Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
November-2022 Volume 24 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2022 Volume 24 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of Takeda G protein‑coupled receptor 5 in microvascular endothelial cell dysfunction in diabetic retinopathy (Review)

  • Authors:
    • Miao Zhang
    • Zhenghao Dong
    • Wenkang Dong
    • Dongdong Zhou
    • Xiang Ren
  • View Affiliations / Copyright

    Affiliations: Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China, Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 674
    |
    Published online on: September 15, 2022
       https://doi.org/10.3892/etm.2022.11610
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Diabetic retinopathy (DR) is a frequent microvascular complication of advanced‑stage diabetes. Endothelial cell dysfunction (ED) induced by diabetes plays an important role in the development of DR. It is considered that inflammation and mitochondrial homeostasis are associated with the progression of ED. Takeda G protein‑coupled receptor 5 (TGR5) is a membrane receptor for bile acids (BAs) that plays an important role in regulating BA metabolism. Recent studies have shown that TGR5 is involved in regulating various mediators of ED and improving the dysfunction of vascular endothelial cells in DR; however, the exploration of specific related mechanisms remains an active research area in this field, which suggests that TGR5 may be one of the potential targets for the treatment of associated ED in DR. In the present review, the association between TGR5 and mitochondrial homeostasis was investigated. The extent of inflammation in DR‑induced ED was assessed to provide possible evidence for the development of targeted therapies against DR.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Williams R, Airey M, Baxter H, Forrester J, Kennedy-Martin T and Girach A: Epidemiology of diabetic retinopathy and macular oedema: A systematic review. Eye (Lond). 18:963–983. 2004.PubMed/NCBI View Article : Google Scholar

2 

Simó R and Hernández C: Prevention and treatment of diabetic retinopathy: Evidence from large, randomized trials. The emerging role of fenofibrate. Rev Recent Clin Trials. 7:71–80. 2012.PubMed/NCBI View Article : Google Scholar

3 

Singh R, Barden A, Mori T and Beilin L: Advanced glycation end-products: A review. Diabetologia. 44:129–146. 2001.PubMed/NCBI View Article : Google Scholar

4 

Pardue MT and Allen RS: Neuroprotective strategies for retinal disease. Prog Retin Eye Res. 65:50–76. 2018.PubMed/NCBI View Article : Google Scholar

5 

Kollias AN and Ulbig MW: Diabetic retinopathy: Early diagnosis and effective treatment. Dtsch Arztebl Int. 107:75–83; quiz 84. 2010.PubMed/NCBI View Article : Google Scholar

6 

Moreno A, Lozano M and Salinas P: Diabetic retinopathy. Nutr Hosp. 28 (Suppl 2):S53–S56. 2013.PubMed/NCBI View Article : Google Scholar

7 

Wong TY, Cheung CM, Larsen M, Sharma S and Simó R: Diabetic retinopathy. Nat Rev Dis Primers. 2(16012)2016.PubMed/NCBI View Article : Google Scholar

8 

Henriques J, Vaz-Pereira S, Nascimento J and Rosa PC: Diabetic eye disease. Acta Med Port. 28:107–113. 2015.PubMed/NCBI(In Portuguese).

9 

Lechner J, O'Leary OE and Stitt AW: The pathology associated with diabetic retinopathy. Vision Res. 139:7–14. 2017.PubMed/NCBI View Article : Google Scholar

10 

Shafabakhsh R, Aghadavod E, Mobini M, Heidari-Soureshjani R and Asemi Z: Association between microRNAs expression and signaling pathways of inflammatory markers in diabetic retinopathy. J Cell Physiol. 234:7781–7787. 2019.PubMed/NCBI View Article : Google Scholar

11 

Singh LP, Yumnamcha T and Devi TS: Mitophagy, ferritinophagy and ferroptosis in retinal pigment epithelial cells under high glucose conditions: Implications for Diabetic retinopathy and age-related retinal diseases. JOJ Ophthalmol. 8:77–85. 2021.PubMed/NCBI

12 

Meza CA, La Favor JD, Kim DH and Hickner RC: Endothelial dysfunction: Is There a Hyperglycemia-induced imbalance of NOX and NOS? Int J Mol Sci. 20(3775)2019.PubMed/NCBI View Article : Google Scholar

13 

Maldonado-Valderrama J, Wilde P, Macierzanka A and Mackie A: The role of bile salts in digestion. Adv Colloid Interface Sci. 165:36–46. 2011.PubMed/NCBI View Article : Google Scholar

