|
1
|
Czernek L and Düchler M: Exosomes as
messengers between mother and fetus in pregnancy. Int J Mol Sci.
21(4264)2020.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Salomon C and Rice GE: Role of exosomes in
placental homeostasis and pregnancy disorders. Prog Mol Biol Transl
Sci. 145:163–179. 2017.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Tarrade A, Lai Kuen R, Malassiné A,
Tricottet V, Blain P, Vidaud M and Evain-Brion D: Characterization
of human villous and extravillous trophoblasts isolated from first
trimester placenta. Lab Invest. 81:1199–1211. 2001.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Burkova EE, Sedykh SE and Nevinsky GA:
Human placenta exosomes: Biogenesis, isolation, composition, and
prospects for use in diagnostics. Int J Mol Sci.
22(2158)2021.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Giacomini E, Vago R, Sanchez AM, Podini P,
Zarovni N, Murdica V, Rizzo R, Bortolotti D, Candiani M and Viganò
P: Secretome of in vitro cultured human embryos contains
extracellular vesicles that are uptaken by the maternal side. Sci
Rep. 7(5210)2017.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Salomon C, Torres MJ, Kobayashi M,
Scholz-Romero K, Sobrevia L, Dobierzewska A, Illanes SE, Mitchell
MD and Rice GE: A gestational profile of placental exosomes in
maternal plasma and their effects on endothelial cell migration.
PLoS One. 9(e98667)2014.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Maligianni I, Yapijakis C, Bacopoulou F
and Chrousos G: The potential role of exosomes in child and
adolescent obesity. Children (Basel). 8(196)2021.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Jin J and Menon R: Placental exosomes: A
proxy to understand pregnancy complications. Am J Reprod Immunol.
79(e12788)2018.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Mitchell MD, Peiris HN, Kobayashi M, Koh
YQ, Duncombe G, Illanes SE, Rice GE and Salomon C: Placental
exosomes in normal and complicated pregnancy. Am J Obstet Gynecol.
213 (Suppl 4):S173–S181. 2015.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Sabapatha A, Gercel-Taylor C and Taylor
DD: Specific isolation of placenta-derived exosomes from the
circulation of pregnant women and their immunoregulatory
consequences. Am J Reprod Immunol. 56:345–355. 2006.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Zhang Y, Liu Y, Liu H and Tang WH:
Exosomes: Biogenesis, biologic function and clinical potential.
Cell Biosci. 9(19)2019.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Vlachakis D, Mitsis Τ, Nicolaides N,
Efthimiadou A, Giannakakis A, Bacopoulou F and Chrousos GP:
Functions, pathophysiology and current insights of exosomal
endocrinology (Review). Mol Med Rep. 23(26)2021.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Mincheva-Nilsson L and Baranov V: The role
of placental exosomes in reproduction. Am J Reprod Immunol.
63:520–533. 2010.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Vargas A, Zhou S, Éthier-Chiasson M, Flipo
D, Lafond J, Gilbert C and Barbeau B: Syncytin proteins
incorporated in placenta exosomes are important for cell uptake and
show variation in abundance in serum exosomes from patients with
preeclampsia. FASEB J. 28:3703–3719. 2014.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Filardi T, Catanzaro G, Mardente S, Zicari
A, Santangelo C, Lenzi A, Morano S and Ferretti E: Non-coding RNA:
Role in gestational diabetes pathophysiology and complications. Int
J Mol Sci. 21(4020)2020.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Yang H, Ma Q, Wang Y and Tang Z: Clinical
application of exosomes and circulating microRNAs in the diagnosis
of pregnancy complications and foetal abnormalities. J Transl Med.
18(32)2020.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Yapijakis C: Regulatory role of MicroRNAs
in brain development and function. Adv Exp Med Biol. 1195:237–247.
2020.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297.
