle
wasting in chronic kidney disease, is inhibited by microRNA-486.
Kidney Int. 82:401–411. 2012.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Suzuki T and Springer J: MicroRNAs in
muscle wasting. J Cachexia Sarcopenia Muscle. 9:1209–1212.
2018.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Sutandyo N: The role of microRNA in cancer
cachexia and muscle wasting: A review article. Caspian J Intern
Med. 12:124–128. 2021.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Brzeszczyńska J, Brzeszczyński F, Hamilton
DF, McGregor R and Simpson AHRW: Role of microRNA in muscle
regeneration and diseases related to muscle dysfunction in atrophy,
cachexia, osteoporosis, and osteoarthritis. Bone Joint Res.
9:798–807. 2020.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Zhou L, Zhang T, Shao W, Lu R, Wang L, Liu
H, Jiang B, Li S, Zhuo H, Wang S, et al: Amiloride ameliorates
muscle wasting in cancer cachexia through inhibiting tumor-derived
exosome release. Skeletal muscle. 11(17)2021.PubMed/NCBI View Article : Google Scholar
|
|
75
|
van de Worp WRPH, Schols AMWJ, Schols
AMWJ, Dingemans AC, Op den Kamp CMH, Degens JHRJ, Kelders MCJM,
Coort S, Woodruff HC, Kratassiouk G, et al: Identification of
microRNAs in skeletal muscle associated with lung cancer cachexia.
J Cachexia Sarcopenia Muscle. 11:452–463. 2020.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Fernandez GJ, Ferreira JH, Vechetti IJ Jr,
de Moraes LN, Cury SS, Freire PP, Gutiérrez J, Ferretti R,
Dal-Pai-Silva M, Rogatto SR and Carvalho RF: MicroRNA-mRNA
Co-sequencing identifies transcriptional and post-transcriptional
regulatory networks underlying muscle wasting in cancer cachexia.
Front Genet. 11(541)2020.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Daas SI, Rizeq BR and Nasrallah GK:
Adipose tissue dysfunction in cancer cachexia. J Cell Physiol.
234:13–22. 2018.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Petruzzelli M, Schweiger M, Schreiber R,
Campos-Olivas R, Tsoli M, Allen J, Swarbrick M, Rose-John S, Rincon
M, Robertson G, et al: A switch from white to brown fat increases
energy expenditure in cancer-associated cachexia. Cell Metab.
20:433–447. 2014.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Neves RX, Rosa-Neto JC, Yamashita AS,
Matos-Neto EM, Riccardi DM, Lira FS, Batista ML Jr and Seelaender
M: White adipose tissue cells and the progression of cachexia:
Inflammatory pathways. J Cachexia Sarcopenia Muscle. 7:193–203.
2016.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Camargo RG, Riccardi DM, Ribeiro HQ,
Carnevali LC Jr, de Matos-Neto EM, Enjiu L, Neves RX, Lima JD,
Figuerêdo RG, de Alcântara PS, et al: NF-κBp65 and expression of
its pro-inflammatory target genes are upregulated in the
subcutaneous adipose tissue of cachectic cancer patients.
Nutrients. 7:4465–4479. 2015.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Aswad H, Forterre A, Wiklander OP, Vial G,
Danty-Berger E, Jalabert A, Lamazière A, Meugnier E, Pesenti S, Ott
C, et al: Exosomes participate in the alteration of muscle
homeostasis during lipid-induced insulin resistance in mice.
Diabetologia. 57:2155–2164. 2014.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Kulyté A, Lorente-Cebrián S, Gao H,
Mejhert N, Agustsson T, Arner P, Rydén M and Dahlman I: MicroRNA
profiling links miR-378 to enhanced adipocyte lipolysis in human
cancer cachexia. Am J Physiol Endocrinol Metab. 306:E267–E274.
