Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
July-2022 Volume 24 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2022 Volume 24 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

MicroRNAs: Novel players in the diagnosis and treatment of cancer cachexia (Review)

  • Authors:
    • Xin Li
    • Lidong Du
    • Qiang Liu
    • Zhong Lu
  • View Affiliations / Copyright

    Affiliations: Department of Oncology, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261000, P.R. China, Graduate School, Weifang Medical College, Weifang, Shandong 261000, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 446
    |
    Published online on: May 16, 2022
       https://doi.org/10.3892/etm.2022.11373
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cachexia denotes a complex metabolic syndrome featuring severe loss of weight, fatigue and anorexia. In total, 50‑80% of patients suffering from advanced cancer are diagnosed with cancer cachexia, which contributes to 40% of cancer‑­associated mortalities. MicroRNAs (miRNAs) are non‑coding RNAs capable of regulating gene expression. Dysregulated miRNA expression has been observed in muscle tissue, adipose tissue and blood samples from patients with cancer cachexia compared with that of samples from patients with cancer without cachexia or healthy controls. In addition, miRNAs promote and maintain the malignant state of systemic inflammation, while inflammation contributes to cancer cachexia. The present review discusses the role of miRNAs in the progression of cancer cachexia, and assess their diagnostic value and potential therapeutic value.
View Figures

Figure 1

View References

1 

Evans WJ, Morley JE, Argilés J, Bales C, Baracos V, Guttridge D, Jatoi A, Kalantar-Zadeh K, Lochs H, Mantovani G, et al: Cachexia: A new definition. Clin Nutr. 27:793–799. 2008.PubMed/NCBI View Article : Google Scholar

2 

Holecek M: Muscle wasting in animal models of severe illness. Int J Exp Pathol. 93:157–171. 2012.PubMed/NCBI View Article : Google Scholar

3 

Argilés JM, Busquets S, Stemmler B and López-Soriano FJ: Cancer cachexia: Understanding the molecular basis. Nat Rev Cancer. 14:754–762. 2014.PubMed/NCBI View Article : Google Scholar

4 

Nixon DW, Heymsfield SB, Cohen AE, Kutner MH, Ansley J, Lawson DH and Rudman D: Protein-calorie undernutrition in hospitalized cancer patients. Am J Med. 68:683–690. 1980.PubMed/NCBI View Article : Google Scholar

5 

Fearon KC, Glass DJ and Guttridge DC: Cancer cachexia: Mediators, signaling, and metabolic pathways. Cell Metab. 16:153–166. 2012.PubMed/NCBI View Article : Google Scholar

6 

Narasimhan A, Ghosh S, Stretch C, Greiner R, Bathe OF, Baracos V and Damaraju S: Small RNAome profiling from human skeletal muscle: Novel miRNAs and their targets associated with cancer cachexia. J Cachexia Sarcopenia Muscle. 8:405–416. 2017.PubMed/NCBI View Article : Google Scholar

7 

Anker MS, Holcomb R, Muscaritoli M, von Haehling S, Haverkamp W, Jatoi A, Morley JE, Strasser F, Landmesser U, Coats AJS and Anker SD: Orphan disease status of cancer cachexia in the USA and in the European Union: A systematic review. J Cachexia Sarcopenia Muscle. 10:22–34. 2019.PubMed/NCBI View Article : Google Scholar

8 

Caillet P, Liuu E, Raynaud Simon A, Bonnefoy M, Guerin O, Berrut G, Lesourd B, Jeandel C, Ferry M, Rolland Y and Paillaud E: Association between cachexia, chemotherapy and outcomes in older cancer patients: A systematic review. Clin Nutr. 36:1473–1482. 2017.PubMed/NCBI View Article : Google Scholar

9 

Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, Jatoi A, Loprinzi C, MacDonald N, Mantovani G, et al: Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 12:489–495. 2011.PubMed/NCBI View Article : Google Scholar

10 

Thoresen L, Frykholm G, Lydersen S, Ulveland H, Baracos V, Prado CM, Birdsell L and Falkmer U: Nutritional status, cachexia and survival in patients with advanced colorectal carcinoma. Different assessment criteria for nutritional status provide unequal results. Clin Nutr. 32:65–72. 2013.PubMed/NCBI View Article : Google Scholar

11 

Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009.PubMed/NCBI View Article : Google Scholar

12 

Phypers B and Pierce JT: Lactate physiology in health and disease. CEACCP. 6:128–132. 2001.