14 

van Nierop FS, Scheltema MJ, Eggink HM, Pols TW, Sonne DP, Knop FK and Soeters MR: Clinical relevance of the bile acid receptor TGR5 in metabolism. Lancet Diabetes Endocrinol. 5:224–233. 2017.PubMed/NCBI View Article : Google Scholar

15 

de Boer JF, Bloks VW, Verkade E, Heiner-Fokkema MR and Kuipers F: New insights in the multiple roles of bile acids and their signaling pathways in metabolic control. Curr Opin Lipidol. 29:194–202. 2018.PubMed/NCBI View Article : Google Scholar

16 

Molinaro A, Wahlström A and Marschall HU: Role of bile acids in metabolic control. Trends Endocrinol Metab. 29:31–41. 2018.PubMed/NCBI View Article : Google Scholar

17 

Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo A, Yamamoto H, Mataki C, Pruzanski M, et al: TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 10:167–177. 2009.PubMed/NCBI View Article : Google Scholar

18 

Li S, Qiu M, Kong Y, Zhao X, Choi HJ, Reich M, Bunkelman BH, Liu Q, Hu S, Han M, et al: Bile Acid G protein-coupled membrane receptor TGR5 Modulates Aquaporin 2-Mediated water homeostasis. J Am Soc Nephrol. 29:2658–2670. 2018.PubMed/NCBI View Article : Google Scholar

19 

Li T and Chiang JY: Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev. 66:948–983. 2014.PubMed/NCBI View Article : Google Scholar

20 

Chávez-Talavera O, Tailleux A, Lefebvre P and Staels B: Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology. 152:1679–1694.e3. 2017.PubMed/NCBI View Article : Google Scholar

21 

Voiosu A, Wiese S, Voiosu T, Bendtsen F and Møller S: Bile acids and cardiovascular function in cirrhosis. Liver Int. 37:1420–1430. 2017.PubMed/NCBI View Article : Google Scholar

22 

Wang XX, Wang D, Luo Y, Myakala K, Dobrinskikh E, Rosenberg AZ, Levi J, Kopp JB, Field A, Hill A, et al: FXR/TGR5 dual agonist prevents progression of nephropathy in diabetes and obesity. J Am Soc Nephrol. 29:118–137. 2018.PubMed/NCBI View Article : Google Scholar

23 

Beli E, Yan Y, Moldovan L, Vieira CP, Gao R, Duan Y, Prasad R, Bhatwadekar A, White FA, Townsend SD, et al: Restructuring of the gut microbiome by intermittent fasting prevents retinopathy and prolongs survival in db/db Mice. Diabetes. 67:1867–1879. 2018.PubMed/NCBI View Article : Google Scholar

24 

Ren S, Hylemon P, Marques D, Hall E, Redford K, Gil G and Pandak WM: Effect of increasing the expression of cholesterol transporters (StAR, MLN64, and SCP-2) on bile acid synthesis. J Lipid Res. 45:2123–2131. 2004.PubMed/NCBI View Article : Google Scholar

25 

Pellicciari R, Gioiello A, Macchiarulo A, Thomas C, Rosatelli E, Natalini B, Sardella R, Pruzanski M, Roda A, Pastorini E, et al: Discovery of 6alpha-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity. J Med Chem. 52:7958–7961. 2009.PubMed/NCBI View Article : Google Scholar

26 

Galley HF and Webster NR: Physiology of the endothelium. Br J Anaesth. 93:105–113. 2004.PubMed/NCBI View Article : Google Scholar

27 

Cai Z, Yuan S, Zhong Y, Deng L, Li J, Tan X and Feng J: Amelioration of Endothelial dysfunction in diabetes: Role of takeda G protein-coupled receptor 5. Front Pharmacol. 12(637051)2021.PubMed/NCBI View Article : Google Scholar

28 

Poredos P, Poredos AV and Gregoric I: Endothelial dysfunction and its clinical implications. Angiology. 72:604–615. 2021.PubMed/NCBI View Article : Google Scholar

29 

Basha B, Samuel SM, Triggle CR and Ding H: Endothelial dysfunction in diabetes mellitus: Possible involvement of endoplasmic reticulum stress? Exp Diabetes Res. 2012(481840)2012.PubMed/NCBI View Article : Google Scholar