2004.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Arroyo JD, Chevillet JR, Kroh EM, Ruf IK,
Pritchard CC, Gibson DF, Mitchell PS, Bennett CF,
Pogosova-Agadjanyan EL, Stirewalt DL, et al: Argonaute2 complexes
carry a population of circulating microRNAs independent of vesicles
in human plasma. Proc Natl Acad Sci USA. 108:5003–5008.
2011.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Floriano JF, Willis G, Catapano F, Lima
PR, Reis FVDS, Barbosa AMP, Rudge MVC and Emanueli C: Exosomes
could offer new options to combat the long-term complications
inflicted by gestational diabetes mellitus. Cells.
9(675)2020.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Tabet F, Vickers KC, Cuesta Torres LF,
Wiese CB, Shoucri BM, Lambert G, Catherinet C, Prado-Lourenco L,
Levin MG, Thacker S, et al: HDL-transferred microRNA-223 regulates
ICAM-1 expression in endothelial cells. Nat Commun.
5(3292)2014.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Quinn JJ and Chang HY: Unique features of
long non-coding RNA biogenesis and function. Nat Rev Genet.
17:47–62. 2016.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Kino T, Hurt DE, Ichijo T, Nader N and
Chrousos GP: Noncoding RNA gas5 is a growth arrest- and
starvation-associated repressor of the glucocorticoid receptor. Sci
Signal. 3(ra8)2010.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Dragomir M, Chen B and Calin GA: Exosomal
lncRNAs as new players in cell-to-cell communication. Transl Cancer
Res. 7 (Suppl 2):S243–S252. 2018.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Mitsis T, Pierouli K, Diakou KL,
Papakonstantinou E, Bacopoulou F, Chrousos GP and Vlachakis D:
Exosomics. EMBnet J. 26(e934)2020.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Karin-Kujundzic V, Sola IM, Predavec N,
Potkonjak A, Somen E, Mioc P, Serman A, Vranic S and Serman L:
Novel epigenetic biomarkers in pregnancy-related disorders and
cancers. Cells. 8(1459)2019.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Arenaccio C and Federico M: The
multifaceted functions of exosomes in health and disease: An
overview. Adv Exp Med Biol. 998:3–19. 2017.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Properzi F, Logozzi M and Fais S:
Exosomes: The future of biomarkers in medicine. Biomark Med.
7:769–778. 2013.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Tannetta D, Masliukaite I, Vatish M,
Redman C and Sargent I: Update of syncytiotrophoblast derived
extracellular vesicles in normal pregnancy and preeclampsia. J
Reprod Immunol. 119:98–106. 2017.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Salomon C, Kobayashi M, Ashman K, Sobrevia
L, Mitchell MD and Rice GE: Hypoxia-induced changes in the
bioactivity of cytotrophoblast-derived exosomes. PLoS One.
8(e79636)2013.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Zhang HC, Liu XB, Huang S, Bi XY, Wang HX,
Xie LX, Wang YQ, Cao XF, Lv J, Xiao FJ, et al: Microvesicles
derived from human umbilical cord mesenchymal stem cells stimulated
by hypoxia promote angiogenesis both in vitro and in vivo. Stem
Cells Dev. 21:3289–3297. 2012.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Martinez-Fierro ML, Garza-Veloz I,
Gutierrez-Arteaga C, Delgado-Enciso I, Barbosa-Cisneros OY,
Flores-Morales V, Hernandez-Delgadillo GP, Rocha-Pizaña MR,
Rodriguez-Sanchez IP, Badillo-Almaraz JI, et al: Circulating levels
of specific members of chromosome 19 microRNA cluster are
associated with preeclampsia development. Arch Gynecol Obstet.
297:365–371. 2018.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Donker RB, Mouillet JF, Chu T, Hubel CA,
Stolz DB, Morelli AE and Sadovsky Y: The expression profile of
C19MC microRNAs in primary human trophoblast cells and exosomes.