2014.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K,
Guo J, Zhang Y, Chen J, Guo X, et al: Characterization of microRNAs
in serum: A novel class of biomarkers for diagnosis of cancer and
other diseases. Cell Res. 18:997–1006. 2008.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Donzelli S, Farneti A, Marucci L, Ganci F,
Sacconi A, Strano S, Sanguineti G and Blandino G: Non-coding RNAs
as putative biomarkers of cancer-associated cachexia. Front Cell
Dev Biol. 8(257)2020.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Hamaguchi Y, Kaido T, Okumura S, Kobayashi
A, Hammad A, Tamai Y, Inagaki N and Uemoto S: Proposal for new
diagnostic criteria for low skeletal muscle mass based on computed
tomography imaging in Asian adults. Nutrition. 32:1200–1205.
2016.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Kaido T: Selection criteria and current
issues in liver transplantation for hepatocellular carcinoma. Liver
Cancer. 5:121–127. 2016.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Okugawa Y, Toiyama Y, Hur K, Yamamoto A,
Yin C, Ide S, Kitajima T, Fujikawa H, Yasuda H, Koike Y, et al:
Circulating miR-203 derived from metastatic tissues promotes
myopenia in colorectal cancer patients. J Cachexia Sarcopenia
Muscle. 10:536–548. 2019.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Okugawa Y, Yao L, Toiyama Y, Yamamoto A,
Shigemori T, Yin C, Omura Y, Ide S, Kitajima T, Shimura T, et al:
Prognostic impact of sarcopenia and its correlation with
circulating miR-21 in colorectal cancer patients. Oncol Rep.
39:1555–1564. 2018.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Wang H and Wang B: Extracellular vesicle
microRNAs mediate skeletal muscle myogenesis and disease. Biomed
Rep. 5:296–300. 2016.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Wu Q, Sun S, Li Z, Yang Q, Li B, Zhu S,
Wang L, Wu J, Yuan J, Yang C, et al: Tumour-originated exosomal
miR-155 triggers cancer-associated cachexia to promote tumour
progression. Mol Cancer. 17(155)2018.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Chitti SV, Fonseka P and Mathivanan S:
Emerging role of extracellular vesicles in mediating cancer
cachexia. Biochem Soc Trans. 46:1129–1136. 2018.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Du G, Zhang Y, Hu S, Zhou X and Li Y:
Non-coding RNAs in exosomes and adipocytes cause fat loss during
cancer cachexia. Noncoding RNA Res. 6:80–85. 2021.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Li L, Liu H, Tao W, Wen S, Fu X and Yu S:
Pharmacological inhibition of HMGB1 prevents muscle wasting. Front
Pharmacol. 12(731386)2021.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Wan Z, Chen X, Gao X, Dong Y, Zhao Y, Wei
M, Fan W, Yang G and Liu L: Chronic myeloid leukemia-derived
exosomes attenuate adipogenesis of adipose derived mesenchymal stem
cells via transporting miR-92a-3p. J Cell Physiol. 234:21274–21283.
2019.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Köberle V, Kronenberger B, Pleli T, Trojan
J, Imelmann E, Peveling-Oberhag J, Welker MW, Elhendawy M, Zeuzem
S, Piiper A and Waidmann O: Serum microRNA-1 and microRNA-122 are
prognostic markers in patients with hepatocellular carcinoma. Eur J
Cancer. 49:3442–3449. 2013.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Powrózek T, Mlak R, Brzozowska A, Mazurek
M, Gołębiowski P and Małecka-Massalska T: MiRNA-130a significantly
improves accuracy of SGA Nutritional assessment tool in prediction
of malnutrition and cachexia in radiotherapy-treated head and neck
cancer patients. Cancers (Basel). 10(294)2018.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Chen D, Goswami CP, Burnett RM, Anjanappa
M, Bhat-Nakshatri P, Muller W and Nakshatri H: Cancer affects
microRNA expression, release, and function in cardiac and skeletal
muscle. Cancer Res. 74:4270–4281. 2014.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Lin J, Li J, Huang B, Liu J, Chen X, Chen
XM, Xu YM, Huang LF and Wang XZ: Exosomes: Novel biomarkers for
clinical diagnosis. ScientificWorldJournal.
2015(657086)2015.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Belli R, Ferraro E, Molfino A, Carletti R,
Tambaro F, Costelli P and Muscaritoli M: Liquid biopsy for cancer
cachexia: Focus on muscle-derived microRNAs. Int J Mol Sci.