30 

Sorrentino FS, Matteini S, Bonifazzi C, Sebastiani A and Parmeggiani F: Diabetic retinopathy and endothelin system: Microangiopathy versus endothelial dysfunction. Eye (Lond). 32:1157–1163. 2018.PubMed/NCBI View Article : Google Scholar

31 

Brownlee M: The pathobiology of diabetic complications: A unifying mechanism. Diabetes. 54:1615–1625. 2005.PubMed/NCBI View Article : Google Scholar

32 

Fu D, Yu JY, Yang S, Wu M, Hammad SM, Connell AR, Du M, Chen J and Lyons TJ: Survival or death: A dual role for autophagy in stress-induced pericyte loss in diabetic retinopathy. Diabetologia. 59:2251–2261. 2016.PubMed/NCBI View Article : Google Scholar

33 

Kowluru RA: Mitochondrial stability in diabetic retinopathy: Lessons learned from epigenetics. Diabetes. 68:241–247. 2019.PubMed/NCBI View Article : Google Scholar

34 

Forrester JV, Kuffova L and Delibegovic M: The role of inflammation in diabetic retinopathy. Front Immunol. 11(583687)2020.PubMed/NCBI View Article : Google Scholar

35 

Liang Q and Kobayashi S: Mitochondrial quality control in the diabetic heart. J Mol Cell Cardiol. 95:57–69. 2016.PubMed/NCBI View Article : Google Scholar

36 

Williams M and Caino MC: Mitochondrial dynamics in type 2 diabetes and cancer. Front Endocrinol (Lausanne). 9(211)2018.PubMed/NCBI View Article : Google Scholar

37 

Madsen-Bouterse SA, Mohammad G, Kanwar M and Kowluru RA: Role of mitochondrial DNA damage in the development of diabetic retinopathy, and the metabolic memory phenomenon associated with its progression. Antioxid Redox Signal. 13:797–805. 2010.PubMed/NCBI View Article : Google Scholar

38 

Kowluru RA and Mishra M: Regulation of matrix metalloproteinase in the pathogenesis of diabetic retinopathy. Prog Mol Biol Transl Sci. 148:67–85. 2017.PubMed/NCBI View Article : Google Scholar

39 

Zhong Q and Kowluru RA: Diabetic retinopathy and damage to mitochondrial structure and transport machinery. Invest Ophthalmol Vis Sci. 52:8739–8746. 2011.PubMed/NCBI View Article : Google Scholar

40 

Singh LP, Devi TS and Yumnamcha T: The role of txnip in mitophagy dysregulation and inflammasome activation in diabetic retinopathy: A new perspective. JOJ Ophthalmol. 4(10)2017.PubMed/NCBI View Article : Google Scholar

41 

Noda K, Nakao S, Ishida S and Ishibashi T: Leukocyte adhesion molecules in diabetic retinopathy. J Ophthalmol. 2012(279037)2012.PubMed/NCBI View Article : Google Scholar

42 

Kaštelan S, Tomić M, Gverović Antunica A, Salopek Rabatić J and Ljubić S: Inflammation and pharmacological treatment in diabetic retinopathy. Mediators Inflamm. 2013(213130)2013.PubMed/NCBI View Article : Google Scholar

43 

Tang J and Kern TS: Inflammation in diabetic retinopathy. Prog Retin Eye Res. 30:343–358. 2011.PubMed/NCBI View Article : Google Scholar

44 

Shabab T, Khanabdali R, Moghadamtousi SZ, Kadir HA and Mohan G: Neuroinflammation pathways: A general review. Int J Neurosci. 127:624–633. 2017.PubMed/NCBI View Article : Google Scholar

45 

Rübsam A, Parikh S and Fort PE: Role of inflammation in diabetic retinopathy. Int J Mol Sci. 19(942)2018.PubMed/NCBI View Article : Google Scholar

46 

Bucolo C, Marrazzo G, Platania CB, Drago F, Leggio GM and Salomone S: Fortified extract of red berry, Ginkgo biloba, and white willow bark in experimental early diabetic retinopathy. J Diabetes Res. 2013(432695)2013.PubMed/NCBI View Article : Google Scholar

47 

Bucolo C, Drago F, Maisto R, Romano GL, D'Agata V, Maugeri G and Giunta S: Curcumin prevents high glucose damage in retinal pigment epithelial cells through ERK1/2-mediated activation of the Nrf2/HO-1 pathway. J Cell Physiol. 234:17295–17304. 2019.PubMed/NCBI View Article : Google Scholar