13 

Der-Torossian H, Gourin CG and Couch ME: Translational implications of novel findings in cancer cachexia: The use of metabolomics and the potential of cardiac malfunction. Curr Opin Support Palliat Care. 6:446–450. 2012.PubMed/NCBI View Article : Google Scholar

14 

Muscaritoli M, Anker SD, Argilés J, Aversa Z, Bauer JM, Biolo G, Boirie Y, Bosaeus I, Cederholm T, Costelli P, et al: Consensus definition of sarcopenia, cachexia and pre-cachexia: Joint document elaborated by Special Interest Groups (SIG) ‘cachexia-anorexia in chronic wasting diseases’ and ‘nutrition in geriatrics’. Clin Nutr. 29:154–159. 2010.PubMed/NCBI View Article : Google Scholar

15 

Freire PP, Fernandez GJ, Cury SS, de Moraes D, Oliveira JS, de Oliveira G, Dal-Pai-Silva M, Dos Reis PP and Carvalho RF: The pathway to cancer cachexia: MicroRNA-Regulated networks in muscle wasting based on integrative meta-analysis. Int J Mol Sci. 20(1962)2019.PubMed/NCBI View Article : Google Scholar

16 

Schmidt SF, Rohm M, Herzig S and Berriel Diaz M: Cancer cachexia: More than skeletal muscle wasting. Trends Cancer. 4:849–860. 2018.PubMed/NCBI View Article : Google Scholar

17 

Argilés JM, Anguera A and Stemmler B: A new look at an old drug for the treatment of cancer cachexia: Megestrol acetate. Clin Nutr. 32:319–324. 2013.PubMed/NCBI View Article : Google Scholar

18 

He WA, Calore F, Londhe P, Canella A, Guttridge DC and Croce CM: Microvesicles containing miRNAs promote muscle cell death in cancer cachexia via TLR7. Proc Natl Acad Sci USA. 111:4525–4529. 2014.PubMed/NCBI View Article : Google Scholar

19 

Wang YW, Ma X, Zhang YA, Wang MJ, Yatabe Y, Lam S, Girard L, Chen JY and Gazdar AF: ITPKA gene body methylation regulates gene expression and serves as an early diagnostic marker in lung and other cancers. J Thorac Oncol. 11:1469–1481. 2016.PubMed/NCBI View Article : Google Scholar

20 

Lee DE, Brown JL, Rosa-Caldwell ME, Blackwell TA, Perry RA Jr, Brown LA, Khatri B, Seo D, Bottje WG, Washington TA, et al: Cancer cachexia-induced muscle atrophy: Evidence for alterations in microRNAs important for muscle size. Physiol Genomics. 49:253–260. 2017.PubMed/NCBI View Article : Google Scholar

21 

Camargo RG, Quintas Teixeira Ribeiro H, Geraldo MV, Matos-Neto E, Neves RX, Carnevali LC Jr, Donatto FF, Alcântara PS, Ottoch JP and Seelaender M: Cancer cachexia and MicroRNAs. Mediators Inflamm. 2015(367561)2015.PubMed/NCBI View Article : Google Scholar

22 

Li X, Wang S, Zhu R, Li H, Han Q and Zhao RC: Lung tumor exosomes induce a pro-inflammatory phenotype in mesenchymal stem cells via NFκB-TLR signaling pathway. J Hematol Oncol. 9(42)2016.PubMed/NCBI View Article : Google Scholar

23 

Ha M and Kim VN: Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014.PubMed/NCBI View Article : Google Scholar

24 

Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993.PubMed/NCBI View Article : Google Scholar

25 

Stegeman S, Amankwah E, Klein K, O'Mara TA, Kim D, Lin HY, Permuth-Wey J, Sellers TA, Srinivasan S, Eeles R, et al: A Large-scale analysis of genetic variants within putative miRNA binding sites in prostate cancer. Cancer Discov. 5:368–379. 2015.PubMed/NCBI View Article : Google Scholar

26 

Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH and Kim VN: MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23:4051–4060. 2004.PubMed/NCBI View Article : Google Scholar

27 

Denli AM, Tops BB, Plasterk RH, Ketting RF and Hannon GJ: Processing of primary microRNAs by the Microprocessor complex. Nature. 432:231–235. 2004.PubMed/NCBI View Article : Google Scholar

28 

Wilson RC, Tambe A, Kidwell MA, Noland CL, Schneider CP and Doudna JA: Dicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis. Mol Cell. 57:397–407. 2015.PubMed/NCBI View Article : Google Scholar

29 

Gregory RI, Chendrimada TP, Cooch N and Shiekhattar R: Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 123:631–640. 2005.PubMed/NCBI View Article : Google Scholar

