Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
September-2022 Volume 24 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2022 Volume 24 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Emerging roles of oxidative stress in the pathogenesis of pseudoexfoliation syndrome (Review)

  • Authors:
    • Stylianos Mastronikolis
    • Marina Pagkalou
    • Panagiotis Plotas
    • Konstantinos Kagkelaris
    • Constantinos D. Georgakopoulos
  • View Affiliations / Copyright

    Affiliations: Department of Ophthalmology, University Hospital of Patras, 26504 Patras, Greece, Department of Chemistry, University of Crete, 70013 Heraklion, Greece, Laboratory of Primary Health Care, School of Health Rehabilitation Sciences, University of Patras, 26334 Patras, Greece
    Copyright: © Mastronikolis et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 602
    |
    Published online on: July 28, 2022
       https://doi.org/10.3892/etm.2022.11539
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Pseudoexfoliation syndrome (PEXS) is a systemic disease caused by defects in the extracellular matrix (ECM) remodelling process leading to the chronic deposition of extracellular, fibrillary, white flaky pseudoexfoliation material (PEXM) throughout the body. Specifically, PEXM deposits on the lens capsule cause open‑angle glaucoma, cataracts and blindness in patients with PEXS. Several gene single nucleotide polymorphisms are linked to the development of PEXS in humans, including lysyl oxidase‑like 1 gene, clusterin and fibulin‑5. The exact reason for the PEXM generation and its resulting pathogenesis is not well understood. However, defective ECM remodelling and oxidative stress (OS) have been hypothesized as significant events leading to the PEXM. Specifically, the link between OS and PEXS has been well studied, although the investigation is still ongoing. The present review explored recent advances in various aspects of PEXS and the involvement of OS in the eye for PEXS development.
View Figures

Figure 1

View References

1 

Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, Vynios DH, Orian-Rousseau V, Ricard-Blum S, Schmelzer CEH, et al: A guide to the composition and functions of the extracellular matrix. FEBS J. 288:6850–6912. 2021.PubMed/NCBI View Article : Google Scholar

2 

Iozzo RV, Theocharis AD, Neill T and Karamanos NK: Complexity of matrix phenotypes. Matrix Biol Plus. 6-7(100038)2020.PubMed/NCBI View Article : Google Scholar

3 

Dvorak-Theobald G: Pseudo-exfoliation of the lens capsule: Relation to true exfoliation of the lens capsule as reported in the literature and role in the production of glaucoma capsulocuticulare. Am J Ophthalmol. 37:1–12. 1954.PubMed/NCBI

4 

Roche J: Pseudo-exfoliation of the lens capsule. Br J Ophthalmol. 52:265–269. 1968.PubMed/NCBI View Article : Google Scholar

5 

Shakib M, Ashton N and Blach R: Electron microscopic study of pseudo-exfoliation of the lens capsule. Ii. Iris and ciliary body. Invest Ophthalmol. 4:154–161. 1965.PubMed/NCBI

6 

Conway RM, Schlötzer-Schrehardt U, Küchle M and Naumann GO: Pseudoexfoliation syndrome: Pathological manifestations of relevance to intraocular surgery. Clin Exp Ophthalmol. 32:199–210. 2004.PubMed/NCBI View Article : Google Scholar

7 

Tekin K, Inanc M and Elgin U: Monitoring and management of the patient with pseudoexfoliation syndrome: Current perspectives. Clin Ophthalmol. 13:453–464. 2019.PubMed/NCBI View Article : Google Scholar

8 

Mastronikolis S, Pagkalou M, Baroutas G, Kyriakopoulou K, Makri OE and Georgakopoulos CD: Pseudoexfoliation syndrome: The critical role of the extracellular matrix in pathogenesis and treatment. IUBMB Life: Feb 24, 2022 (Epub ahead of print).

9 

Challa P: Genetics of pseudoexfoliation syndrome. Curr Opin Ophthalmol. 20:88–91. 2009.PubMed/NCBI View Article : Google Scholar

10 

Ariga M, Nivean M and Utkarsha P: Pseudoexfoliation syndrome. J Curr Glaucoma Pract. 7:118–120. 2013.PubMed/NCBI View Article : Google Scholar

11 

Elhawy E, Kamthan G, Dong CQ and Danias J: Pseudoexfoliation syndrome, a systemic disorder with ocular manifestations. Hum Genomics. 6(22)2012.PubMed/NCBI View Article : Google Scholar

12 

Schlötzer-Schrehardt U and Naumann GO: Ocular and systemic pseudoexfoliation syndrome. Am J Ophthalmol. 141:921–937. 2006.PubMed/NCBI View Article : Google Scholar

13 

Ritch R: Ocular and systemic manifestations of exfoliation syndrome. J Glaucoma. 23 (8 Suppl 1):S1–S8. 2014.PubMed/NCBI View Article : Google Scholar

14 

Ovodenko B, Rostagno A, Neubert TA, Shetty V, Thomas S, Yang A, Liebmann J, Ghiso J and Ritch R: Proteomic analysis of exfoliation deposits. Invest Ophthalmol Vis Sci. 48:1447–1457. 2007.PubMed/NCBI View Article : Google Scholar

15 

Gartaganis SP, Georgakopoulos CD, Assouti M, Mela EK, Exarchou A, Giannelou I, Gotsis SS, Ziouti N, Vynios DH, Tripathi BJ and Tripathi RC: Changes in HNK-1 epitope and collagen type IX in the aqueous humour of patients with pseudoexfoliation syndrome. Curr Eye Res. 28:5–10. 2004.PubMed/NCBI View Article : Google Scholar