22(9007)2021.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Li BS, Zhao YL, Guo G, Li W, Zhu ED, Luo
X, Mao XH, Zou QM, Yu PW, Zuo QF, et al: Plasma microRNAs, miR-223,
miR-21 and miR-218, as novel potential biomarkers for gastric
cancer detection. PLoS One. 7(e41629)2012.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Schrauder MG, Strick R, Schulz-Wendtland
R, Strissel PL, Kahmann L, Loehberg CR, Lux MP, Jud SM, Hartmann A,
Hein A, et al: Circulating micro-RNAs as potential blood-based
markers for early stage breast cancer detection. PLoS One.
7(e29770)2012.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Wang J, Chen J, Chang P, LeBlanc A, Li D,
Abbruzzesse JL, Frazier ML, Killary AM and Sen S: MicroRNAs in
plasma of pancreatic ductal adenocarcinoma patients as novel
blood-based biomarkers of disease. Cancer Prev Res (Phila).
2:807–813. 2009.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Kottorou A, Dimitrakopoulos FI and Tsezou
A: Non-coding RNAs in cancer-associated cachexia: Clinical
implications and future perspectives. Transl Oncol.
14(101101)2021.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Yao P, Potdar AA, Arif A, Ray PS,
Mukhopadhyay R, Willard B, Xu Y, Yan J, Saidel GM and Fox PL:
Coding region polyadenylation generates a truncated tRNA synthetase
that counters translation repression. Cell. 149:88–100.
2012.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Gao P, Niu N, Wei T, Tozawa H, Chen X,
Zhang C, Zhang J, Wada Y, Kapron CM and Liu J: The roles of signal
transducer and activator of transcription factor 3 in tumor
angiogenesis. Oncotarget. 8:69139–69161. 2017.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Margolis LM and Rivas DA: Potential Role
of MicroRNA in the anabolic capacity of skeletal muscle with aging.
Exerc Sport Sci Rev. 46:86–91. 2018.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Hou B, Xu S, Xu Y, Gao Q, Zhang C, Liu L,
Yang H, Jiang X and Che Y: Grb2 binds to PTEN and regulates its
nuclear translocation to maintain the genomic stability in DNA
damage response. Cell Death Dis. 10(546)2019.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Carr RM, Enriquez-Hesles E, Olson RL,
Jatoi A, Doles J and Fernandez-Zapico ME: Epigenetics of
cancer-associated muscle catabolism. Epigenomics. 9:1259–1265.
2017.PubMed/NCBI View Article : Google Scholar
|
|
109
|
György B, Hung ME, Breakefield XO and
Leonard JN: Therapeutic applications of extracellular vesicles:
Clinical promise and open questions. Annu Rev Pharmacol Toxicol.
55:439–464. 2015.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Kalra H, Drummen GP and Mathivanan S:
Focus on extracellular vesicles: Introducing the next small big
thing. Int J Mol Sci. 17(170)2016.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Terasawa K, Shimizu K and Tsujimoto G:
Synthetic Pre-miRNA-Based shRNA as Potent RNAi Triggers. J Nucleic
Acids. 2011(131579)2011.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Bonneau E, Neveu B, Kostantin E, Tsongalis
GJ and De Guire V: How close are miRNAs from clinical practice? A
perspective on the diagnostic and therapeutic market. EJIFCC.
30:114–127. 2019.PubMed/NCBI
|
|
113
|
van Zandwijk N, Pavlakis N, Kao SC, Linton
A, Boyer MJ, Clarke S, Huynh Y, Chrzanowska A, Fulham MJ, Bailey
DL, et al: Safety and activity of microRNA-loaded minicells in
patients with recurrent malignant pleural mesothelioma: A
first-in-man, phase 1, open-label, dose-escalation study. Lancet
Oncol. 18:1386–1396. 2017.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Ebner N, Anker SD and von Haehling S:
Recent developments in the field of cachexia, sarcopenia, and
muscle wasting: Highlights from the 12th cachexia conference. J
Cachexia Sarcopenia Muscle. 11:274–285. 2020.PubMed/NCBI View Article : Google Scholar
|