30 

Thomson DW, Bracken CP and Goodall GJ: Experimental strategies for microRNA target identification. Nucleic Acids Res. 39:6845–6853. 2011.PubMed/NCBI View Article : Google Scholar

31 

Eisenberg I, Eran A, Nishino I, Moggio M, Lamperti C, Amato AA, Lidov HG, Kang PB, North KN, Mitrani-Rosenbaum S, et al: Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci USA. 104:17016–17021. 2007.PubMed/NCBI View Article : Google Scholar

32 

Soares RJ, Cagnin S, Chemello F, Silvestrin M, Musaro A, De Pitta C, Lanfranchi G and Sandri M: Involvement of microRNAs in the regulation of muscle wasting during catabolic conditions. J Biol Chem. 289:21909–21925. 2014.PubMed/NCBI View Article : Google Scholar

33 

Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P and Stoffel M: A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 432:226–230. 2004.PubMed/NCBI View Article : Google Scholar

34 

Zhou X, Hu S, Zhang Y, Du G and Li Y: The mechanism by which noncoding RNAs regulate muscle wasting in cancer cachexia. Precision Clin Med. 4:136–147. 2021.

35 

Marceca GP, Nigita G, Calore F and Croce CM: MicroRNAs in skeletal muscle and hints on their potential role in muscle wasting during cancer cachexia. Front Oncol. 10(607196)2020.PubMed/NCBI View Article : Google Scholar

36 

Kim DH: Nutritional issues in patients with cancer. Intest Res. 17:455–462. 2019.PubMed/NCBI View Article : Google Scholar

37 

Zhu X, Burfeind KG, Michaelis KA, Braun TP, Olson B, Pelz KR, Morgan TK and Marks DL: MyD88 signalling is critical in the development of pancreatic cancer cachexia. J Cachexia Sarcopenia Muscle. 10:378–390. 2019.PubMed/NCBI View Article : Google Scholar

38 

Du L, Dong F, Guo L, Hou Y, Yi F, Liu J and Xu D: Interleukin-1β increases permeability and upregulates the expression of vascular endothelial-cadherin in human renal glomerular endothelial cells. Mol Med Rep. 11:3708–3714. 2015.PubMed/NCBI View Article : Google Scholar

39 

Lobb RJ, Lima LG and Möller A: Exosomes: Key mediators of metastasis and pre-metastatic niche formation. Semin Cell Dev Biol. 67:3–10. 2017.PubMed/NCBI View Article : Google Scholar

40 

Tomasetti M, Lee W, Santarelli L and Neuzil J: Exosome-derived microRNAs in cancer metabolism: Possible implications in cancer diagnostics and therapy. Exp Mol Med. 49(e285)2017.PubMed/NCBI View Article : Google Scholar

41 

Cordonnier M, Chanteloup G, Isambert N, Seigneuric R, Fumoleau P, Garrido C and Gobbo J: Exosomes in cancer theranostic: Diamonds in the rough. Cell Adh Migr. 11:151–163. 2017.PubMed/NCBI View Article : Google Scholar

42 

Song W, Yan D, Wei T, Liu Q, Zhou X and Liu J: Tumor-derived extracellular vesicles in angiogenesis. Biomed Pharmacother. 102:1203–1208. 2018.PubMed/NCBI View Article : Google Scholar

43 

Bilir C, Engin H, Can M, Temi YB and Demirtas D: The prognostic role of inflammation and hormones in patients with metastatic cancer with cachexia. Med Oncol. 32(56)2015.PubMed/NCBI View Article : Google Scholar

44 

Batista ML Jr, Olivan M, Alcantara PS, Sandoval R, Peres SB, Neves RX, Silverio R, Maximiano LF, Otoch JP and Seelaender M: Adipose tissue-derived factors as potential biomarkers in cachectic cancer patients. Cytokine. 61:532–539. 2013.PubMed/NCBI View Article : Google Scholar

45 

Nie M, Deng ZL, Liu J and Wang DZ: Noncoding RNAs, emerging regulators of skeletal muscle development and diseases. Biomed Res Int. 2015(676575)2015.PubMed/NCBI View Article : Google Scholar

46 

Zhang Y, Yu M and Tian W: Physiological and pathological impact of exosomes of adipose tissue. Cell Prolif. 49:3–13. 2016.PubMed/NCBI View Article : Google Scholar