16 

Sharma S, Chataway T, Burdon KP, Jonavicius L, Klebe S, Hewitt AW, Mills RA and Craig JE: Identification of LOXL1 protein and apolipoprotein E as components of surgically isolated pseudoexfoliation material by direct mass spectrometry. Exp Eye Res. 89:479–485. 2009.PubMed/NCBI View Article : Google Scholar

17 

Tran VT: Washout of pseudoexfoliation material combined with cataract surgery: A new surgical approach to lower intraocular pressure in pseudoexfoliation syndrome. Int Ophthalmol. 35:209–214. 2015.PubMed/NCBI View Article : Google Scholar

18 

Ritch R and Schlötzer-Schrehardt U: Exfoliation syndrome. Surv Ophthalmol. 45:265–315. 2001.PubMed/NCBI View Article : Google Scholar

19 

Schlötzer-Schrehardt UM, Koca MR, Naumann GO and Volkholz H: Pseudoexfoliation syndrome. Ocular manifestation of a systemic disorder? Arch Ophthalmol. 110:1752–1756. 1992.PubMed/NCBI View Article : Google Scholar

20 

Chiras D, Kitsos G, Petersen MB, Skalidakis I and Kroupis C: Oxidative stress in dry age-related macular degeneration and exfoliation syndrome. Crit Rev Clin Lab Sci. 52:12–27. 2015.PubMed/NCBI View Article : Google Scholar

21 

Yüksel N, Karabaş VL, Arslan A, Demirci A and Cağlar Y: Ocular hemodynamics in pseudoexfoliation syndrome and pseudoexfoliation glaucoma. Ophthalmology. 108:1043–1049. 2001.PubMed/NCBI View Article : Google Scholar

22 

Yildirim N, Yasar E, Gursoy H and Colak E: Prevalence of pseudoexfoliation syndrome and its association with ocular and systemic diseases in Eskisehir, Turkey. Int J Ophthalmol. 10:128–134. 2017.PubMed/NCBI View Article : Google Scholar

23 

Topouzis F and Anastasopoulos E: Incidence of pseudoexfoliation syndrome. Am J Ophthalmol. 148:181–182. 2009.PubMed/NCBI View Article : Google Scholar

24 

Chan TCW, Bala C, Siu A, Wan F and White A: Risk factors for rapid glaucoma disease progression. Am J Ophthalmol. 180:151–157. 2017.PubMed/NCBI View Article : Google Scholar

25 

Aboobakar IF, Johnson WM, Stamer WD, Hauser MA and Allingham RR: Major review: Exfoliation syndrome; advances in disease genetics, molecular biology, and epidemiology. Exp Eye Res. 154:88–103. 2017.PubMed/NCBI View Article : Google Scholar

26 

Mansour AM, Konstas AGP, Mansour HA, Charbaji AR and Jawhari KM: A case-cohort study of exfoliation risk factors and literature review. Middle East Afr J Ophthalmol. 28:36–50. 2021.PubMed/NCBI View Article : Google Scholar

27 

Whigham BT and Allingham RR: Review: The role of LOXL1 in exfoliation syndrome/glaucoma. Saudi J Ophthalmol. 25:347–352. 2011.PubMed/NCBI View Article : Google Scholar

28 

Konstas AGP and Ringvold A: Epidemiology of exfoliation syndrome. J Glaucoma. 27 (Suppl 1):S4–S11. 2018.PubMed/NCBI View Article : Google Scholar

29 

Forsius H: Exfoliation syndrome in various ethnic populations. Acta Ophthalmol. Suppl (1985) 184:71–85. 1988.PubMed/NCBI View Article : Google Scholar

30 

Miglior S and Bertuzzi F: Exfoliative glaucoma: New evidence in the pathogenesis and treatment. Prog Brain Res. 221:233–241. 2015.PubMed/NCBI View Article : Google Scholar

31 

Amini H, Daneshvar R, Eslami Y, Moghimi S and Amini N: Early-onset pseudoexfoliation syndrome following multiple intraocular procedures. J Ophthalmic Vis Res. 7:190–196. 2012.PubMed/NCBI

32 

Thorleifsson G, Magnusson KP, Sulem P, Walters GB, Gudbjartsson DF, Stefansson H, Jonsson T, JonRasdottir A, Jonasdottir A, Stefansdottir G, et al: Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science. 317:1397–1400. 2007.PubMed/NCBI View Article : Google Scholar

33 

Schlötzer-Schrehardt U: Genetics and genomics of pseudoexfoliation syndrome/glaucoma. Middle East Afr J Ophthalmol. 18:30–36. 2011.PubMed/NCBI View Article : Google Scholar

34 

Zalewska R, Pepinski W, Smolenska-Janica D, Mariak Z, Proniewska-Skretek E, Skawronska M and Janica J: Loss of heterozygosity in patients with pseudoexfoliation syndrome. Mol Vis. 9:257–261. 2003.PubMed/NCBI

35 

Kozobolis VP, Detorakis ET, Sourvinos G, Pallikaris IG and Spandidos DA: Loss of heterozygosity in pseudoexfoliation syndrome. Invest Ophthalmol Vis Sci. 40:1255–1260. 1999.PubMed/NCBI

36 

Aung T, Ozaki M, Mizoguchi T, Allingham RR, Li Z, Haripriya A, Nakano S, Uebe S, Harder JM, Chan AS, et al: A common variant mapping to CACNA1A is associated with susceptibility to exfoliation syndrome. Nat Genet. 47:387–392. 2015.PubMed/NCBI View Article : Google Scholar