Mol Hum Reprod. 18:417–424. 2012.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Nair S, Jayabalan N, Guanzon D, Palma C,
Scholz-Romero K, Elfeky O, Zuñiga F, Ormazabal V, Diaz E, Rice GE,
et al: Human placental exosomes in gestational diabetes mellitus
carry a specific set of miRNAs associated with skeletal muscle
insulin sensitivity. Clin Sci (Lond). 132:2451–2467.
2018.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Xie L, Mouillet JF, Chu T, Parks WT,
Sadovsky E, Knöfler M and Sadovsky Y: C19MC microRNAs regulate the
migration of human trophoblasts. Endocrinology. 155:4975–4985.
2014.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Miranda J, Paules C, Nair S, Lai A, Palma
C, Scholz-Romero K, Rice GE, Gratacos E, Crispi F and Salomon C:
Placental exosomes profile in maternal and fetal circulation in
intrauterine growth restriction-liquid biopsies to monitoring fetal
growth. Placenta. 64:34–43. 2018.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Adam S, Elfeky O, Kinhal V, Dutta S, Lai
A, Jayabalan N, Nuzhat Z, Palma C, Rice GE and Salomon C: Review:
Fetal-maternal communication via extracellular
vesicles-implications for complications of pregnancies. Placenta.
54:83–88. 2017.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Elfeky O, Longo S, Lai A, Rice GE and
Salomon C: Influence of maternal BMI on the exosomal profile during
gestation and their role on maternal systemic inflammation.
Placenta. 50:60–69. 2017.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Chang G, Mouillet JF, Mishima T, Chu T,
Sadovsky E, Coyne CB, Parks WT, Surti U and Sadovsky Y: Expression
and trafficking of placental microRNAs at the feto-maternal
interface. FASEB J. 31:2760–2770. 2017.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Greening DW, Nguyen HP, Elgass K, Simpson
RJ and Salamonsen LA: Human endometrial exosomes contain
hormone-specific cargo modulating trophoblast adhesive capacity:
Insights into endometrial-embryo interactions. Biol Reprod.
94(38)2016.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Vilella F, Moreno-Moya JM, Balaguer N,
Grasso A, Herrero M, Martínez S, Marcilla A and Simón C:
Hsa-miR-30d, secreted by the human endometrium, is taken up by the
pre-implantation embryo and might modify its transcriptome.
Development. 142:3210–3221. 2015.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Mor G, Cardenas I, Abrahams V and Guller
S: Inflammation and pregnancy: The role of the immune system at the
implantation site. Ann N Y Acad Sci. 1221:80–87. 2011.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Sheller-Miller S, Choi K, Choi C and Menon
R: Cyclic-recombinase-reporter mouse model to determine exosome
communication and function during pregnancy. Am J Obstet Gynecol.
221:502.e1–502.e12. 2019.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Sheller-Miller S, Trivedi J, Yellon SM and
Menon R: Exosomes cause preterm birth in mice: Evidence for
paracrine signaling in pregnancy. Sci Rep. 9(608)2019.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Sheller-Miller S, Lei J, Saade G, Salomon
C, Burd I and Menon R: Feto-maternal trafficking of exosomes in
murine pregnancy models. Front Pharmacol. 7(432)2016.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Kovács ÁF, Fekete N, Turiák L, Ács A,
Kőhidai L, Buzás EI and Pállinger É: Unravelling the role of
trophoblastic-derived extracellular vesicles in regulatory T cell
differentiation. Int J Mol Sci. 20(3457)2019.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Stenqvist AC, Nagaeva O, Baranov V and
Mincheva-Nilsson L: Exosomes secreted by human placenta carry
functional Fas ligand and TRAIL molecules and convey apoptosis in
activated immune cells, suggesting exosome-mediated immune
privilege of the fetus. J Immunol. 191:5515–5523. 2013.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Kambe S, Yoshitake H, Yuge K, Ishida Y,
Ali MM, Takizawa T, Kuwata T, Ohkuchi A, Matsubara S, Suzuki M, et
al: Human exosomal placenta-associated miR-517a-3p modulates the
expression of PRKG1 mRNA in Jurkat cells. Biol Reprod.