47 

Lazar I, Clement E, Dauvillier S, Milhas D, Ducoux-Petit M, LeGonidec S, Moro C, Soldan V, Dalle S, Balor S, et al: Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: A novel mechanism linking obesity and cancer. Cancer Res. 76:4051–4057. 2016.PubMed/NCBI View Article : Google Scholar

48 

Falzone L, Grimaldi M, Celentano E, Augustin LSA and Libra M: Identification of modulated MicroRNAs associated with breast cancer, diet, and physical activity. Cancers (Basel). 12(2555)2020.PubMed/NCBI View Article : Google Scholar

49 

Fonseca A, Ramalhete SV, Mestre A, Pires das Neves R, Marreiros A, Castelo-Branco P and Roberto VP: Identification of colorectal cancer associated biomarkers: An integrated analysis of miRNA expression. Aging (Albany NY). 13:21991–22029. 2021.PubMed/NCBI View Article : Google Scholar

50 

Falzone L, Lupo G, La Rosa GRM, Crimi S, Anfuso CD, Salemi R, Rapisarda E, Libra M and Candido S: Identification of novel MicroRNAs and their diagnostic and prognostic significance in oral cancer. Cancers (Basel). 11(610)2019.PubMed/NCBI View Article : Google Scholar

51 

Ren ZP, Hou XB, Tian XD, Guo JT, Zhang LB, Xue ZQ, Deng JQ, Zhang SW, Pan JY and Chu XY: Identification of nine microRNAs as potential biomarkers for lung adenocarcinoma. FEBS Open Bio. 9:315–327. 2019.PubMed/NCBI View Article : Google Scholar

52 

Kwon YJ, Cho YE, Cho AR, Choi WJ, Yun S, Park H, Kim HS, Cashion AK, Gill J, Lee H and Lee JW: The possible influence of mediterranean diet on extracellular vesicle miRNA expression in breast cancer survivors. Cancers (Basel). 12(1355)2020.PubMed/NCBI View Article : Google Scholar

53 

Giambò F, Leone GM, Gattuso G, Rizzo R, Cosentino A, Cinà D, Teodoro M, Costa C, Tsatsakis A, Fenga C and Falzone L: Genetic and epigenetic alterations induced by pesticide exposure: Integrated analysis of gene expression, microRNA Expression, and DNA methylation datasets. Int J Environ Res Public Health. 18(8697)2021.PubMed/NCBI View Article : Google Scholar

54 

Filetti V, Falzone L, Rapisarda V, Caltabiano R, Eleonora Graziano AC, Ledda C and Loreto C: Modulation of microRNA expression levels after naturally occurring asbestiform fibers exposure as a diagnostic biomarker of mesothelial neoplastic transformation. Ecotoxicol Environ Saf. 198(110640)2020.PubMed/NCBI View Article : Google Scholar

55 

Kemik O, Sumer A, Kemik AS, Hasirci I, Purisa S, Dulger AC, Demiriz B and Tuzun S: The relationship among acute-phase response proteins, cytokines and hormones in cachectic patients with colon cancer. World J Surg Oncol. 8(85)2010.PubMed/NCBI View Article : Google Scholar

56 

Guo L, Dong F, Hou Y, Cai W, Zhou X, Huang AL, Yang M, Allen TD and Liu J: Dihydroartemisinin inhibits vascular endothelial growth factor-induced endothelial cell migration by a p38 mitogen-activated protein kinase-independent pathway. Exp Ther Med. 8:1707–1712. 2014.PubMed/NCBI View Article : Google Scholar

57 

Wei T, Jia J, Wada Y, Kapron CM and Liu J: Dose dependent effects of cadmium on tumor angiogenesis. Oncotarget. 8:44944–44959. 2017.PubMed/NCBI View Article : Google Scholar

58 

Gao P, Wang LL, Liu J, Dong F, Song W, Liao L, Wang B, Zhang W, Zhou X, Xie Q, et al: Dihydroartemisinin inhibits endothelial cell tube formation by suppression of the STAT3 signaling pathway. Life Sci. 242(117221)2020.PubMed/NCBI View Article : Google Scholar

59 

Liu J, Ren Y, Hou Y, Zhang C, Wang B, Li X, Sun R and Liu J: Dihydroartemisinin induces endothelial cell autophagy through suppression of the Akt/mTOR Pathway. J Cancer. 10:6057–6064. 2019.PubMed/NCBI View Article : Google Scholar

60 

Xie Q, Cheng Z, Chen X, Lobe CG and Liu J: The role of Notch signalling in ovarian angiogenesis. J Ovarian Res. 10(13)2017.PubMed/NCBI View Article : Google Scholar