37 

Padhy B, Kapuganti RS, Hayat B, Pranjya Paramita Mohanty PP and Alone DP: De novo variants in an extracellular matrix protein coding gene, fibulin-5 (FBLN5) are associated with pseudoexfoliation. Eur J Hum Genet. 27:1858–1866. 2019.PubMed/NCBI View Article : Google Scholar

38 

Yimaz A, Ayaz L and Tamer L: Selenium and pseudoexfoliation syndrome. Am J Ophthalmol. 151:272–276.e1. 2011.PubMed/NCBI View Article : Google Scholar

39 

Arnarsson A, Sasaki H and Jonasson F: Twelve-year incidence of exfoliation syndrome in the Reykjavik eye study. Acta Ophthalmol. 91:157–162. 2013.PubMed/NCBI View Article : Google Scholar

40 

Arnarsson AM: Epidemiology of exfoliation syndrome in the Reykjavik eye study. Acta Ophthalmol 87 Thesis. 3:1–17. 2009.PubMed/NCBI View Article : Google Scholar

41 

Pasquale LR, Wiggs JL, Willett WC and Kang JH: The relationship between caffeine and coffee consumption and exfoliation glaucoma or glaucoma suspect: A prospective study in two cohorts. Invest Ophthalmol Vis Sci. 53:6427–6433. 2012.PubMed/NCBI View Article : Google Scholar

42 

Christensen B, Mosdol A, Retterstol L, Landaas S and Thelle DS: Abstention from filtered coffee reduces the concentrations of plasma homocysteine and serum cholesterol-a randomized controlled trial. Am J Clin Nutr. 74:302–307. 2001.PubMed/NCBI View Article : Google Scholar

43 

Puustjärvi T, Blomster H, Kontkanen M, Punnonen K and Teräsvirta M: Plasma and aqueous humour levels of homocysteine in exfoliation syndrome. Graefes Arch Clin Exp Ophthalmol. 242:749–754. 2004.PubMed/NCBI View Article : Google Scholar

44 

Kozobolis VP, Papatzanaki M, Vlachonikolis IG, Pallikaris IG and Tsambarlakis IG: Epidemiology of pseudoexfoliation in the island of Crete (Greece). Acta Ophthalmol Scand. 75:726–729. 1997.PubMed/NCBI View Article : Google Scholar

45 

Kang JH, Loomis S, Wiggs JL, Stein JD and Pasquale LR: Demographic and geographic features of exfoliation glaucoma in 2 United States-based prospective cohorts. Ophthalmology. 119:27–35. 2012.PubMed/NCBI View Article : Google Scholar

46 

Stein JD, Pasquale LR, Talwar N, Kim DS, Reed DM, Nan B, Kang JH, Wiggs JL and Richards JE: Geographic and climatic factors associated with exfoliation syndrome. Arch Ophthalmol. 129:1053–1060. 2011.PubMed/NCBI View Article : Google Scholar

47 

Pasquale LR, Jiwani AZ, Zehavi-Dorin T, Majd A, Rhee DJ, Chen T, Turalba A, Shen L, Brauner S, Grosskreutz C, et al: Solar exposure and residential geographic history in relation to exfoliation syndrome in the United States and Israel. Jama Ophthalmol. 132:1439–1445. 2014.PubMed/NCBI View Article : Google Scholar

48 

Pasquale LR, Kang JH, Fan B, Levkovitch-Verbin H and Wiggs JL: LOXL1 polymorphisms: Genetic biomarkers that presage environmental determinants of exfoliation syndrome. J Glaucoma. 27 (Suppl 1):S20–S23. 2018.PubMed/NCBI View Article : Google Scholar

49 

Liu X, Zhao Y, Gao J, Pawlyk B, Starcher B, Spencer JA, Yanagisawa H, Zuo J and Li T: Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat Genet. 36:178–182. 2004.PubMed/NCBI View Article : Google Scholar

50 

Oleggini R, Gastaldo N and Di Donato A: Regulation of elastin promoter by lysyl oxidase and growth factors: Cross control of lysyl oxidase on TGF-beta1 effects. Matrix Biol. 26:494–505. 2007.PubMed/NCBI View Article : Google Scholar

51 

Li G, Schmitt H, Johnson WM, Lee C, Navarro I, Cui J, Fleming T, Gomez-Caraballo M, Elliott MH, Sherwood JM, et al: Integral role for lysyl oxidase-like-1 in conventional outflow tissue function and behavior. FASEB J. 34:10762–10777. 2020.PubMed/NCBI View Article : Google Scholar

52 

Schlötzer-Schrehardt U, Hammer CM, Krysta AW, Hofmann-Rummelt C, Pasutto F, Sasaki T, Kruse FE and Zenkel M: LOXL1 deficiency in the lamina cribrosa as candidate susceptibility factor for a pseudoexfoliation-specific risk of glaucoma. Ophthalmology. 119:1832–1843. 2012.PubMed/NCBI View Article : Google Scholar

53 

Schmitt HM, Johnson WM, Aboobakar IF, Strickland S, Gomez-Caraballo M, Parker M, Finnegan L, Corcoran DL, Skiba NP, Allingham RR, et al: Identification and activity of the functional complex between hnRNPL and the pseudoexfoliation syndrome-associated lncRNA, LOXL1-AS1. Hum Mol Genet. 29:1986–1995. 2020.PubMed/NCBI View Article : Google Scholar

54 

Liu RM and Gaston Pravia KA: Oxidative stress and glutathione in TGF-beta-mediated fibrogenesis. Free Radic Biol Med. 48:1–15. 2010.PubMed/NCBI View Article : Google Scholar