48 

Platania CBM, Lazzara F, Fidilio A, Fresta CG, Conti F, Giurdanella G, Leggio GM, Salomone S, Drago F and Bucolo C: Blood-retinal barrier protection against high glucose damage: The role of P2X7 receptor. Biochem Pharmacol. 168:249–258. 2019.PubMed/NCBI View Article : Google Scholar

49 

Tassetto M, Scialdone A, Solini A and Di Virgilio F: The P2X7 receptor: A promising pharmacological target in diabetic retinopathy. Int J Mol Sci. 22(7110)2021.PubMed/NCBI View Article : Google Scholar

50 

Platania CBM, Drago F and Bucolo C: The P2X7 receptor as a new pharmacological target for retinal diseases. Biochem Pharmacol. 198(114942)2022.PubMed/NCBI View Article : Google Scholar

51 

Maruyama T, Miyamoto Y, Nakamura T, Tamai Y, Okada H, Sugiyama E, Nakamura T, Itadani H and Tanaka K: Identification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res Commun. 298:714–719. 2002.PubMed/NCBI View Article : Google Scholar

52 

Hov JR, Keitel V, Laerdahl JK, Spomer L, Ellinghaus E, ElSharawy A, Melum E, Boberg KM, Manke T, Balschun T, et al: Mutational characterization of the bile acid receptor TGR5 in primary sclerosing cholangitis. PLoS One. 5(e12403)2010.PubMed/NCBI View Article : Google Scholar

53 

Macchiarulo A, Gioiello A, Thomas C, Pols TW, Nuti R, Ferrari C, Giacchè N, De Franco F, Pruzanski M, Auwerx J, et al: Probing the binding site of bile acids in TGR5. ACS Med Chem Lett. 4:1158–1162. 2013.PubMed/NCBI View Article : Google Scholar

54 

Guo C, Chen WD and Wang YD: TGR5, not only a metabolic regulator. Front Physiol. 7(646)2016.PubMed/NCBI View Article : Google Scholar

55 

Chen G, Wang X, Ge Y, Ma L, Chen Q, Liu H, Du Y, Ye RD, Hu H and Ren R: Cryo-EM structure of activated bile acids receptor TGR5 in complex with stimulatory G protein. Signal Transduct Target Ther. 5(142)2020.PubMed/NCBI View Article : Google Scholar

56 

Renga B, Cipriani S, Carino A, Simonetti M, Zampella A and Fiorucci S: Reversal of Endothelial Dysfunction by GPBAR1 agonism in portal hypertension involves a AKT/FOXOA1 dependent regulation of H2S generation and endothelin-1. PLoS One. 10(e0141082)2015.PubMed/NCBI View Article : Google Scholar

57 

Carino A, Marchianò S, Biagioli M, Bucci M, Vellecco V, Brancaleone V, Fiorucci C, Zampella A, Monti MC, Distrutti E and Fiorucci S: Agonism for the bile acid receptor GPBAR1 reverses liver and vascular damage in a mouse model of steatohepatitis. FASEB J. 33:2809–2822. 2019.PubMed/NCBI View Article : Google Scholar

58 

Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ and Valko M: Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci. 38:592–607. 2017.PubMed/NCBI View Article : Google Scholar

59 

Prasad S, Gupta SC and Tyagi AK: Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett. 387:95–105. 2017.PubMed/NCBI View Article : Google Scholar

60 

Shutt T, Geoffrion M, Milne R and McBride HM: The intracellular redox state is a core determinant of mitochondrial fusion. EMBO Rep. 13:909–915. 2012.PubMed/NCBI View Article : Google Scholar

61 

Sabouny R, Fraunberger E, Geoffrion M, Ng AC, Baird SD, Screaton RA, Milne R, McBride HM and Shutt TE: The Keap1-Nrf2 stress response pathway promotes mitochondrial hyperfusion through degradation of the mitochondrial fission protein Drp1. Antioxid Redox Signal. 27:1447–1459. 2017.PubMed/NCBI View Article : Google Scholar

62 

Ferrington DA, Fisher CR and Kowluru RA: Mitochondrial defects drive degenerative retinal diseases. Trends Mol Med. 26:105–118. 2020.PubMed/NCBI View Article : Google Scholar