61 

Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS and Ferrara N: Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 362:841–844. 1993.PubMed/NCBI View Article : Google Scholar

62 

Liu J, Li Y, Dong F, Li L, Masuda T, Allen TD and Lobe CG: Trichostatin A suppresses lung adenocarcinoma development in Grg1 overexpressing transgenic mice. Biochem Biophys Res Commun. 463:1230–1236. 2015.PubMed/NCBI View Article : Google Scholar

63 

Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P, Raposo G and D'Souza-Schorey C: ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol. 19:1875–1885. 2009.PubMed/NCBI View Article : Google Scholar

64 

Sabry D, El-Deek SEM, Maher M, El-Baz MAH, El-Bader HM, Amer E, Hassan EA, Fathy W and El-Deek HEM: Role of miRNA-210, miRNA-21 and miRNA-126 as diagnostic biomarkers in colorectal carcinoma: Impact of HIF-1α-VEGF signaling pathway. Mol Cell Biochem. 454:177–189. 2019.PubMed/NCBI View Article : Google Scholar

65 

Cheng J, Chen Y, Zhao P, Liu X, Dong J, Li J, Huang C, Wu R and Lv Y: Downregulation of miRNA-638 promotes angiogenesis and growth of hepatocellular carcinoma by targeting VEGF. Oncotarget. 7:30702–30711. 2016.PubMed/NCBI View Article : Google Scholar

66 

Yamada N, Tsujimura N, Kumazaki M, Shinohara H, Taniguchi K, Nakagawa Y, Naoe T and Akao Y: Colorectal cancer cell-derived microvesicles containing microRNA-1246 promote angiogenesis by activating Smad 1/5/8 signaling elicited by PML down-regulation in endothelial cells. Biochim Biophys Acta. 1839:1256–1272. 2014.PubMed/NCBI View Article : Google Scholar

67 

Tisdale MJ: Cancer cachexia. Curr Opin Gastroenterol. 26:146–151. 2010.PubMed/NCBI View Article : Google Scholar

68 

Bilodeau PA, Coyne ES and Wing SS: The ubiquitin proteasome system in atrophying skeletal muscle: Roles and regulation. Am J Physiol Cell Physiol. 311:C392–C403. 2016.PubMed/NCBI View Article : Google Scholar

69 

Reed SA, Sandesara PB, Senf SM and Judge AR: Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. FASEB J. 26:987–1000. 2012.PubMed/NCBI View Article : Google Scholar

70 

Xu J, Li R, Workeneh B, Dong Y, Wang X and Hu Z: Transcription factor FoxO1, the dominant mediator of muscle wasting in chronic kidney disease, is inhibited by microRNA-486. Kidney Int. 82:401–411. 2012.PubMed/NCBI View Article : Google Scholar

71 

Suzuki T and Springer J: MicroRNAs in muscle wasting. J Cachexia Sarcopenia Muscle. 9:1209–1212. 2018.PubMed/NCBI View Article : Google Scholar

72 

Sutandyo N: The role of microRNA in cancer cachexia and muscle wasting: A review article. Caspian J Intern Med. 12:124–128. 2021.PubMed/NCBI View Article : Google Scholar

73 

Brzeszczyńska J, Brzeszczyński F, Hamilton DF, McGregor R and Simpson AHRW: Role of microRNA in muscle regeneration and diseases related to muscle dysfunction in atrophy, cachexia, osteoporosis, and osteoarthritis. Bone Joint Res. 9:798–807. 2020.PubMed/NCBI View Article : Google Scholar

74 

Zhou L, Zhang T, Shao W, Lu R, Wang L, Liu H, Jiang B, Li S, Zhuo H, Wang S, et al: Amiloride ameliorates muscle wasting in cancer cachexia through inhibiting tumor-derived exosome release. Skeletal muscle. 11(17)2021.PubMed/NCBI View Article : Google Scholar

75 

van de Worp WRPH, Schols AMWJ, Schols AMWJ, Dingemans AC, Op den Kamp CMH, Degens JHRJ, Kelders MCJM, Coort S, Woodruff HC, Kratassiouk G, et al: Identification of microRNAs in skeletal muscle associated with lung cancer cachexia. J Cachexia Sarcopenia Muscle. 11:452–463. 2020.PubMed/NCBI View Article : Google Scholar

76 

Fernandez GJ, Ferreira JH, Vechetti IJ Jr, de Moraes LN, Cury SS, Freire PP, Gutiérrez J, Ferretti R, Dal-Pai-Silva M, Rogatto SR and Carvalho RF: MicroRNA-mRNA Co-sequencing identifies transcriptional and post-transcriptional regulatory networks underlying muscle wasting in cancer cachexia. Front Genet. 11(541)2020.PubMed/NCBI View Article : Google Scholar