55 

Takai Y, Tanito M and Ohira A: Multiplex cytokine analysis of aqueous humor in eyes with primary open-angle glaucoma, exfoliation glaucoma, and cataract. Invest Ophthalmol Vis Sci. 53:241–247. 2012.PubMed/NCBI View Article : Google Scholar

56 

Zenkel M, Krysta A, Pasutto F, Juenemann A, Kruse FE and Schlötzer-Schrehardt U: Regulation of lysyl oxidase-like 1 (LOXL1) and elastin-related genes by pathogenic factors associated with pseudoexfoliation syndrome. Invest Ophthalmol Vis Sci. 52:8488–8495. 2011.PubMed/NCBI View Article : Google Scholar

57 

Djordjević-Jocić J, Zlatanović G, Veselinović D, Jovanović P, Djordjević V, Zvezdanović L, Stanković-Babić G, Vujanović M, Cekić S, Zenkel M and Schlotzer-Schrehardt U: Transforming growth factor beta1, matrix-metalloproteinase-2 and its tissue inhibitor in patients with pseudoexfoliation glaucoma/syndrome. Vojnosanit Pregl. 69:231–236. 2012.PubMed/NCBI

58 

Schlötzer-Schrehardt U, Zenkel M, Küchle M, Sakai LY and Naumann GO: Role of transforming growth factor-beta1 and its latent form binding protein in pseudoexfoliation syndrome. Exp Eye Res. 73:765–780. 2001.PubMed/NCBI View Article : Google Scholar

59 

Doudevski I, Rostagno A, Cowman M, Liebmann J, Ritch R and Ghiso J: Clusterin and complement activation in exfoliation glaucoma. Invest Ophthalmol Vis Sci. 55:2491–2499. 2014.PubMed/NCBI View Article : Google Scholar

60 

Morris J, Myer C, Cornet T, Junk AK, Lee RK and Bhattacharya SK: Proteomics of pseudoexfoliation materials in the anterior eye segment. Adv Protein Chem Struct Biol. 127:271–290. 2021.PubMed/NCBI View Article : Google Scholar

61 

Zenkel M, Kruse FE, Jünemann AG, Naumann GO and Schlötzer-Schrehardt U: Clusterin deficiency in eyes with pseudoexfoliation syndrome may be implicated in the aggregation and deposition of pseudoexfoliative material. Invest Ophthalmol Vis Sci. 47:1982–1990. 2006.PubMed/NCBI View Article : Google Scholar

62 

Gerschman R, Gilbert DL, Nye SW, Dwyer P and Fenn WO: Oxygen poisoning and x-irradiation: A mechanism in common. Science. 119:623–626. 1954.PubMed/NCBI View Article : Google Scholar

63 

Commoner B, Townsend J and Pake GE: Free radicals in biological materials. Nature. 174:689–691. 1954.PubMed/NCBI View Article : Google Scholar

64 

Harman D: Aging: A theory based on free radical and radiation chemistry. J Gerontol. 11:298–300. 1956.PubMed/NCBI View Article : Google Scholar

65 

McCord JM and Fridovich I: Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 244:6049–6055. 1969.PubMed/NCBI

66 

Beckman KB and Ames BN: The free radical theory of aging matures. Physiol Rev. 78:547–581. 1998.PubMed/NCBI View Article : Google Scholar

67 

Valko M, Rhodes CJ, Moncol J, Izakovic M and Mazur M: Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 160:1–40. 2006.PubMed/NCBI View Article : Google Scholar

68 

Dröge W: Free radicals in the physiological control of cell function. Physiol Rev. 82:47–95. 2002.PubMed/NCBI View Article : Google Scholar

69 

Jones DP: Redefining oxidative stress. Antioxid Redox Signal. 8:1865–1879. 2006.PubMed/NCBI View Article : Google Scholar

70 

Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D and Bitto A: Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev. 2017(8416763)2017.PubMed/NCBI View Article : Google Scholar

71 

Li R, Jia Z and Trush MA: Defining ROS in biology and medicine. React Oxyg Species (Apex). 1:9–21. 2016.PubMed/NCBI View Article : Google Scholar

72 

Shoham A, Hadziahmetovic M, Dunaief JL, Mydlarski MB and Schipper HM: Oxidative stress in diseases of the human cornea. Free Radic Biol Med. 45:1047–1055. 2008.PubMed/NCBI View Article : Google Scholar

73 

Cejka C and Cejkova J: Oxidative stress to the cornea, changes in corneal optical properties, and advances in treatment of corneal oxidative injuries. Oxid Med Cell Longev. 2015(591530)2015.PubMed/NCBI View Article : Google Scholar

74 

Chen Y, Mehta G and Vasiliou V: Antioxidant defenses in the ocular surface. Ocul Surf. 7:176–185. 2009.PubMed/NCBI View Article : Google Scholar

75 

Cai CX, Birk DE and Linsenmayer TF: Nuclear ferritin protects DNA from UV damage in corneal epithelial cells. Mol Biol Cell. 9:1037–1051. 1998.PubMed/NCBI View Article : Google Scholar

76 

Sacca SC, Bolognesi C, Battistella A, Bagnis A and Izzotti A: Gene-environment interactions in ocular diseases. Mutat Res. 667:98–117. 2009.PubMed/NCBI View Article : Google Scholar

77 

Roberts JE: Screening for ocular phototoxicity. Int J Toxicol. 21:491–500. 2002.PubMed/NCBI View Article : Google Scholar

78 

Zhao B, He YY, Chignell CF, Yin JJ, Andley U and Roberts JE: Difference in phototoxicity of cyclodextrin complexed fullerene [(gamma-CyD)2/C60] and its aggregated derivatives toward human lens epithelial cells. Chem Res Toxicol. 22:660–667. 2009.PubMed/NCBI View Article : Google Scholar

