|
1
|
Karamanos NK, Theocharis AD, Piperigkou Z,
Manou D, Passi A, Skandalis SS, Vynios DH, Orian-Rousseau V,
Ricard-Blum S, Schmelzer CEH, et al: A guide to the composition and
functions of the extracellular matrix. FEBS J. 288:6850–6912.
2021.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Iozzo RV, Theocharis AD, Neill T and
Karamanos NK: Complexity of matrix phenotypes. Matrix Biol Plus.
6-7(100038)2020.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Dvorak-Theobald G: Pseudo-exfoliation of
the lens capsule: Relation to true exfoliation of the lens capsule
as reported in the literature and role in the production of
glaucoma capsulocuticulare. Am J Ophthalmol. 37:1–12.
1954.PubMed/NCBI
|
|
4
|
Roche J: Pseudo-exfoliation of the lens
capsule. Br J Ophthalmol. 52:265–269. 1968.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Shakib M, Ashton N and Blach R: Electron
microscopic study of pseudo-exfoliation of the lens capsule. Ii.
Iris and ciliary body. Invest Ophthalmol. 4:154–161.
1965.PubMed/NCBI
|
|
6
|
Conway RM, Schlötzer-Schrehardt U, Küchle
M and Naumann GO: Pseudoexfoliation syndrome: Pathological
manifestations of relevance to intraocular surgery. Clin Exp
Ophthalmol. 32:199–210. 2004.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Tekin K, Inanc M and Elgin U: Monitoring
and management of the patient with pseudoexfoliation syndrome:
Current perspectives. Clin Ophthalmol. 13:453–464. 2019.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Mastronikolis S, Pagkalou M, Baroutas G,
Kyriakopoulou K, Makri OE and Georgakopoulos CD: Pseudoexfoliation
syndrome: The critical role of the extracellular matrix in
pathogenesis and treatment. IUBMB Life: Feb 24, 2022 (Epub ahead of
print).
|
|
9
|
Challa P: Genetics of pseudoexfoliation
syndrome. Curr Opin Ophthalmol. 20:88–91. 2009.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Ariga M, Nivean M and Utkarsha P:
Pseudoexfoliation syndrome. J Curr Glaucoma Pract. 7:118–120.
2013.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Elhawy E, Kamthan G, Dong CQ and Danias J:
Pseudoexfoliation syndrome, a systemic disorder with ocular
manifestations. Hum Genomics. 6(22)2012.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Schlötzer-Schrehardt U and Naumann GO:
Ocular and systemic pseudoexfoliation syndrome. Am J Ophthalmol.
141:921–937. 2006.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Ritch R: Ocular and systemic
manifestations of exfoliation syndrome. J Glaucoma. 23 (8 Suppl
1):S1–S8. 2014.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Ovodenko B, Rostagno A, Neubert TA, Shetty
V, Thomas S, Yang A, Liebmann J, Ghiso J and Ritch R: Proteomic
analysis of exfoliation deposits. Invest Ophthalmol Vis Sci.
48:1447–1457. 2007.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Gartaganis SP, Georgakopoulos CD, Assouti
M, Mela EK, Exarchou A, Giannelou I, Gotsis SS, Ziouti N, Vynios
DH, Tripathi BJ and Tripathi RC: Changes in HNK-1 epitope and
collagen type IX in the aqueous humour of patients with
pseudoexfoliation syndrome. Curr Eye Res. 28:5–10. 2004.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Sharma S, Chataway T, Burdon KP,
Jonavicius L, Klebe S, Hewitt AW, Mills RA and Craig JE:
Identification of LOXL1 protein and apolipoprotein E as components
of surgically isolated pseudoexfoliation material by direct mass
spectrometry. Exp Eye Res. 89:479–485. 2009.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Tran VT: Washout of pseudoexfoliation
material combined with cataract surgery: A new surgical approach to
lower intraocular pressure in pseudoexfoliation syndrome. Int
Ophthalmol. 35:209–214. 2015.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Ritch R and Schlötzer-Schrehardt U:
Exfoliation syndrome. Surv Ophthalmol. 45:265–315. 2001.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Schlötzer-Schrehardt UM, Koca MR, Naumann
GO and Volkholz H: Pseudoexfoliation syndrome. Ocular manifestation
of a systemic disorder? Arch Ophthalmol. 110:1752–1756.
1992.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Chiras D, Kitsos G, Petersen MB,
Skalidakis I and Kroupis C: Oxidative stress in dry age-related
macular degeneration and exfoliation syndrome. Crit Rev Clin Lab
Sci. 52:12–27. 2015.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Yüksel N, Karabaş VL, Arslan A, Demirci A
and Cağlar Y: Ocular hemodynamics in pseudoexfoliation syndrome and
pseudoexfoliation glaucoma. Ophthalmology. 108:1043–1049.