63 

Sabouny R and Shutt TE: Reciprocal regulation of mitochondrial fission and fusion. Trends Biochem Sci. 45:564–577. 2020.PubMed/NCBI View Article : Google Scholar

64 

Lutty GA: Effects of diabetes on the eye. Invest Ophthalmol Vis Sci. 54:ORSF81–ORSF87. 2013.PubMed/NCBI View Article : Google Scholar

65 

Zhang MY, Zhu L, Zheng X, Xie TH, Wang W, Zou J, Li Y, Li HY, Cai J, Gu S, et al: TGR5 activation ameliorates mitochondrial homeostasis via regulating the PKCδ/Drp1-HK2 signaling in diabetic retinopathy. Front Cell Dev Biol. 9(759421)2022.PubMed/NCBI View Article : Google Scholar

66 

Zhu L, Wang W, Xie TH, Zou J, Nie X, Wang X, Zhang MY, Wang ZY, Gu S, Zhuang M, et al: TGR5 receptor activation attenuates diabetic retinopathy through suppression of RhoA/ROCK signaling. FASEB J. 34:4189–4203. 2020.PubMed/NCBI View Article : Google Scholar

67 

Mishra P and Chan DC: Metabolic regulation of mitochondrial dynamics. J Cell Biol. 212:379–387. 2016.PubMed/NCBI View Article : Google Scholar

68 

Rovira-Llopis S, Bañuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M and Victor VM: Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications. Redox Biol. 11:637–645. 2017.PubMed/NCBI View Article : Google Scholar

69 

Huang M, Wei R, Wang Y, Su T, Li P and Chen X: The uremic toxin hippurate promotes endothelial dysfunction via the activation of Drp1-mediated mitochondrial fission. Redox Biol. 16:303–313. 2018.PubMed/NCBI View Article : Google Scholar

70 

Alam NM, Mills WC IV, Wong AA, Douglas RM, Szeto HH and Prusky GT: A mitochondrial therapeutic reverses visual decline in mouse models of diabetes. Dis Model Mech. 8:701–710. 2015.PubMed/NCBI View Article : Google Scholar

71 

Huang J, Li X, Li M, Li J, Xiao W, Ma W, Chen X, Liang X, Tang S and Luo Y: Mitochondria-targeted antioxidant peptide SS31 protects the retinas of diabetic rats. Curr Mol Med. 13:935–945. 2013.PubMed/NCBI View Article : Google Scholar

72 

Dikalov SI, Nazarewicz RR, Bikineyeva A, Hilenski L, Lassègue B, Griendling KK, Harrison DG and Dikalova AE: Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension. Antioxid Redox Signal. 20:281–294. 2014.PubMed/NCBI View Article : Google Scholar

73 

Verónica Donoso M, Hernández F, Villalón T, Acuña-Castillo C and Pablo Huidobro-Toro J: Pharmacological dissection of the cellular mechanisms associated to the spontaneous and the mechanically stimulated ATP release by mesentery endothelial cells: Roles of thrombin and TRPV. Purinergic Signal. 14:121–139. 2018.PubMed/NCBI View Article : Google Scholar

74 

Chen C, Huang J, Shen J and Bai Q: Quercetin improves endothelial insulin sensitivity in obese mice by inhibiting Drp1 phosphorylation at serine 616 and mitochondrial fragmentation. Acta Biochim Biophys Sin (Shanghai). 51:1250–1257. 2019.PubMed/NCBI View Article : Google Scholar

75 

Slupe AM, Merrill RA, Flippo KH, Lobas MA, Houtman JC and Strack S: A calcineurin docking motif (LXVP) in dynamin-related protein 1 contributes to mitochondrial fragmentation and ischemic neuronal injury. J Biol Chem. 288:12353–12365. 2013.PubMed/NCBI View Article : Google Scholar

76 

Bo T, Yamamori T, Suzuki M, Sakai Y, Yamamoto K and Inanami O: Calmodulin-dependent protein kinase II (CaMKII) mediates radiation-induced mitochondrial fission by regulating the phosphorylation of dynamin-related protein 1 (Drp1) at serine 616. Biochem Biophys Res Commun. 495:1601–1607. 2018.PubMed/NCBI View Article : Google Scholar