79 

Cabrera MP and Chihuailaf RH: Antioxidants and the integrity of ocular tissues. Vet Med Int. 2011(905153)2011.PubMed/NCBI View Article : Google Scholar

80 

Beebe DC, Holekamp NM and Shui YB: Oxidative damage and the prevention of age-related cataracts. Ophthalmic Res. 44:155–165. 2010.PubMed/NCBI View Article : Google Scholar

81 

Ozaki Y, Mizuno A, Itoh K and Iriyama K: Inter- and intramolecular disulfide bond formation and related structural changes in the lens proteins. A Raman spectroscopic study in vivo of lens aging. J Biol Chem. 262:15545–15551. 1987.PubMed/NCBI

82 

Berthoud VM and Beyer EC: Oxidative stress, lens gap junctions, and cataracts. Antioxid Redox Signal. 11:339–353. 2009.PubMed/NCBI View Article : Google Scholar

83 

Ohguro N, Fukuda M, Sasabe T and Tano Y: Concentration dependent effects of hydrogen peroxide on lens epithelial cells. Br J Ophthalmol. 83:1064–1068. 1999.PubMed/NCBI View Article : Google Scholar

84 

Bodaness RS, Leclair M and Zigler JS Jr: An analysis of the H2O2-mediated crosslinking of lens crystallins catalyzed by the heme-undecapeptide from cytochrome c. Arch Biochem Biophys. 231:461–469. 1984.PubMed/NCBI View Article : Google Scholar

85 

Zigler JS Jr, Huang QL and Du XY: Oxidative modification of lens crystallins by H2O2 and chelated iron. Free Radic Biol Med. 7:499–505. 1989.PubMed/NCBI View Article : Google Scholar

86 

McNamara M and Augusteyn RC: The effects of hydrogen peroxide on lens proteins: A possible model for nuclear cataract. Exp Eye Res. 38:45–56. 1984.PubMed/NCBI View Article : Google Scholar

87 

Garner MH and Spector A: Selective oxidation of cysteine and methionine in normal and senile cataractous lenses. Proc Natl Acad Sci USA. 77:1274–1277. 1980.PubMed/NCBI View Article : Google Scholar

88 

Fu S, Dean R, Southan M and Truscott R: The hydroxyl radical in lens nuclear cataractogenesis. J Biol Chem. 273:28603–28609. 1998.PubMed/NCBI View Article : Google Scholar

89 

Vogt W: Oxidation of methionyl residues in proteins: Tools, targets, and reversal. Free Radic Biol Med. 18:93–105. 1995.PubMed/NCBI View Article : Google Scholar

90 

Truscott RJ and Augusteyn RC: Oxidative changes in human lens proteins during senile nuclear cataract formation. Biochim Biophys Acta. 492:43–52. 1977.PubMed/NCBI View Article : Google Scholar

91 

Rose RC, Richer SP and Bode AM: Ocular oxidants and antioxidant protection. Proc Soc Exp Biol Med. 217:397–407. 1998.PubMed/NCBI View Article : Google Scholar

92 

Saxena P, Saxena AK, Cui XL, Obrenovich M, Gudipaty K and Monnier VM: Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: Possible role of advanced glycation end products. Invest Ophthalmol Vis Sci. 41:1473–1481. 2000.PubMed/NCBI

93 

Spector A: Oxidative stress-induced cataract: Mechanism of action. FASEB J. 9:1173–1182. 1995.PubMed/NCBI

94 

Dillon J, Zheng L, Merriam JC and Gaillard ER: The optical properties of the anterior segment of the eye: Implications for cortical cataract. Exp Eye Res. 68:785–795. 1999.PubMed/NCBI View Article : Google Scholar

95 

Rogers CS, Chan LM, Sims YS, Byrd KD, Hinton DL and Twining SS: The effects of sub-solar levels of UV-A and UV-B on rabbit corneal and lens epithelial cells. Exp Eye Res. 78:1007–1014. 2004.PubMed/NCBI View Article : Google Scholar

96 

Long AC, Colitz CM and Bomser JA: Apoptotic and necrotic mechanisms of stress-induced human lens epithelial cell death. Exp Biol Med (Maywood). 229:1072–1080. 2004.PubMed/NCBI View Article : Google Scholar

97 

Dairou J, Malecaze F, Dupret JM and Rodrigues-Lima F: The xenobiotic-metabolizing enzymes arylamine N-acetyltransferases in human lens epithelial cells: Inactivation by cellular oxidants and UVB-induced oxidative stress. Mol Pharmacol. 67:1299–1306. 2005.PubMed/NCBI View Article : Google Scholar

98 

Reddan JR, Steiger CA, Dziedzic DC and Gordon SR: Regional differences in the distribution of catalase in the epithelium of the ocular lens. Cell Mol Biol (Noisy-le-grand). 42:209–219. 1996.PubMed/NCBI

99 

Hosler MR, Wang-Su ST and Wagner BJ: Targeted disruption of specific steps of the ubiquitin-proteasome pathway by oxidation in lens epithelial cells. Int J Biochem Cell Biol. 35:685–697. 2003.PubMed/NCBI View Article : Google Scholar

100 

Giblin FJ, McCready JP, Schrimscher L and Reddy VN: Peroxide-induced effects on lens cation transport following inhibition of glutathione reductase activity in vitro. Exp Eye Res. 45:77–91. 1987.PubMed/NCBI View Article : Google Scholar

101 

Cejková J, Stípek S, Crkovská J, Ardan T, Pláteník J, Cejka C and Midelfart A: UV Rays, the prooxidant/antioxidant imbalance in the cornea and oxidative eye damage. Physiol Res. 53:1–10. 2004.PubMed/NCBI