2001.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Yildirim N, Yasar E, Gursoy H and Colak E:
Prevalence of pseudoexfoliation syndrome and its association with
ocular and systemic diseases in Eskisehir, Turkey. Int J
Ophthalmol. 10:128–134. 2017.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Topouzis F and Anastasopoulos E: Incidence
of pseudoexfoliation syndrome. Am J Ophthalmol. 148:181–182.
2009.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Chan TCW, Bala C, Siu A, Wan F and White
A: Risk factors for rapid glaucoma disease progression. Am J
Ophthalmol. 180:151–157. 2017.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Aboobakar IF, Johnson WM, Stamer WD,
Hauser MA and Allingham RR: Major review: Exfoliation syndrome;
advances in disease genetics, molecular biology, and epidemiology.
Exp Eye Res. 154:88–103. 2017.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Mansour AM, Konstas AGP, Mansour HA,
Charbaji AR and Jawhari KM: A case-cohort study of exfoliation risk
factors and literature review. Middle East Afr J Ophthalmol.
28:36–50. 2021.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Whigham BT and Allingham RR: Review: The
role of LOXL1 in exfoliation syndrome/glaucoma. Saudi J Ophthalmol.
25:347–352. 2011.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Konstas AGP and Ringvold A: Epidemiology
of exfoliation syndrome. J Glaucoma. 27 (Suppl 1):S4–S11.
2018.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Forsius H: Exfoliation syndrome in various
ethnic populations. Acta Ophthalmol. Suppl (1985) 184:71–85.
1988.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Miglior S and Bertuzzi F: Exfoliative
glaucoma: New evidence in the pathogenesis and treatment. Prog
Brain Res. 221:233–241. 2015.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Amini H, Daneshvar R, Eslami Y, Moghimi S
and Amini N: Early-onset pseudoexfoliation syndrome following
multiple intraocular procedures. J Ophthalmic Vis Res. 7:190–196.
2012.PubMed/NCBI
|
|
32
|
Thorleifsson G, Magnusson KP, Sulem P,
Walters GB, Gudbjartsson DF, Stefansson H, Jonsson T, JonRasdottir
A, Jonasdottir A, Stefansdottir G, et al: Common sequence variants
in the LOXL1 gene confer susceptibility to exfoliation glaucoma.
Science. 317:1397–1400. 2007.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Schlötzer-Schrehardt U: Genetics and
genomics of pseudoexfoliation syndrome/glaucoma. Middle East Afr J
Ophthalmol. 18:30–36. 2011.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Zalewska R, Pepinski W, Smolenska-Janica
D, Mariak Z, Proniewska-Skretek E, Skawronska M and Janica J: Loss
of heterozygosity in patients with pseudoexfoliation syndrome. Mol
Vis. 9:257–261. 2003.PubMed/NCBI
|
|
35
|
Kozobolis VP, Detorakis ET, Sourvinos G,
Pallikaris IG and Spandidos DA: Loss of heterozygosity in
pseudoexfoliation syndrome. Invest Ophthalmol Vis Sci.
40:1255–1260. 1999.PubMed/NCBI
|
|
36
|
Aung T, Ozaki M, Mizoguchi T, Allingham
RR, Li Z, Haripriya A, Nakano S, Uebe S, Harder JM, Chan AS, et al:
A common variant mapping to CACNA1A is associated with
susceptibility to exfoliation syndrome. Nat Genet. 47:387–392.
2015.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Padhy B, Kapuganti RS, Hayat B, Pranjya
Paramita Mohanty PP and Alone DP: De novo variants in an
extracellular matrix protein coding gene, fibulin-5 (FBLN5) are
associated with pseudoexfoliation. Eur J Hum Genet. 27:1858–1866.
2019.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Yimaz A, Ayaz L and Tamer L: Selenium and
pseudoexfoliation syndrome. Am J Ophthalmol. 151:272–276.e1.
2011.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Arnarsson A, Sasaki H and Jonasson F:
Twelve-year incidence of exfoliation syndrome in the Reykjavik eye
study. Acta Ophthalmol. 91:157–162. 2013.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Arnarsson AM: Epidemiology of exfoliation
syndrome in the Reykjavik eye study. Acta Ophthalmol 87 Thesis.