77 

Daas SI, Rizeq BR and Nasrallah GK: Adipose tissue dysfunction in cancer cachexia. J Cell Physiol. 234:13–22. 2018.PubMed/NCBI View Article : Google Scholar

78 

Petruzzelli M, Schweiger M, Schreiber R, Campos-Olivas R, Tsoli M, Allen J, Swarbrick M, Rose-John S, Rincon M, Robertson G, et al: A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 20:433–447. 2014.PubMed/NCBI View Article : Google Scholar

79 

Neves RX, Rosa-Neto JC, Yamashita AS, Matos-Neto EM, Riccardi DM, Lira FS, Batista ML Jr and Seelaender M: White adipose tissue cells and the progression of cachexia: Inflammatory pathways. J Cachexia Sarcopenia Muscle. 7:193–203. 2016.PubMed/NCBI View Article : Google Scholar

80 

Camargo RG, Riccardi DM, Ribeiro HQ, Carnevali LC Jr, de Matos-Neto EM, Enjiu L, Neves RX, Lima JD, Figuerêdo RG, de Alcântara PS, et al: NF-κBp65 and expression of its pro-inflammatory target genes are upregulated in the subcutaneous adipose tissue of cachectic cancer patients. Nutrients. 7:4465–4479. 2015.PubMed/NCBI View Article : Google Scholar

81 

Aswad H, Forterre A, Wiklander OP, Vial G, Danty-Berger E, Jalabert A, Lamazière A, Meugnier E, Pesenti S, Ott C, et al: Exosomes participate in the alteration of muscle homeostasis during lipid-induced insulin resistance in mice. Diabetologia. 57:2155–2164. 2014.PubMed/NCBI View Article : Google Scholar

82 

Kulyté A, Lorente-Cebrián S, Gao H, Mejhert N, Agustsson T, Arner P, Rydén M and Dahlman I: MicroRNA profiling links miR-378 to enhanced adipocyte lipolysis in human cancer cachexia. Am J Physiol Endocrinol Metab. 306:E267–E274. 2014.PubMed/NCBI View Article : Google Scholar

83 

Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, et al: Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18:997–1006. 2008.PubMed/NCBI View Article : Google Scholar

84 

Donzelli S, Farneti A, Marucci L, Ganci F, Sacconi A, Strano S, Sanguineti G and Blandino G: Non-coding RNAs as putative biomarkers of cancer-associated cachexia. Front Cell Dev Biol. 8(257)2020.PubMed/NCBI View Article : Google Scholar

85 

Hamaguchi Y, Kaido T, Okumura S, Kobayashi A, Hammad A, Tamai Y, Inagaki N and Uemoto S: Proposal for new diagnostic criteria for low skeletal muscle mass based on computed tomography imaging in Asian adults. Nutrition. 32:1200–1205. 2016.PubMed/NCBI View Article : Google Scholar

86 

Kaido T: Selection criteria and current issues in liver transplantation for hepatocellular carcinoma. Liver Cancer. 5:121–127. 2016.PubMed/NCBI View Article : Google Scholar

87 

Okugawa Y, Toiyama Y, Hur K, Yamamoto A, Yin C, Ide S, Kitajima T, Fujikawa H, Yasuda H, Koike Y, et al: Circulating miR-203 derived from metastatic tissues promotes myopenia in colorectal cancer patients. J Cachexia Sarcopenia Muscle. 10:536–548. 2019.PubMed/NCBI View Article : Google Scholar

88 

Okugawa Y, Yao L, Toiyama Y, Yamamoto A, Shigemori T, Yin C, Omura Y, Ide S, Kitajima T, Shimura T, et al: Prognostic impact of sarcopenia and its correlation with circulating miR-21 in colorectal cancer patients. Oncol Rep. 39:1555–1564. 2018.PubMed/NCBI View Article : Google Scholar

89 

Wang H and Wang B: Extracellular vesicle microRNAs mediate skeletal muscle myogenesis and disease. Biomed Rep. 5:296–300. 2016.PubMed/NCBI View Article : Google Scholar

90 

Wu Q, Sun S, Li Z, Yang Q, Li B, Zhu S, Wang L, Wu J, Yuan J, Yang C, et al: Tumour-originated exosomal miR-155 triggers cancer-associated cachexia to promote tumour progression. Mol Cancer. 17(155)2018.PubMed/NCBI View Article : Google Scholar