102 

Barros PS, Padovani CF, Silva VV, L Queiroz L and Barros SBM: Antioxidant status of dog aqueous humor after extracapsular lens extraction. Braz J Med Biol Res. 36:1491–1494. 2003.PubMed/NCBI View Article : Google Scholar

103 

Ringvold A, Anderssen E, Jellum E, Bjerkås E, Sonerud GA, Haaland PJ, Devor TP and Kjønniksen I: UV-Absorbing compounds in the aqueous humor from aquatic mammals and various non-mammalian vertebrates. Ophthalmic Res. 35:208–216. 2003.PubMed/NCBI View Article : Google Scholar

104 

Wielgus AR and Sarna T: Ascorbate enhances photogeneration of hydrogen peroxide mediated by the iris melanin. Photochem Photobiol. 84:683–691. 2008.PubMed/NCBI View Article : Google Scholar

105 

Megaw JM: Glutathione and ocular photobiology. Curr Eye Res. 3:83–87. 1984.PubMed/NCBI View Article : Google Scholar

106 

Benoist d'Azy C, Pereira B, Chiambaretta F and Dutheil F: Oxidative and anti-oxidative stress markers in chronic glaucoma: A systematic review and meta-analysis. PLoS One. 11(e0166915)2016.PubMed/NCBI View Article : Google Scholar

107 

Yağci R, Gürel A, Ersöz I, Keskin UC, Hepşen IF, Duman S and Yiğitoğlu R: Oxidative stress and protein oxidation in pseudoexfoliation syndrome. Curr Eye Res. 31:1029–1032. 2006.PubMed/NCBI View Article : Google Scholar

108 

Yimaz A, Adigüzel U, Tamer L, Yildirim O, Oz O, Vatansever H, Ercan B, Değirmenci US and Atik U: Serum oxidant/antioxidant balance in exfoliation syndrome. Clin Exp Ophthalmol. 33:63–66. 2005.PubMed/NCBI View Article : Google Scholar

109 

Faschinger C, Schmut O, Wachswender C and Mossböck G: Glaucoma and oxidative stress. Determination of malondialdehyde-a product of lipid peroxidation. Ophthalmologe. 103:953–959. 2006.PubMed/NCBI View Article : Google Scholar : (In German).

110 

Aydın Yaz Y, Yildirim N, Yaz Y, Tekin N, İnal M and Şahin FM: Role of oxidative stress in pseudoexfoliation syndrome and pseudoexfoliation glaucoma. Turk J Ophthalmol. 49:61–67. 2019.PubMed/NCBI View Article : Google Scholar

111 

Schlötzer-Schrehardt U: Oxidative stress and pseudoexfoliation glaucoma. Klin Monbl Augenheilkd. 227:108–113. 2010.PubMed/NCBI View Article : Google Scholar : (In German).

112 

Shirakami T, Yamanaka M, Fujihara J, Matsuoka Y, Gohto Y, Obana A and Tanito M: Advanced glycation end product accumulation in subjects with open-angle glaucoma with and without exfoliation. Antioxidants (Basel). 9(755)2020.PubMed/NCBI View Article : Google Scholar

113 

Park CH and Kim JW: Effect of advanced glycation end products on oxidative stress and senescence of trabecular meshwork cells. Korean J Ophthalmol. 26:123–131. 2012.PubMed/NCBI View Article : Google Scholar

114 

Strzalka-Mrozik B, Prudlo L, Kimsa MW, Kimsa MC, Kapral M, Nita M and Mazurek U: Quantitative analysis of SOD2, ALDH1A1 and MGST1 messenger ribonucleic acid in anterior lens epithelium of patients with pseudoexfoliation syndrome. Mol Vis. 19:1341–1349. 2013.PubMed/NCBI

115 

Gartaganis SP, Patsoukis NE, Nikolopoulos DK and Georgiou CD: Evidence for oxidative stress in lens epithelial cells in pseudoexfoliation syndrome. Eye (Lond). 21:1406–1411. 2007.PubMed/NCBI View Article : Google Scholar

116 

Gartaganis SP, Georgakopoulos CD, Patsoukis NE, Gotsis SS, Gartaganis VS and Georgiou CD: Glutathione and lipid peroxide changes in pseudoexfoliation syndrome. Curr Eye Res. 30:647–651. 2005.PubMed/NCBI View Article : Google Scholar

117 

Browne JG, Ho SL, Kane R, Oliver N, Clark AF, O'Brien CJ and Crean JK: Connective tissue growth factor is increased in pseudoexfoliation glaucoma. Invest Ophthalmol Vis Sci. 52:3660–3666. 2011.PubMed/NCBI View Article : Google Scholar

118 

Wang HJ and Kochevar IE: Involvement of UVB-induced reactive oxygen species in TGF-beta biosynthesis and activation in keratinocytes. Free Radical Bio Med. 38:890–897. 2005.PubMed/NCBI View Article : Google Scholar

119 

Galli A, Svegliati-Baroni G, Ceni E, Milani S, Ridolfi F, Salzano R, Tarocchi M, Grappone C, Pellegrini G, Benedetti A, et al: Oxidative stress stimulates proliferation and invasiveness of hepatic stellate cells via a MMP2-mediated mechanism. Hepatology. 41:1074–1084. 2005.PubMed/NCBI View Article : Google Scholar

120 

Schlötzer-Schrehardt U, Lommatzsch J, Küchle M, Konstas AG and Naumann GO: Matrix metalloproteinases and their inhibitors in aqueous humor of patients with pseudoexfoliation syndrome/glaucoma and primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 44:1117–1125. 2003.PubMed/NCBI View Article : Google Scholar