3:1–17. 2009.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Pasquale LR, Wiggs JL, Willett WC and Kang
JH: The relationship between caffeine and coffee consumption and
exfoliation glaucoma or glaucoma suspect: A prospective study in
two cohorts. Invest Ophthalmol Vis Sci. 53:6427–6433.
2012.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Christensen B, Mosdol A, Retterstol L,
Landaas S and Thelle DS: Abstention from filtered coffee reduces
the concentrations of plasma homocysteine and serum cholesterol-a
randomized controlled trial. Am J Clin Nutr. 74:302–307.
2001.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Puustjärvi T, Blomster H, Kontkanen M,
Punnonen K and Teräsvirta M: Plasma and aqueous humour levels of
homocysteine in exfoliation syndrome. Graefes Arch Clin Exp
Ophthalmol. 242:749–754. 2004.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Kozobolis VP, Papatzanaki M, Vlachonikolis
IG, Pallikaris IG and Tsambarlakis IG: Epidemiology of
pseudoexfoliation in the island of Crete (Greece). Acta Ophthalmol
Scand. 75:726–729. 1997.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Kang JH, Loomis S, Wiggs JL, Stein JD and
Pasquale LR: Demographic and geographic features of exfoliation
glaucoma in 2 United States-based prospective cohorts.
Ophthalmology. 119:27–35. 2012.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Stein JD, Pasquale LR, Talwar N, Kim DS,
Reed DM, Nan B, Kang JH, Wiggs JL and Richards JE: Geographic and
climatic factors associated with exfoliation syndrome. Arch
Ophthalmol. 129:1053–1060. 2011.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Pasquale LR, Jiwani AZ, Zehavi-Dorin T,
Majd A, Rhee DJ, Chen T, Turalba A, Shen L, Brauner S, Grosskreutz
C, et al: Solar exposure and residential geographic history in
relation to exfoliation syndrome in the United States and Israel.
Jama Ophthalmol. 132:1439–1445. 2014.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Pasquale LR, Kang JH, Fan B,
Levkovitch-Verbin H and Wiggs JL: LOXL1 polymorphisms: Genetic
biomarkers that presage environmental determinants of exfoliation
syndrome. J Glaucoma. 27 (Suppl 1):S20–S23. 2018.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Liu X, Zhao Y, Gao J, Pawlyk B, Starcher
B, Spencer JA, Yanagisawa H, Zuo J and Li T: Elastic fiber
homeostasis requires lysyl oxidase-like 1 protein. Nat Genet.
36:178–182. 2004.PubMed/NCBI View
Article : Google Scholar
|
|
50
|
Oleggini R, Gastaldo N and Di Donato A:
Regulation of elastin promoter by lysyl oxidase and growth factors:
Cross control of lysyl oxidase on TGF-beta1 effects. Matrix Biol.
26:494–505. 2007.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Li G, Schmitt H, Johnson WM, Lee C,
Navarro I, Cui J, Fleming T, Gomez-Caraballo M, Elliott MH,
Sherwood JM, et al: Integral role for lysyl oxidase-like-1 in
conventional outflow tissue function and behavior. FASEB J.
34:10762–10777. 2020.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Schlötzer-Schrehardt U, Hammer CM, Krysta
AW, Hofmann-Rummelt C, Pasutto F, Sasaki T, Kruse FE and Zenkel M:
LOXL1 deficiency in the lamina cribrosa as candidate susceptibility
factor for a pseudoexfoliation-specific risk of glaucoma.
Ophthalmology. 119:1832–1843. 2012.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Schmitt HM, Johnson WM, Aboobakar IF,
Strickland S, Gomez-Caraballo M, Parker M, Finnegan L, Corcoran DL,
Skiba NP, Allingham RR, et al: Identification and activity of the
functional complex between hnRNPL and the pseudoexfoliation
syndrome-associated lncRNA, LOXL1-AS1. Hum Mol Genet. 29:1986–1995.
2020.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Liu RM and Gaston Pravia KA: Oxidative
stress and glutathione in TGF-beta-mediated fibrogenesis. Free
Radic Biol Med. 48:1–15. 2010.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Takai Y, Tanito M and Ohira A: Multiplex
cytokine analysis of aqueous humor in eyes with primary open-angle
glaucoma, exfoliation glaucoma, and cataract. Invest Ophthalmol Vis
Sci. 53:241–247. 2012.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Zenkel M, Krysta A, Pasutto F, Juenemann
A, Kruse FE and Schlötzer-Schrehardt U: Regulation of lysyl
oxidase-like 1 (LOXL1) and elastin-related genes by pathogenic
factors associated with pseudoexfoliation syndrome. Invest
Ophthalmol Vis Sci. 52:8488–8495. 2011.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Djordjević-Jocić J, Zlatanović G,
Veselinović D, Jovanović P, Djordjević V, Zvezdanović L,
Stanković-Babić G, Vujanović M, Cekić S, Zenkel M and
Schlotzer-Schrehardt U: Transforming growth factor beta1,
matrix-metalloproteinase-2 and its tissue inhibitor in patients
with pseudoexfoliation glaucoma/syndrome. Vojnosanit Pregl.