91(129)2014.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Jia L, Zhou X, Huang X, Xu X, Jia Y, Wu Y,
Yao J, Wu Y and Wang K: Maternal and umbilical cord serum-derived
exosomes enhance endothelial cell proliferation and migration.
FASEB J. 32:4534–4543. 2018.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Bayer A, Delorme-Axford E, Sleigher C,
Frey TK, Trobaugh DW, Klimstra WB, Emert-Sedlak LA, Smithgall TE,
Kinchington PR, Vadia S, et al: Human trophoblasts confer
resistance to viruses implicated in perinatal infection. Am J
Obstet Gynecol. 212:71.e1–71.e8. 2015.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Nakahara A, Elfeky O, Garvey C, Guanzon D,
Longo SA and Salmon C: Exosome profiles for normal and complicated
pregnancies-a longitudinal study. Obstet Gynecol. 133(162)2019.
|
|
52
|
Konečná B, Tóthová Ľ and Repiská G:
Exosomes-associated DNA-new marker in pregnancy complications? Int
J Mol Sci. 20(2890)2019.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Gintoni I, Adamopoulou M and Yapijakis C:
The angiotensin-converting enzyme insertion/deletion polymorphism
as a common risk factor for major pregnancy complications. In Vivo.
35:95–103. 2021.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Fox R, Kitt J, Leeson P, Aye CY and
Lewandowski AJ: Preeclampsia: Risk factors, diagnosis, management,
and the cardiovascular impact on the offspring. J Clin Med.
8(1625)2019.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Pillay P, Vatish M, Duarte R, Moodley J
and Mackraj I: Exosomal microRNA profiling in early and late onset
preeclamptic pregnant women reflects pathophysiology. Int J
Nanomedicine. 14:5637–5657. 2019.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Redman CW, Tannetta DS, Dragovic RA,
Gardiner C, Southcombe JH, Collett GP and Sargent IL: Review: Does
size matter? Placental debris and the pathophysiology of
pre-eclampsia. Placenta. 33 (Suppl 1):S48–S54. 2012.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Motta-Mejia C, Kandzija N, Zhang W, Mhlomi
V, Cerdeira AS, Burdujan A, Tannetta D, Dragovic R, Sargent IL,
Redman CW, et al: Placental vesicles carry active endothelial
nitric oxide synthase and their activity is reduced in
preeclampsia. Hypertension. 70:372–381. 2017.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Salomon C, Guanzon D, Scholz-Romero K,
Longo S, Correa P, Illanes SE and Rice GE: Placental exosomes as
early biomarker of preeclampsia: Potential role of exosomal
MicroRNAs across gestation. J Clin Endocrinol Metab. 102:3182–3194.
2017.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Kim J, Lee KS, Kim JH, Lee DK, Park M,
Choi S, Park W, Kim S, Choi YK, Hwang JY, et al: Aspirin prevents
TNF-α-induced endothelial cell dysfunction by regulating the
NF-κB-dependent miR-155/eNOS pathway: Role of a miR-155/eNOS axis
in preeclampsia. Free Radic Biol Med. 104:185–198. 2017.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Srinivasan S, Treacy R, Herrero T, Olsen
R, Leonardo TR, Zhang X, DeHoff P, To C, Poling LG, Fernando A, et
al: Discovery and verification of extracellular miRNA biomarkers
for non-invasive prediction of pre-eclampsia in asymptomatic women.