77 

Cho B, Cho HM, Jo Y, Kim HD, Song M, Moon C, Kim H, Kim K, Sesaki H, Rhyu IJ, et al: Constriction of the mitochondrial inner compartment is a priming event for mitochondrial division. Nat Commun. 8(15754)2017.PubMed/NCBI View Article : Google Scholar

78 

Cook SJ, Stuart K, Gilley R and Sale MJ: Control of cell death and mitochondrial fission by ERK1/2 MAP kinase signalling. FEBS J. 284:4177–4195. 2017.PubMed/NCBI View Article : Google Scholar

79 

Chakrabarti R, Ji WK, Stan RV, de Juan Sanz J, Ryan TA and Higgs HN: INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner membrane constriction, and division. J Cell Biol. 217:251–268. 2018.PubMed/NCBI View Article : Google Scholar

80 

Schmukler E, Solomon S, Simonovitch S, Goldshmit Y, Wolfson E, Michaelson DM and Pinkas-Kramarski R: Altered mitochondrial dynamics and function in APOE4-expressing astrocytes. Cell Death Dis. 11(578)2020.PubMed/NCBI View Article : Google Scholar

81 

Xu S and Herschman HR: A Tumor agnostic therapeutic strategy for hexokinase 1-Null/Hexokinase 2-positive cancers. Cancer Res. 79:5907–5914. 2019.PubMed/NCBI View Article : Google Scholar

82 

Li M, Shao J, Guo Z, Jin C, Wang L, Wang F, Jia Y, Zhu Z, Zhang Z, Zhang F, et al: Novel mitochondrion-targeting copper(II) complex induces HK2 malfunction and inhibits glycolysis via Drp1-mediating mitophagy in HCC. J Cell Mol Med. 24:3091–3107. 2020.PubMed/NCBI View Article : Google Scholar

83 

Clausell N, Kalil P, Biolo A, Molossi S and Azevedo M: Increased expression of tumor necrosis factor-alpha in diabetic macrovasculopathy. Cardiovasc Pathol. 8:145–151. 1999.PubMed/NCBI View Article : Google Scholar

84 

Zhou X and Guan Z, Jin X, Zhao J, Chen G, Ding J, Ren Y, Zhai X, Zhou Q and Guan Z: Reversal of alopecia areata, osteoporosis follow treatment with activation of Tgr5 in mice. Biosci Rep. 41(BSR20210609)2021.PubMed/NCBI View Article : Google Scholar

85 

Wang TY, Tao SY, Wu YX, An T, Lv BH, Liu JX, Liu YT and Jiang GJ: Quinoa Reduces High-Fat diet-induced obesity in mice via potential microbiota-gut-brain-liver interaction mechanisms. Microbiol Spectr. 10(e0032922)2022.PubMed/NCBI View Article : Google Scholar

86 

Malik S, Suchal K, Khan SI, Bhatia J, Kishore K, Dinda AK and Arya DS: Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways. Am J Physiol Renal Physiol. 313:F414–F422. 2017.PubMed/NCBI View Article : Google Scholar

87 

Xiang E, Han B, Zhang Q, Rao W, Wang Z, Chang C, Zhang Y, Tu C, Li C and Wu D: Human umbilical cord-derived mesenchymal stem cells prevent the progression of early diabetic nephropathy through inhibiting inflammation and fibrosis. Stem Cell Res Ther. 11(336)2020.PubMed/NCBI View Article : Google Scholar

88 

Khaloo P, Qahremani R, Rabizadeh S, Omidi M, Rajab A, Heidari F, Farahmand G, Bitaraf M, Mirmiranpour H, Esteghamati A and Nakhjavani M: Nitric oxide and TNF-α are correlates of diabetic retinopathy independent of hs-CRP and HbA1c. Endocrine. 69:536–541. 2020.PubMed/NCBI View Article : Google Scholar

89 

Mikelis CM, Simaan M, Ando K, Fukuhara S, Sakurai A, Amornphimoltham P, Masedunskas A, Weigert R, Chavakis T, Adams RH, et al: RhoA and ROCK mediate histamine-induced vascular leakage and anaphylactic shock. Nat Commun. 6(6725)2015.PubMed/NCBI View Article : Google Scholar

90 

Hu X, Yan J, Huang L, Araujo C, Peng J, Gao L, Liu S, Tang J, Zuo G and Zhang JH: INT-777 attenuates NLRP3-ASC inflammasome-mediated neuroinflammation via TGR5/cAMP/PKA signaling pathway after subarachnoid hemorrhage in rats. Brain Behav Immun. 91:587–600. 2021.PubMed/NCBI View Article : Google Scholar