69:231–236. 2012.PubMed/NCBI
|
|
58
|
Schlötzer-Schrehardt U, Zenkel M, Küchle
M, Sakai LY and Naumann GO: Role of transforming growth
factor-beta1 and its latent form binding protein in
pseudoexfoliation syndrome. Exp Eye Res. 73:765–780.
2001.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Doudevski I, Rostagno A, Cowman M,
Liebmann J, Ritch R and Ghiso J: Clusterin and complement
activation in exfoliation glaucoma. Invest Ophthalmol Vis Sci.
55:2491–2499. 2014.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Morris J, Myer C, Cornet T, Junk AK, Lee
RK and Bhattacharya SK: Proteomics of pseudoexfoliation materials
in the anterior eye segment. Adv Protein Chem Struct Biol.
127:271–290. 2021.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Zenkel M, Kruse FE, Jünemann AG, Naumann
GO and Schlötzer-Schrehardt U: Clusterin deficiency in eyes with
pseudoexfoliation syndrome may be implicated in the aggregation and
deposition of pseudoexfoliative material. Invest Ophthalmol Vis
Sci. 47:1982–1990. 2006.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Gerschman R, Gilbert DL, Nye SW, Dwyer P
and Fenn WO: Oxygen poisoning and x-irradiation: A mechanism in
common. Science. 119:623–626. 1954.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Commoner B, Townsend J and Pake GE: Free
radicals in biological materials. Nature. 174:689–691.
1954.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Harman D: Aging: A theory based on free
radical and radiation chemistry. J Gerontol. 11:298–300.
1956.PubMed/NCBI View Article : Google Scholar
|
|
65
|
McCord JM and Fridovich I: Superoxide
dismutase. An enzymic function for erythrocuprein (hemocuprein). J
Biol Chem. 244:6049–6055. 1969.PubMed/NCBI
|
|
66
|
Beckman KB and Ames BN: The free radical
theory of aging matures. Physiol Rev. 78:547–581. 1998.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Valko M, Rhodes CJ, Moncol J, Izakovic M
and Mazur M: Free radicals, metals and antioxidants in oxidative
stress-induced cancer. Chem Biol Interact. 160:1–40.
2006.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Dröge W: Free radicals in the
physiological control of cell function. Physiol Rev. 82:47–95.
2002.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Jones DP: Redefining oxidative stress.
Antioxid Redox Signal. 8:1865–1879. 2006.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Pizzino G, Irrera N, Cucinotta M, Pallio
G, Mannino F, Arcoraci V, Squadrito F, Altavilla D and Bitto A:
Oxidative stress: Harms and benefits for human health. Oxid Med
Cell Longev. 2017(8416763)2017.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Li R, Jia Z and Trush MA: Defining ROS in
biology and medicine. React Oxyg Species (Apex). 1:9–21.
2016.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Shoham A, Hadziahmetovic M, Dunaief JL,
Mydlarski MB and Schipper HM: Oxidative stress in diseases of the
human cornea. Free Radic Biol Med. 45:1047–1055. 2008.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Cejka C and Cejkova J: Oxidative stress to
the cornea, changes in corneal optical properties, and advances in
treatment of corneal oxidative injuries. Oxid Med Cell Longev.
2015(591530)2015.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Chen Y, Mehta G and Vasiliou V:
Antioxidant defenses in the ocular surface. Ocul Surf. 7:176–185.
2009.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Cai CX, Birk DE and Linsenmayer TF:
Nuclear ferritin protects DNA from UV damage in corneal epithelial
cells. Mol Biol Cell. 9:1037–1051. 1998.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Sacca SC, Bolognesi C, Battistella A,
Bagnis A and Izzotti A: Gene-environment interactions in ocular
diseases. Mutat Res. 667:98–117. 2009.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Roberts JE: Screening for ocular
phototoxicity. Int J Toxicol. 21:491–500. 2002.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Zhao B, He YY, Chignell CF, Yin JJ, Andley
U and Roberts JE: Difference in phototoxicity of cyclodextrin
complexed fullerene [(gamma-CyD)2/C60] and its aggregated
derivatives toward human lens epithelial cells. Chem Res Toxicol.