121 

Majora M, Wittkampf T, Schuermann B, Schneider M, Franke S, Grether-Beck S, Wilichowski E, Bernerd F, Schroeder P and Krutmann J: Functional consequences of mitochondrial DNA deletions in human skin fibroblasts: Increased contractile strength in collagen lattices is due to oxidative stress-induced lysyl oxidase activity. Am J Pathol. 175:1019–1029. 2009.PubMed/NCBI View Article : Google Scholar

122 

Voloshenyuk TG, Hart AD, Khoutorova E and Gardner JD: TNF-α increases cardiac fibroblast lysyl oxidase expression through TGF-β and PI3Kinase signaling pathways. Biochem Biophys Res Commun. 413:370–375. 2011.PubMed/NCBI View Article : Google Scholar

123 

Tezel G, Yang X and Cai J: Proteomic identification of oxidatively modified retinal proteins in a chronic pressure-induced rat model of glaucoma. Invest Ophthalmol Vis Sci. 46:3177–3187. 2005.PubMed/NCBI View Article : Google Scholar

124 

Chrysostomou V, Rezania F, Trounce IA and Crowston JG: Oxidative stress and mitochondrial dysfunction in glaucoma. Curr Opin Pharmacol. 13:12–15. 2013.PubMed/NCBI View Article : Google Scholar

125 

Fan Gaskin JC, Shah MH and Chan EC: Oxidative stress and the role of NADPH oxidase in glaucoma. Antioxidants (Basel). 10(238)2021.PubMed/NCBI View Article : Google Scholar

126 

Izzotti A, Bagnis A and Saccà SC: The role of oxidative stress in glaucoma. Mutat Res. 612:105–114. 2006.PubMed/NCBI View Article : Google Scholar

127 

Koliakos GG, Konstas AG, Schlötzer-Schrehardt U, Hollo G, Katsimbris IE, Georgiadis N and Ritch R: 8-Isoprostaglandin F2a and ascorbic acid concentration in the aqueous humour of patients with exfoliation syndrome. Br J Ophthalmol. 87:353–356. 2003.PubMed/NCBI View Article : Google Scholar

128 

Botling Taube A, Konzer A, Alm A and Bergquist J: Proteomic analysis of the aqueous humour in eyes with pseudoexfoliation syndrome. Br J Ophthalmol. 103:1190–1194. 2019.PubMed/NCBI View Article : Google Scholar

129 

Dursun F, Vural Ozec A, Aydin H, Topalkara A, Dursun A, Toker MI, Erdogan H and Arici MK: Total oxidative stress, paraoxonase and arylesterase levels at patients with pseudoexfoliation syndrome and pseudoexfoliative glaucoma. Int J Ophthalmol. 8:985–990. 2015.PubMed/NCBI View Article : Google Scholar

130 

Dmuchowska DA, Pietrowska K, Krasnicki P, Kowalczyk T, Misiura M, Grochowski ET, Mariak Z, Kretowski A and Ciborowski M: Metabolomics reveals differences in aqueous humor composition in patients with and without pseudoexfoliation syndrome. Front Mol Biosci. 8(682600)2021.PubMed/NCBI View Article : Google Scholar

131 

Koliakos GG, Konstas AG, Schlötzer-Schrehardt U, Bufidis T, Georgiadis N and Ringvold A: Ascorbic acid concentration is reduced in the aqueous humor of patients with exfoliation syndrome. Am J Ophthalmol. 134:879–883. 2002.PubMed/NCBI View Article : Google Scholar

132 

Ferreira SM, Lerner SF, Brunzini R, Evelson PA and Llesuy SF: Antioxidant status in the aqueous humour of patients with glaucoma associated with exfoliation syndrome. Eye (Lond). 23:1691–1697. 2009.PubMed/NCBI View Article : Google Scholar

133 

Sorkhabi R, Ghorbanihaghjo A, Ahoor M, Nahaei M and Rashtchizadeh N: High-sensitivity C-reactive protein and tumor necrosis factor alpha in pseudoexfoliation syndrome. Oman Med J. 28:16–19. 2013.PubMed/NCBI View Article : Google Scholar

134 

Tetikoğlu M, Aktas S, Sağdik HM, Özcura F, Uçar F, Koçak H, Neşelioğlu S and Erel Ö: Thiol disulfide homeostasis in pseudoexfoliation syndrome. Curr Eye Res. 42:876–879. 2017.PubMed/NCBI View Article : Google Scholar

135 

Koliakos GG, Konstas AG, Schlötzer-Schrehardt U, Hollo G, Mitova D, Kovatchev D, Maloutas S and Georgiadis N: Endothelin-1 concentration is increased in the aqueous humour of patients with exfoliation syndrome. Br J Ophthalmol. 88:523–527. 2004.PubMed/NCBI View Article : Google Scholar

136 

Koukoula SC, Katsanos AK, Tentes IK, Labiris G and Kozobolis VP: Retrobulbar hemodynamics and aqueous humor levels of endothelin-1 in exfoliation syndrome and exfoliation glaucoma. Clin Ophthalmol. 12:1199–1204. 2018.PubMed/NCBI View Article : Google Scholar

137 

Park DY, Kim M and Cha SC: Cytokine and growth factor analysis in exfoliation syndrome and glaucoma. Invest Ophthalmol Vis Sci. 62(6)2021.PubMed/NCBI View Article : Google Scholar