Cell Rep Med. 1(100013)2020.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Motawi TMK, Sabry D, Maurice NW and Rizk
SM: Role of mesenchymal stem cells exosomes derived microRNAs;
miR-136, miR-494 and miR-495 in pre-eclampsia diagnosis and
evaluation. Arch Biochem Biophys. 659:13–21. 2018.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Lázár L, Nagy B, Molvarec A, Szarka A and
Rigó J Jr: Role of hsa-miR-325 in the etiopathology of
preeclampsia. Mol Med Rep. 6:597–600. 2012.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Wang X, Chen Y, Du L, Li X, Li X and Chen
D: Evaluation of circulating placenta-related long noncoding RNAs
as potential biomarkers for preeclampsia. Exp Ther Med.
15:4309–4317. 2018.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Chen Y, Ding H, Wei M, Zha W, Guan S, Liu
N, Li Y, Tan Y, Wang Y and Wu F: MSC-secreted exosomal H19 promotes
trophoblast cell invasion and migration by downregulating let-7b
and upregulating FOXO1. Mol Ther Nucleic Acids. 19:1237–1249.
2020.PubMed/NCBI View Article : Google Scholar
|
|
65
|
American Diabetes Association. 2.
Classification and diagnosis of diabetes: Standards of medical care
in diabetes-2019. Diabetes Care. 42 (Suppl 1):S13–S28.
2019.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Jayabalan N, Lai A, Ormazabal V, Adam S,
Guanzon D, Palma C, Scholz-Romero K, Lim R, Jansson T, McIntyre HD,
et al: Adipose tissue exosomal proteomic profile reveals a role on
placenta glucose metabolism in gestational diabetes mellitus. J
Clin Endocrinol Metab. 104:1735–1752. 2019.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Rice GE, Scholz-Romero K, Sweeney E,
Peiris H, Kobayashi M, Duncombe G, Mitchell MD and Salomon C: The
effect of glucose on the release and bioactivity of exosomes from
first trimester trophoblast cells. J Clin Endocrinol Metab.
100:E1280–E1288. 2015.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Kandzija N, Zhang W, Motta-Mejia C, Mhlomi
V, McGowan-Downey J, James T, Cerdeira AS, Tannetta D, Sargent I,
Redman CW, et al: Placental extracellular vesicles express active
dipeptidyl peptidase IV; levels are increased in gestational
diabetes mellitus. J Extracell Vesicles. 8(1617000)2019.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Ramachandrarao SP, Hamlin AA, Awdishu L,
Overcash R, Zhou M, Proudfoot J, Ishaya M, Aghania E, Madrigal A,
Kokoy-Mondragon C, et al: Proteomic analyses of urine exosomes
reveal new biomarkers of diabetes in pregnancy. Madridge J
Diabetes. 1:11–22. 2016.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Cao YL, Jia YJ, Xing BH, Shi DD and Dong
XJ: Plasma microRNA-16-5p, -17-5p and -20a-5p: Novel diagnostic
biomarkers for gestational diabetes mellitus. J Obstet Gynaecol
Res. 43:974–981. 2017.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Zhang Y, Wu H, Wang F, Ye M, Zhu H and Bu
S: Long non-coding RNA MALAT1 expression in patients with
gestational diabetes mellitus. Int J Gynaecol Obstet. 140:164–169.
2018.PubMed/NCBI View Article : Google Scholar
|
|
72
|
World Health Organization. Preterm birth.
Available online: https://www.who.int/news-room/fact-sheets/detail/preterm-birth.
Accessed June 30, 2021.
|
|
73
|
Menon R, Debnath C, Lai A, Guanzon D,
Bhatnagar S, Kshetrapal P, Sheller-Miller S and Salomon C: Protein
profile changes in circulating placental extracellular vesicles in
term and preterm births: A longitudinal study. Endocrinology.
161(bqaa009)2020.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Hromadnikova I, Kotlabova K, Ivankova K
and Krofta L: Expression profile of C19MC microRNAs in placental
tissue of patients with preterm prelabor rupture of membranes and
spontaneous preterm birth. Mol Med Rep. 16:3849–3862.