22:660–667. 2009.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Cabrera MP and Chihuailaf RH: Antioxidants
and the integrity of ocular tissues. Vet Med Int.
2011(905153)2011.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Beebe DC, Holekamp NM and Shui YB:
Oxidative damage and the prevention of age-related cataracts.
Ophthalmic Res. 44:155–165. 2010.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Ozaki Y, Mizuno A, Itoh K and Iriyama K:
Inter- and intramolecular disulfide bond formation and related
structural changes in the lens proteins. A Raman spectroscopic
study in vivo of lens aging. J Biol Chem. 262:15545–15551.
1987.PubMed/NCBI
|
|
82
|
Berthoud VM and Beyer EC: Oxidative
stress, lens gap junctions, and cataracts. Antioxid Redox Signal.
11:339–353. 2009.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Ohguro N, Fukuda M, Sasabe T and Tano Y:
Concentration dependent effects of hydrogen peroxide on lens
epithelial cells. Br J Ophthalmol. 83:1064–1068. 1999.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Bodaness RS, Leclair M and Zigler JS Jr:
An analysis of the H2O2-mediated crosslinking of lens crystallins
catalyzed by the heme-undecapeptide from cytochrome c. Arch Biochem
Biophys. 231:461–469. 1984.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Zigler JS Jr, Huang QL and Du XY:
Oxidative modification of lens crystallins by H2O2 and chelated
iron. Free Radic Biol Med. 7:499–505. 1989.PubMed/NCBI View Article : Google Scholar
|
|
86
|
McNamara M and Augusteyn RC: The effects
of hydrogen peroxide on lens proteins: A possible model for nuclear
cataract. Exp Eye Res. 38:45–56. 1984.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Garner MH and Spector A: Selective
oxidation of cysteine and methionine in normal and senile
cataractous lenses. Proc Natl Acad Sci USA. 77:1274–1277.
1980.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Fu S, Dean R, Southan M and Truscott R:
The hydroxyl radical in lens nuclear cataractogenesis. J Biol Chem.
273:28603–28609. 1998.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Vogt W: Oxidation of methionyl residues in
proteins: Tools, targets, and reversal. Free Radic Biol Med.
18:93–105. 1995.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Truscott RJ and Augusteyn RC: Oxidative
changes in human lens proteins during senile nuclear cataract
formation. Biochim Biophys Acta. 492:43–52. 1977.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Rose RC, Richer SP and Bode AM: Ocular
oxidants and antioxidant protection. Proc Soc Exp Biol Med.
217:397–407. 1998.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Saxena P, Saxena AK, Cui XL, Obrenovich M,
Gudipaty K and Monnier VM: Transition metal-catalyzed oxidation of
ascorbate in human cataract extracts: Possible role of advanced
glycation end products. Invest Ophthalmol Vis Sci. 41:1473–1481.
2000.PubMed/NCBI
|
|
93
|
Spector A: Oxidative stress-induced
cataract: Mechanism of action. FASEB J. 9:1173–1182.
1995.PubMed/NCBI
|
|
94
|
Dillon J, Zheng L, Merriam JC and Gaillard
ER: The optical properties of the anterior segment of the eye:
Implications for cortical cataract. Exp Eye Res. 68:785–795.
1999.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Rogers CS, Chan LM, Sims YS, Byrd KD,
Hinton DL and Twining SS: The effects of sub-solar levels of UV-A
and UV-B on rabbit corneal and lens epithelial cells. Exp Eye Res.
78:1007–1014. 2004.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Long AC, Colitz CM and Bomser JA:
Apoptotic and necrotic mechanisms of stress-induced human lens
epithelial cell death. Exp Biol Med (Maywood). 229:1072–1080.
2004.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Dairou J, Malecaze F, Dupret JM and
Rodrigues-Lima F: The xenobiotic-metabolizing enzymes arylamine
N-acetyltransferases in human lens epithelial cells: Inactivation
by cellular oxidants and UVB-induced oxidative stress. Mol
Pharmacol. 67:1299–1306. 2005.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Reddan JR, Steiger CA, Dziedzic DC and
Gordon SR: Regional differences in the distribution of catalase in
the epithelium of the ocular lens. Cell Mol Biol (Noisy-le-grand).
42:209–219. 1996.PubMed/NCBI
|
|
99
|
Hosler MR, Wang-Su ST and Wagner BJ:
Targeted disruption of specific steps of the ubiquitin-proteasome
pathway by oxidation in lens epithelial cells. Int J Biochem Cell
Biol. 35:685–697. 2003.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Giblin FJ, McCready JP, Schrimscher L and
Reddy VN: Peroxide-induced effects on lens cation transport
following inhibition of glutathione reductase activity in vitro.