91 

Haselow K, Bode JG, Wammers M, Ehlting C, Keitel V, Kleinebrecht L, Schupp AK, Häussinger D and Graf D: Bile acids PKA-dependently induce a switch of the IL-10/IL-12 ratio and reduce proinflammatory capability of human macrophages. J Leukoc Biol. 94:1253–1264. 2013.PubMed/NCBI View Article : Google Scholar

92 

Kolka CM and Bergman RN: The endothelium in diabetes: Its role in insulin access and diabetic complications. Rev Endocr Metab Disord. 14:13–19. 2013.PubMed/NCBI View Article : Google Scholar

93 

Sampedro J, Bogdanov P, Ramos H, Solà-Adell C, Turch M, Valeri M, Simó-Servat O, Lagunas C, Simó R and Hernández C: New insights into the mechanisms of action of topical administration of GLP-1 in an experimental model of diabetic retinopathy. J Clin Med. 8(339)2019.PubMed/NCBI View Article : Google Scholar

94 

Wang LY, Cheng KC, Li Y, Niu CS, Cheng JT and Niu HS: Glycyrrhizic acid increases glucagon like peptide-1 secretion via TGR5 activation in type 1-like diabetic rats. Biomed Pharmacother. 95:599–604. 2017.PubMed/NCBI View Article : Google Scholar

95 

Claybaugh T, Decker S, McCall K, Slyvka Y, Steimle J, Wood A, Schaefer M, Thuma J and Inman S: L-Arginine supplementation in type II diabetic rats preserves renal function and improves insulin sensitivity by altering the nitric oxide pathway. Int J Endocrinol. 2014(171546)2014.PubMed/NCBI View Article : Google Scholar

96 

Kida T, Tsubosaka Y, Hori M, Ozaki H and Murata T: Bile acid receptor TGR5 agonism induces NO production and reduces monocyte adhesion in vascular endothelial cells. Arterioscler Thromb Vasc Biol. 33:1663–1669. 2013.PubMed/NCBI View Article : Google Scholar

97 

Gloerich M and Bos JL: Epac: Defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol. 50:355–375. 2010.PubMed/NCBI View Article : Google Scholar

98 

Lezoualc'h F, Fazal L, Laudette M and Conte C: Cyclic AMP Sensor EPAC proteins and their role in cardiovascular function and disease. Circ Res. 118:881–897. 2016.PubMed/NCBI View Article : Google Scholar

99 

Gündüz D, Troidl C, Tanislav C, Rohrbach S, Hamm C and Aslam M: Role of PI3K/Akt and MEK/ERK Signalling in cAMP/Epac-Mediated endothelial barrier stabilisation. Front Physiol. 10(1387)2019.PubMed/NCBI View Article : Google Scholar

100 

Yuan Y, Engler AJ, Raredon MS, Le A, Baevova P, Yoder MC and Niklason LE: Epac agonist improves barrier function in iPSC-derived endothelial colony forming cells for whole organ tissue engineering. Biomaterials. 200:25–34. 2019.PubMed/NCBI View Article : Google Scholar

101 

Garcia-Morales V, Friedrich J, Jorna LM, Campos-Toimil M, Hammes HP, Schmidt M and Krenning G: The microRNA-7-mediated reduction in EPAC-1 contributes to vascular endothelial permeability and eNOS uncoupling in murine experimental retinopathy. Acta Diabetol. 54:581–591. 2017.PubMed/NCBI View Article : Google Scholar

102 

Ramos CJ, Lin C, Liu X and Antonetti DA: The EPAC-Rap1 pathway prevents and reverses cytokine-induced retinal vascular permeability. J Biol Chem. 293:717–730. 2018.PubMed/NCBI View Article : Google Scholar

103 

Liu L, Jiang Y, Chahine A, Curtiss E and Steinle JJ: Epac1 agonist decreased inflammatory proteins in retinal endothelial cells, and loss of Epac1 increased inflammatory proteins in the retinal vasculature of mice. Mol Vis. 23:1–7. 2017.PubMed/NCBI

104 

Luchetti F, Crinelli R, Cesarini E, Canonico B, Guidi L, Zerbinati C, Di Sario G, Zamai L, Magnani M, Papa S and Iuliano L: Endothelial cells, endoplasmic reticulum stress and oxysterols. Redox Biol. 13:581–587. 2017.PubMed/NCBI View Article : Google Scholar