2017.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Gray C, McCowan LM, Patel R, Taylor RS and
Vickers MH: Maternal plasma miRNAs as biomarkers during
mid-pregnancy to predict later spontaneous preterm birth: A pilot
study. Sci Rep. 7(815)2017.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Clark J, Eaves LA, Gaona AR, Santos HP Jr,
Smeester L, Bangma JT, Rager JE, O'Shea TM and Fry RC:
Pre-pregnancy BMI-associated miRNA and mRNA expression signatures
in the placenta highlight a sexually-dimorphic response to maternal
underweight status. Sci Rep. 11(15743)2021.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Payton A, Clark J, Eaves L, Santos HP Jr,
Smeester L, Bangma JT, O'Shea TM, Fry RC and Rager JE: Placental
genomic and epigenomic signatures associated with infant birth
weight highlight mechanisms involved in collagen and growth factor
signaling. Reprod Toxicol. 96:221–230. 2020.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Valsamakis G, Chrousos G and Mastorakos G:
Stress, female reproduction and pregnancy.
Psychoneuroendocrinology. 100:48–57. 2019.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Higashijima A, Miura K, Mishima H,
Kinoshita A, Jo O, Abe S, Hasegawa Y, Miura S, Yamasaki K, Yoshida
A, et al: Characterization of placenta-specific microRNAs in fetal
growth restriction pregnancy. Prenat Diagn. 33:214–222.
2013.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Meng M, Cheng YK, Wu L, Chaemsaithong P,
Leung MB, Chim SS, Sahota DS, Li W, Poon LCY, Wang CC and Leung TY:
Whole genome miRNA profiling revealed miR-199a as potential
placental pathogenesis of selective fetal growth restriction in
monochorionic twin pregnancies. Placenta. 92:44–53. 2020.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Baker BC, Mackie FL, Lean SC, Greenwood
SL, Heazell A, Forbes K and Jones RL: Placental dysfunction is
associated with altered microRNA expression in pregnant women with
low folate status. Mol Nutr Food Res. 61(1600646)2017.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Zbucka-Kretowska M, Niemira M,
Paczkowska-Abdulsalam M, Bielska A, Szalkowska A, Parfieniuk E,
Ciborowski M, Wolczynski S and Kretowski A: Prenatal circulating
microRNA signatures of foetal Down syndrome. Sci Rep.
9(2394)2019.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Shi R, Zhao L, Cai W, Wei M, Zhou X, Yang
G and Yuan L: Maternal exosomes in diabetes contribute to the
cardiac development deficiency. Biochem Biophys Res Commun.
483:602–608. 2017.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Tan KH, Tan SS, Ng MJ, Tey WS, Sim WK,
Allen JC and Lim SK: Extracellular vesicles yield predictive
pre-eclampsia biomarkers. J Extracell Vesicles.
6(1408390)2017.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Bier A, Berenstein P, Kronfeld N,
Morgoulis D, Ziv-Av A, Goldstein H, Kazimirsky G, Cazacu S, Meir R,
Popovtzer R, et al: Placenta-derived mesenchymal stromal cells and
their exosomes exert therapeutic effects in Duchenne muscular
dystrophy. Biomaterials. 174:67–78. 2018.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Ni J, Li H, Zhou Y, Gu B, Xu Y, Fu Q, Peng
X, Cao N, Fu Q, Jin M, et al: Therapeutic potential of human
adipose-derived stem cell exosomes in stress urinary
incontinence-an in vitro and in vivo study. Cell Physiol Biochem.
48:1710–1722. 2018.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Pillay P, Moodley K, Moodley J and Mackraj
I: Placenta-derived exosomes: Potential biomarkers of preeclampsia.
Int J Nanomedicine. 12:8009–8023. 2017.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Zhang Y, Bi J, Huang J, Tang Y, Du S and
Li P: Exosome: A review of its classification, isolation
techniques, storage, diagnostic and targeted therapy applications.
Int J Nanomedicine. 15:6917–6934. 2020.PubMed/NCBI View Article : Google Scholar
|