Exp Eye Res. 45:77–91. 1987.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Cejková J, Stípek S, Crkovská J, Ardan T,
Pláteník J, Cejka C and Midelfart A: UV Rays, the
prooxidant/antioxidant imbalance in the cornea and oxidative eye
damage. Physiol Res. 53:1–10. 2004.PubMed/NCBI
|
|
102
|
Barros PS, Padovani CF, Silva VV, L
Queiroz L and Barros SBM: Antioxidant status of dog aqueous humor
after extracapsular lens extraction. Braz J Med Biol Res.
36:1491–1494. 2003.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Ringvold A, Anderssen E, Jellum E, Bjerkås
E, Sonerud GA, Haaland PJ, Devor TP and Kjønniksen I: UV-Absorbing
compounds in the aqueous humor from aquatic mammals and various
non-mammalian vertebrates. Ophthalmic Res. 35:208–216.
2003.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Wielgus AR and Sarna T: Ascorbate enhances
photogeneration of hydrogen peroxide mediated by the iris melanin.
Photochem Photobiol. 84:683–691. 2008.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Megaw JM: Glutathione and ocular
photobiology. Curr Eye Res. 3:83–87. 1984.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Benoist d'Azy C, Pereira B, Chiambaretta F
and Dutheil F: Oxidative and anti-oxidative stress markers in
chronic glaucoma: A systematic review and meta-analysis. PLoS One.
11(e0166915)2016.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Yağci R, Gürel A, Ersöz I, Keskin UC,
Hepşen IF, Duman S and Yiğitoğlu R: Oxidative stress and protein
oxidation in pseudoexfoliation syndrome. Curr Eye Res.
31:1029–1032. 2006.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Yimaz A, Adigüzel U, Tamer L, Yildirim O,
Oz O, Vatansever H, Ercan B, Değirmenci US and Atik U: Serum
oxidant/antioxidant balance in exfoliation syndrome. Clin Exp
Ophthalmol. 33:63–66. 2005.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Faschinger C, Schmut O, Wachswender C and
Mossböck G: Glaucoma and oxidative stress. Determination of
malondialdehyde-a product of lipid peroxidation. Ophthalmologe.
103:953–959. 2006.PubMed/NCBI View Article : Google Scholar : (In German).
|
|
110
|
Aydın Yaz Y, Yildirim N, Yaz Y, Tekin N,
İnal M and Şahin FM: Role of oxidative stress in pseudoexfoliation
syndrome and pseudoexfoliation glaucoma. Turk J Ophthalmol.
49:61–67. 2019.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Schlötzer-Schrehardt U: Oxidative stress
and pseudoexfoliation glaucoma. Klin Monbl Augenheilkd.
227:108–113. 2010.PubMed/NCBI View Article : Google Scholar : (In German).
|
|
112
|
Shirakami T, Yamanaka M, Fujihara J,
Matsuoka Y, Gohto Y, Obana A and Tanito M: Advanced glycation end
product accumulation in subjects with open-angle glaucoma with and
without exfoliation. Antioxidants (Basel). 9(755)2020.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Park CH and Kim JW: Effect of advanced
glycation end products on oxidative stress and senescence of
trabecular meshwork cells. Korean J Ophthalmol. 26:123–131.
2012.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Strzalka-Mrozik B, Prudlo L, Kimsa MW,
Kimsa MC, Kapral M, Nita M and Mazurek U: Quantitative analysis of
SOD2, ALDH1A1 and MGST1 messenger ribonucleic acid in anterior lens
epithelium of patients with pseudoexfoliation syndrome. Mol Vis.
19:1341–1349. 2013.PubMed/NCBI
|
|
115
|
Gartaganis SP, Patsoukis NE, Nikolopoulos
DK and Georgiou CD: Evidence for oxidative stress in lens
epithelial cells in pseudoexfoliation syndrome. Eye (Lond).
21:1406–1411. 2007.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Gartaganis SP, Georgakopoulos CD,
Patsoukis NE, Gotsis SS, Gartaganis VS and Georgiou CD: Glutathione
and lipid peroxide changes in pseudoexfoliation syndrome. Curr Eye
Res. 30:647–651. 2005.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Browne JG, Ho SL, Kane R, Oliver N, Clark
AF, O'Brien CJ and Crean JK: Connective tissue growth factor is
increased in pseudoexfoliation glaucoma. Invest Ophthalmol Vis Sci.