105 

Song J, Li J, Hou F, Wang X and Liu B: Mangiferin inhibits endoplasmic reticulum stress-associated thioredoxin-interacting protein/NLRP3 inflammasome activation with regulation of AMPK in endothelial cells. Metabolism. 64:428–437. 2015.PubMed/NCBI View Article : Google Scholar

106 

Fiorentino TV, Procopio T, Mancuso E, Arcidiacono GP, Andreozzi F, Arturi F, Sciacqua A, Perticone F, Hribal ML and Sesti G: SRT1720 counteracts glucosamine-induced endoplasmic reticulum stress and endothelial dysfunction. Cardiovasc Res. 107:295–306. 2015.PubMed/NCBI View Article : Google Scholar

107 

Sasaki T, Kuboyama A, Mita M, Murata S, Shimizu M, Inoue J, Mori K and Sato R: The exercise-inducible bile acid receptor Tgr5 improves skeletal muscle function in mice. J Biol Chem. 293:10322–10332. 2018.PubMed/NCBI View Article : Google Scholar

108 

Dicks N, Gutierrez K, Currin L, de Macedo MP, Glanzner WG, Mondadori RG, Michalak M, Agellon LB and Bordignon V: Tauroursodeoxycholic acid/TGR5 signaling promotes survival and early development of glucose-stressed porcine embryos†. Biol Reprod. 105:76–86. 2021.PubMed/NCBI View Article : Google Scholar

109 

Dicks N, Gutierrez K, Currin L, Priotto de Macedo M, Glanzner W, Michalak M, Agellon LB and Bordignon V: Tauroursodeoxycholic acid acts via TGR5 receptor to facilitate DNA damage repair and improve early porcine embryo development. Mol Reprod Dev. 87:161–173. 2020.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang M, Dong Z, Dong W, Zhou D and Ren X: Role of Takeda G protein‑coupled receptor 5 in microvascular endothelial cell dysfunction in diabetic retinopathy (Review). Exp Ther Med 24: 674, 2022.
APA
Zhang, M., Dong, Z., Dong, W., Zhou, D., & Ren, X. (2022). Role of Takeda G protein‑coupled receptor 5 in microvascular endothelial cell dysfunction in diabetic retinopathy (Review). Experimental and Therapeutic Medicine, 24, 674. https://doi.org/10.3892/etm.2022.11610
MLA
Zhang, M., Dong, Z., Dong, W., Zhou, D., Ren, X."Role of Takeda G protein‑coupled receptor 5 in microvascular endothelial cell dysfunction in diabetic retinopathy (Review)". Experimental and Therapeutic Medicine 24.5 (2022): 674.
Chicago
Zhang, M., Dong, Z., Dong, W., Zhou, D., Ren, X."Role of Takeda G protein‑coupled receptor 5 in microvascular endothelial cell dysfunction in diabetic retinopathy (Review)". Experimental and Therapeutic Medicine 24, no. 5 (2022): 674. https://doi.org/10.3892/etm.2022.11610
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang M, Dong Z, Dong W, Zhou D and Ren X: Role of Takeda G protein‑coupled receptor 5 in microvascular endothelial cell dysfunction in diabetic retinopathy (Review). Exp Ther Med 24: 674, 2022.
APA
Zhang, M., Dong, Z., Dong, W., Zhou, D., & Ren, X. (2022). Role of Takeda G protein‑coupled receptor 5 in microvascular endothelial cell dysfunction in diabetic retinopathy (Review). Experimental and Therapeutic Medicine, 24, 674. https://doi.org/10.3892/etm.2022.11610
MLA
Zhang, M., Dong, Z., Dong, W., Zhou, D., Ren, X."Role of Takeda G protein‑coupled receptor 5 in microvascular endothelial cell dysfunction in diabetic retinopathy (Review)". Experimental and Therapeutic Medicine 24.5 (2022): 674.
Chicago
Zhang, M., Dong, Z., Dong, W., Zhou, D., Ren, X."Role of Takeda G protein‑coupled receptor 5 in microvascular endothelial cell dysfunction in diabetic retinopathy (Review)". Experimental and Therapeutic Medicine 24, no. 5 (2022): 674. https://doi.org/10.3892/etm.2022.11610
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team