91 

Chitti SV, Fonseka P and Mathivanan S: Emerging role of extracellular vesicles in mediating cancer cachexia. Biochem Soc Trans. 46:1129–1136. 2018.PubMed/NCBI View Article : Google Scholar

92 

Du G, Zhang Y, Hu S, Zhou X and Li Y: Non-coding RNAs in exosomes and adipocytes cause fat loss during cancer cachexia. Noncoding RNA Res. 6:80–85. 2021.PubMed/NCBI View Article : Google Scholar

93 

Li L, Liu H, Tao W, Wen S, Fu X and Yu S: Pharmacological inhibition of HMGB1 prevents muscle wasting. Front Pharmacol. 12(731386)2021.PubMed/NCBI View Article : Google Scholar

94 

Wan Z, Chen X, Gao X, Dong Y, Zhao Y, Wei M, Fan W, Yang G and Liu L: Chronic myeloid leukemia-derived exosomes attenuate adipogenesis of adipose derived mesenchymal stem cells via transporting miR-92a-3p. J Cell Physiol. 234:21274–21283. 2019.PubMed/NCBI View Article : Google Scholar

95 

Köberle V, Kronenberger B, Pleli T, Trojan J, Imelmann E, Peveling-Oberhag J, Welker MW, Elhendawy M, Zeuzem S, Piiper A and Waidmann O: Serum microRNA-1 and microRNA-122 are prognostic markers in patients with hepatocellular carcinoma. Eur J Cancer. 49:3442–3449. 2013.PubMed/NCBI View Article : Google Scholar

96 

Powrózek T, Mlak R, Brzozowska A, Mazurek M, Gołębiowski P and Małecka-Massalska T: MiRNA-130a significantly improves accuracy of SGA Nutritional assessment tool in prediction of malnutrition and cachexia in radiotherapy-treated head and neck cancer patients. Cancers (Basel). 10(294)2018.PubMed/NCBI View Article : Google Scholar

97 

Chen D, Goswami CP, Burnett RM, Anjanappa M, Bhat-Nakshatri P, Muller W and Nakshatri H: Cancer affects microRNA expression, release, and function in cardiac and skeletal muscle. Cancer Res. 74:4270–4281. 2014.PubMed/NCBI View Article : Google Scholar

98 

Lin J, Li J, Huang B, Liu J, Chen X, Chen XM, Xu YM, Huang LF and Wang XZ: Exosomes: Novel biomarkers for clinical diagnosis. ScientificWorldJournal. 2015(657086)2015.PubMed/NCBI View Article : Google Scholar

99 

Belli R, Ferraro E, Molfino A, Carletti R, Tambaro F, Costelli P and Muscaritoli M: Liquid biopsy for cancer cachexia: Focus on muscle-derived microRNAs. Int J Mol Sci. 22(9007)2021.PubMed/NCBI View Article : Google Scholar

100 

Li BS, Zhao YL, Guo G, Li W, Zhu ED, Luo X, Mao XH, Zou QM, Yu PW, Zuo QF, et al: Plasma microRNAs, miR-223, miR-21 and miR-218, as novel potential biomarkers for gastric cancer detection. PLoS One. 7(e41629)2012.PubMed/NCBI View Article : Google Scholar

101 

Schrauder MG, Strick R, Schulz-Wendtland R, Strissel PL, Kahmann L, Loehberg CR, Lux MP, Jud SM, Hartmann A, Hein A, et al: Circulating micro-RNAs as potential blood-based markers for early stage breast cancer detection. PLoS One. 7(e29770)2012.PubMed/NCBI View Article : Google Scholar

102 

Wang J, Chen J, Chang P, LeBlanc A, Li D, Abbruzzesse JL, Frazier ML, Killary AM and Sen S: MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev Res (Phila). 2:807–813. 2009.PubMed/NCBI View Article : Google Scholar

103 

Kottorou A, Dimitrakopoulos FI and Tsezou A: Non-coding RNAs in cancer-associated cachexia: Clinical implications and future perspectives. Transl Oncol. 14(101101)2021.PubMed/NCBI View Article : Google Scholar

104 

Yao P, Potdar AA, Arif A, Ray PS, Mukhopadhyay R, Willard B, Xu Y, Yan J, Saidel GM and Fox PL: Coding region polyadenylation generates a truncated tRNA synthetase that counters translation repression. Cell. 149:88–100. 2012.PubMed/NCBI View Article : Google Scholar