52:3660–3666. 2011.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Wang HJ and Kochevar IE: Involvement of
UVB-induced reactive oxygen species in TGF-beta biosynthesis and
activation in keratinocytes. Free Radical Bio Med. 38:890–897.
2005.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Galli A, Svegliati-Baroni G, Ceni E,
Milani S, Ridolfi F, Salzano R, Tarocchi M, Grappone C, Pellegrini
G, Benedetti A, et al: Oxidative stress stimulates proliferation
and invasiveness of hepatic stellate cells via a MMP2-mediated
mechanism. Hepatology. 41:1074–1084. 2005.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Schlötzer-Schrehardt U, Lommatzsch J,
Küchle M, Konstas AG and Naumann GO: Matrix metalloproteinases and
their inhibitors in aqueous humor of patients with
pseudoexfoliation syndrome/glaucoma and primary open-angle
glaucoma. Invest Ophthalmol Vis Sci. 44:1117–1125. 2003.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Majora M, Wittkampf T, Schuermann B,
Schneider M, Franke S, Grether-Beck S, Wilichowski E, Bernerd F,
Schroeder P and Krutmann J: Functional consequences of
mitochondrial DNA deletions in human skin fibroblasts: Increased
contractile strength in collagen lattices is due to oxidative
stress-induced lysyl oxidase activity. Am J Pathol. 175:1019–1029.
2009.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Voloshenyuk TG, Hart AD, Khoutorova E and
Gardner JD: TNF-α increases cardiac fibroblast lysyl oxidase
expression through TGF-β and PI3Kinase signaling pathways. Biochem
Biophys Res Commun. 413:370–375. 2011.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Tezel G, Yang X and Cai J: Proteomic
identification of oxidatively modified retinal proteins in a
chronic pressure-induced rat model of glaucoma. Invest Ophthalmol
Vis Sci. 46:3177–3187. 2005.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Chrysostomou V, Rezania F, Trounce IA and
Crowston JG: Oxidative stress and mitochondrial dysfunction in
glaucoma. Curr Opin Pharmacol. 13:12–15. 2013.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Fan Gaskin JC, Shah MH and Chan EC:
Oxidative stress and the role of NADPH oxidase in glaucoma.
Antioxidants (Basel). 10(238)2021.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Izzotti A, Bagnis A and Saccà SC: The role
of oxidative stress in glaucoma. Mutat Res. 612:105–114.
2006.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Koliakos GG, Konstas AG,
Schlötzer-Schrehardt U, Hollo G, Katsimbris IE, Georgiadis N and
Ritch R: 8-Isoprostaglandin F2a and ascorbic acid concentration in
the aqueous humour of patients with exfoliation syndrome. Br J
Ophthalmol. 87:353–356. 2003.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Botling Taube A, Konzer A, Alm A and
Bergquist J: Proteomic analysis of the aqueous humour in eyes with
pseudoexfoliation syndrome. Br J Ophthalmol. 103:1190–1194.
2019.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Dursun F, Vural Ozec A, Aydin H, Topalkara
A, Dursun A, Toker MI, Erdogan H and Arici MK: Total oxidative
stress, paraoxonase and arylesterase levels at patients with
pseudoexfoliation syndrome and pseudoexfoliative glaucoma. Int J
Ophthalmol. 8:985–990. 2015.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Dmuchowska DA, Pietrowska K, Krasnicki P,
Kowalczyk T, Misiura M, Grochowski ET, Mariak Z, Kretowski A and
Ciborowski M: Metabolomics reveals differences in aqueous humor
composition in patients with and without pseudoexfoliation
syndrome. Front Mol Biosci. 8(682600)2021.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Koliakos GG, Konstas AG,
Schlötzer-Schrehardt U, Bufidis T, Georgiadis N and Ringvold A:
Ascorbic acid concentration is reduced in the aqueous humor of
patients with exfoliation syndrome. Am J Ophthalmol. 134:879–883.
2002.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Ferreira SM, Lerner SF, Brunzini R,
Evelson PA and Llesuy SF: Antioxidant status in the aqueous humour
of patients with glaucoma associated with exfoliation syndrome. Eye
(Lond). 23:1691–1697. 2009.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Sorkhabi R, Ghorbanihaghjo A, Ahoor M,
Nahaei M and Rashtchizadeh N: High-sensitivity C-reactive protein
and tumor necrosis factor alpha in pseudoexfoliation syndrome. Oman
Med J. 28:16–19. 2013.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Tetikoğlu M, Aktas S, Sağdik HM, Özcura F,
Uçar F, Koçak H, Neşelioğlu S and Erel Ö: Thiol disulfide
homeostasis in pseudoexfoliation syndrome. Curr Eye Res.