138 

Zenkel M, Lewczuk P, Jünemann A, Kruse FE, Naumann GO and Schlötzer-Schrehardt U: Proinflammatory cytokines are involved in the initiation of the abnormal matrix process in pseudoexfoliation syndrome/glaucoma. Am J Pathol. 176:2868–2879. 2010.PubMed/NCBI View Article : Google Scholar

139 

Stafiej J, Hałas-Wiśniewska M, Izdebska M, Gagat M, Grzanka D, Grzanka A and Malukiewicz G: Immunohistochemical analysis of microsomal glutathione S-transferase 1 and clusterin expression in lens epithelial cells of patients with pseudoexfoliation syndrome. Exp Ther Med. 13:1057–1063. 2017.PubMed/NCBI View Article : Google Scholar

140 

Sarenac Vulovic TS, Pavlovic SM, Jakovljevic VLj, Janicijevic KB and Zdravkovic NS: Nitric oxide and tumour necrosis factor alpha in the process of pseudoexfoliation glaucoma. Int J Ophthalmol. 9:1138–1142. 2016.PubMed/NCBI View Article : Google Scholar

141 

Turan G and Turan M: The evaluation of TUNEL, PCNA and SOX2 expressions in lens epithelial cells of cataract patients with pseudoexfoliation syndrome. Curr Eye Res. 45:12–16. 2020.PubMed/NCBI View Article : Google Scholar

142 

Papadopoulou G, Zisimopoulos D, Kalaitzopoulou E, Makri OE, Tsapardoni FN, Georgakopoulos CD and Georgiou CD: Age-related aqueous humor (AH) and lens epithelial cell/capsule protein carbonylation and AH protein concentration in cataract patients who have pseudoexfoliative diseases. Mol Vis. 24:890–901. 2018.PubMed/NCBI

143 

Uçakhan OO, Karel F, Kanpolat A, Devrim E and Durak I: Superoxide dismutase activity in the lens capsule of patients with pseudoexfoliation syndrome and cataract. J Cataract Refract Surg. 32:618–622. 2006.PubMed/NCBI View Article : Google Scholar

144 

Tetikoğlu M, Sağdik HM, Aktas S, Uçar F and Özcura F: Serum prolidase activity and oxidative stress in patients with pseudoexfoliation syndrome. Graefes Arch Clin Exp Ophthalmol. 254:1339–1343. 2016.PubMed/NCBI View Article : Google Scholar

145 

Fountoulakis N, Labiris G, Aristeidou A, Katsanos A, Tentes I, Kortsaris A and Kozobolis VP: Tissue inhibitor of metalloproteinase 4 in aqueous humor of patients with primary open angle glaucoma, pseudoexfoliation syndrome and pseudoexfoliative glaucoma and its role in proteolysis imbalance. BMC Ophthalmol. 13(69)2013.PubMed/NCBI View Article : Google Scholar

146 

Simavli H, Tosun M, Bucak YY, Erdurmus M, Ocak Z, Onder HI and Acar M: Serum and aqueous xanthine oxidase levels, and mRNA expression in anterior lens epithelial cells in pseudoexfoliation. Graefes Arch Clin Exp Ophthalmol. 253:1161–1167. 2015.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Mastronikolis S, Pagkalou M, Plotas P, Kagkelaris K and Georgakopoulos CD: Emerging roles of oxidative stress in the pathogenesis of pseudoexfoliation syndrome (Review). Exp Ther Med 24: 602, 2022.
APA
Mastronikolis, S., Pagkalou, M., Plotas, P., Kagkelaris, K., & Georgakopoulos, C.D. (2022). Emerging roles of oxidative stress in the pathogenesis of pseudoexfoliation syndrome (Review). Experimental and Therapeutic Medicine, 24, 602. https://doi.org/10.3892/etm.2022.11539
MLA
Mastronikolis, S., Pagkalou, M., Plotas, P., Kagkelaris, K., Georgakopoulos, C. D."Emerging roles of oxidative stress in the pathogenesis of pseudoexfoliation syndrome (Review)". Experimental and Therapeutic Medicine 24.3 (2022): 602.
Chicago
Mastronikolis, S., Pagkalou, M., Plotas, P., Kagkelaris, K., Georgakopoulos, C. D."Emerging roles of oxidative stress in the pathogenesis of pseudoexfoliation syndrome (Review)". Experimental and Therapeutic Medicine 24, no. 3 (2022): 602. https://doi.org/10.3892/etm.2022.11539
Copy and paste a formatted citation
x
Spandidos Publications style
Mastronikolis S, Pagkalou M, Plotas P, Kagkelaris K and Georgakopoulos CD: Emerging roles of oxidative stress in the pathogenesis of pseudoexfoliation syndrome (Review). Exp Ther Med 24: 602, 2022.
APA
Mastronikolis, S., Pagkalou, M., Plotas, P., Kagkelaris, K., & Georgakopoulos, C.D. (2022). Emerging roles of oxidative stress in the pathogenesis of pseudoexfoliation syndrome (Review). Experimental and Therapeutic Medicine, 24, 602. https://doi.org/10.3892/etm.2022.11539
MLA
Mastronikolis, S., Pagkalou, M., Plotas, P., Kagkelaris, K., Georgakopoulos, C. D."Emerging roles of oxidative stress in the pathogenesis of pseudoexfoliation syndrome (Review)". Experimental and Therapeutic Medicine 24.3 (2022): 602.
Chicago
Mastronikolis, S., Pagkalou, M., Plotas, P., Kagkelaris, K., Georgakopoulos, C. D."Emerging roles of oxidative stress in the pathogenesis of pseudoexfoliation syndrome (Review)". Experimental and Therapeutic Medicine 24, no. 3 (2022): 602. https://doi.org/10.3892/etm.2022.11539
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team