105 

Gao P, Niu N, Wei T, Tozawa H, Chen X, Zhang C, Zhang J, Wada Y, Kapron CM and Liu J: The roles of signal transducer and activator of transcription factor 3 in tumor angiogenesis. Oncotarget. 8:69139–69161. 2017.PubMed/NCBI View Article : Google Scholar

106 

Margolis LM and Rivas DA: Potential Role of MicroRNA in the anabolic capacity of skeletal muscle with aging. Exerc Sport Sci Rev. 46:86–91. 2018.PubMed/NCBI View Article : Google Scholar

107 

Hou B, Xu S, Xu Y, Gao Q, Zhang C, Liu L, Yang H, Jiang X and Che Y: Grb2 binds to PTEN and regulates its nuclear translocation to maintain the genomic stability in DNA damage response. Cell Death Dis. 10(546)2019.PubMed/NCBI View Article : Google Scholar

108 

Carr RM, Enriquez-Hesles E, Olson RL, Jatoi A, Doles J and Fernandez-Zapico ME: Epigenetics of cancer-associated muscle catabolism. Epigenomics. 9:1259–1265. 2017.PubMed/NCBI View Article : Google Scholar

109 

György B, Hung ME, Breakefield XO and Leonard JN: Therapeutic applications of extracellular vesicles: Clinical promise and open questions. Annu Rev Pharmacol Toxicol. 55:439–464. 2015.PubMed/NCBI View Article : Google Scholar

110 

Kalra H, Drummen GP and Mathivanan S: Focus on extracellular vesicles: Introducing the next small big thing. Int J Mol Sci. 17(170)2016.PubMed/NCBI View Article : Google Scholar

111 

Terasawa K, Shimizu K and Tsujimoto G: Synthetic Pre-miRNA-Based shRNA as Potent RNAi Triggers. J Nucleic Acids. 2011(131579)2011.PubMed/NCBI View Article : Google Scholar

112 

Bonneau E, Neveu B, Kostantin E, Tsongalis GJ and De Guire V: How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. EJIFCC. 30:114–127. 2019.PubMed/NCBI

113 

van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S, Huynh Y, Chrzanowska A, Fulham MJ, Bailey DL, et al: Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: A first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 18:1386–1396. 2017.PubMed/NCBI View Article : Google Scholar

114 

Ebner N, Anker SD and von Haehling S: Recent developments in the field of cachexia, sarcopenia, and muscle wasting: Highlights from the 12th cachexia conference. J Cachexia Sarcopenia Muscle. 11:274–285. 2020.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li X, Du L, Liu Q and Lu Z: MicroRNAs: Novel players in the diagnosis and treatment of cancer cachexia (Review). Exp Ther Med 24: 446, 2022.
APA
Li, X., Du, L., Liu, Q., & Lu, Z. (2022). MicroRNAs: Novel players in the diagnosis and treatment of cancer cachexia (Review). Experimental and Therapeutic Medicine, 24, 446. https://doi.org/10.3892/etm.2022.11373
MLA
Li, X., Du, L., Liu, Q., Lu, Z."MicroRNAs: Novel players in the diagnosis and treatment of cancer cachexia (Review)". Experimental and Therapeutic Medicine 24.1 (2022): 446.
Chicago
Li, X., Du, L., Liu, Q., Lu, Z."MicroRNAs: Novel players in the diagnosis and treatment of cancer cachexia (Review)". Experimental and Therapeutic Medicine 24, no. 1 (2022): 446. https://doi.org/10.3892/etm.2022.11373
Copy and paste a formatted citation
x
Spandidos Publications style
Li X, Du L, Liu Q and Lu Z: MicroRNAs: Novel players in the diagnosis and treatment of cancer cachexia (Review). Exp Ther Med 24: 446, 2022.
APA
Li, X., Du, L., Liu, Q., & Lu, Z. (2022). MicroRNAs: Novel players in the diagnosis and treatment of cancer cachexia (Review). Experimental and Therapeutic Medicine, 24, 446. https://doi.org/10.3892/etm.2022.11373
MLA
Li, X., Du, L., Liu, Q., Lu, Z."MicroRNAs: Novel players in the diagnosis and treatment of cancer cachexia (Review)". Experimental and Therapeutic Medicine 24.1 (2022): 446.
Chicago
Li, X., Du, L., Liu, Q., Lu, Z."MicroRNAs: Novel players in the diagnosis and treatment of cancer cachexia (Review)". Experimental and Therapeutic Medicine 24, no. 1 (2022): 446. https://doi.org/10.3892/etm.2022.11373
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team