42:876–879. 2017.PubMed/NCBI View Article : Google Scholar
|
|
135
|
Koliakos GG, Konstas AG,
Schlötzer-Schrehardt U, Hollo G, Mitova D, Kovatchev D, Maloutas S
and Georgiadis N: Endothelin-1 concentration is increased in the
aqueous humour of patients with exfoliation syndrome. Br J
Ophthalmol. 88:523–527. 2004.PubMed/NCBI View Article : Google Scholar
|
|
136
|
Koukoula SC, Katsanos AK, Tentes IK,
Labiris G and Kozobolis VP: Retrobulbar hemodynamics and aqueous
humor levels of endothelin-1 in exfoliation syndrome and
exfoliation glaucoma. Clin Ophthalmol. 12:1199–1204.
2018.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Park DY, Kim M and Cha SC: Cytokine and
growth factor analysis in exfoliation syndrome and glaucoma. Invest
Ophthalmol Vis Sci. 62(6)2021.PubMed/NCBI View Article : Google Scholar
|
|
138
|
Zenkel M, Lewczuk P, Jünemann A, Kruse FE,
Naumann GO and Schlötzer-Schrehardt U: Proinflammatory cytokines
are involved in the initiation of the abnormal matrix process in
pseudoexfoliation syndrome/glaucoma. Am J Pathol. 176:2868–2879.
2010.PubMed/NCBI View Article : Google Scholar
|
|
139
|
Stafiej J, Hałas-Wiśniewska M, Izdebska M,
Gagat M, Grzanka D, Grzanka A and Malukiewicz G:
Immunohistochemical analysis of microsomal glutathione
S-transferase 1 and clusterin expression in lens epithelial cells
of patients with pseudoexfoliation syndrome. Exp Ther Med.
13:1057–1063. 2017.PubMed/NCBI View Article : Google Scholar
|
|
140
|
Sarenac Vulovic TS, Pavlovic SM,
Jakovljevic VLj, Janicijevic KB and Zdravkovic NS: Nitric oxide and
tumour necrosis factor alpha in the process of pseudoexfoliation
glaucoma. Int J Ophthalmol. 9:1138–1142. 2016.PubMed/NCBI View Article : Google Scholar
|
|
141
|
Turan G and Turan M: The evaluation of
TUNEL, PCNA and SOX2 expressions in lens epithelial cells of
cataract patients with pseudoexfoliation syndrome. Curr Eye Res.
45:12–16. 2020.PubMed/NCBI View Article : Google Scholar
|
|
142
|
Papadopoulou G, Zisimopoulos D,
Kalaitzopoulou E, Makri OE, Tsapardoni FN, Georgakopoulos CD and
Georgiou CD: Age-related aqueous humor (AH) and lens epithelial
cell/capsule protein carbonylation and AH protein concentration in
cataract patients who have pseudoexfoliative diseases. Mol Vis.
24:890–901. 2018.PubMed/NCBI
|
|
143
|
Uçakhan OO, Karel F, Kanpolat A, Devrim E
and Durak I: Superoxide dismutase activity in the lens capsule of
patients with pseudoexfoliation syndrome and cataract. J Cataract
Refract Surg. 32:618–622. 2006.PubMed/NCBI View Article : Google Scholar
|
|
144
|
Tetikoğlu M, Sağdik HM, Aktas S, Uçar F
and Özcura F: Serum prolidase activity and oxidative stress in
patients with pseudoexfoliation syndrome. Graefes Arch Clin Exp
Ophthalmol. 254:1339–1343. 2016.PubMed/NCBI View Article : Google Scholar
|
|
145
|
Fountoulakis N, Labiris G, Aristeidou A,
Katsanos A, Tentes I, Kortsaris A and Kozobolis VP: Tissue
inhibitor of metalloproteinase 4 in aqueous humor of patients with
primary open angle glaucoma, pseudoexfoliation syndrome and
pseudoexfoliative glaucoma and its role in proteolysis imbalance.
BMC Ophthalmol. 13(69)2013.PubMed/NCBI View Article : Google Scholar
|
|
146
|
Simavli H, Tosun M, Bucak YY, Erdurmus M,
Ocak Z, Onder HI and Acar M: Serum and aqueous xanthine oxidase
levels, and mRNA expression in anterior lens epithelial cells in
pseudoexfoliation. Graefes Arch Clin Exp Ophthalmol. 253:1161–1167.
2015.PubMed/NCBI View Article : Google Scholar
|