
Role of Takeda G protein‑coupled receptor 5 in microvascular endothelial cell dysfunction in diabetic retinopathy (Review)
- Authors:
- Miao Zhang
- Zhenghao Dong
- Wenkang Dong
- Dongdong Zhou
- Xiang Ren
-
Affiliations: Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China, Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China - Published online on: September 15, 2022 https://doi.org/10.3892/etm.2022.11610
- Article Number: 674
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
Williams R, Airey M, Baxter H, Forrester J, Kennedy-Martin T and Girach A: Epidemiology of diabetic retinopathy and macular oedema: A systematic review. Eye (Lond). 18:963–983. 2004.PubMed/NCBI View Article : Google Scholar | |
Simó R and Hernández C: Prevention and treatment of diabetic retinopathy: Evidence from large, randomized trials. The emerging role of fenofibrate. Rev Recent Clin Trials. 7:71–80. 2012.PubMed/NCBI View Article : Google Scholar | |
Singh R, Barden A, Mori T and Beilin L: Advanced glycation end-products: A review. Diabetologia. 44:129–146. 2001.PubMed/NCBI View Article : Google Scholar | |
Pardue MT and Allen RS: Neuroprotective strategies for retinal disease. Prog Retin Eye Res. 65:50–76. 2018.PubMed/NCBI View Article : Google Scholar | |
Kollias AN and Ulbig MW: Diabetic retinopathy: Early diagnosis and effective treatment. Dtsch Arztebl Int. 107:75–83; quiz 84. 2010.PubMed/NCBI View Article : Google Scholar | |
Moreno A, Lozano M and Salinas P: Diabetic retinopathy. Nutr Hosp. 28 (Suppl 2):S53–S56. 2013.PubMed/NCBI View Article : Google Scholar | |
Wong TY, Cheung CM, Larsen M, Sharma S and Simó R: Diabetic retinopathy. Nat Rev Dis Primers. 2(16012)2016.PubMed/NCBI View Article : Google Scholar | |
Henriques J, Vaz-Pereira S, Nascimento J and Rosa PC: Diabetic eye disease. Acta Med Port. 28:107–113. 2015.PubMed/NCBI(In Portuguese). | |
Lechner J, O'Leary OE and Stitt AW: The pathology associated with diabetic retinopathy. Vision Res. 139:7–14. 2017.PubMed/NCBI View Article : Google Scholar | |
Shafabakhsh R, Aghadavod E, Mobini M, Heidari-Soureshjani R and Asemi Z: Association between microRNAs expression and signaling pathways of inflammatory markers in diabetic retinopathy. J Cell Physiol. 234:7781–7787. 2019.PubMed/NCBI View Article : Google Scholar | |
Singh LP, Yumnamcha T and Devi TS: Mitophagy, ferritinophagy and ferroptosis in retinal pigment epithelial cells under high glucose conditions: Implications for Diabetic retinopathy and age-related retinal diseases. JOJ Ophthalmol. 8:77–85. 2021.PubMed/NCBI | |
Meza CA, La Favor JD, Kim DH and Hickner RC: Endothelial dysfunction: Is There a Hyperglycemia-induced imbalance of NOX and NOS? Int J Mol Sci. 20(3775)2019.PubMed/NCBI View Article : Google Scholar | |
Maldonado-Valderrama J, Wilde P, Macierzanka A and Mackie A: The role of bile salts in digestion. Adv Colloid Interface Sci. 165:36–46. 2011.PubMed/NCBI View Article : Google Scholar | |
van Nierop FS, Scheltema MJ, Eggink HM, Pols TW, Sonne DP, Knop FK and Soeters MR: Clinical relevance of the bile acid receptor TGR5 in metabolism. Lancet Diabetes Endocrinol. 5:224–233. 2017.PubMed/NCBI View Article : Google Scholar | |
de Boer JF, Bloks VW, Verkade E, Heiner-Fokkema MR and Kuipers F: New insights in the multiple roles of bile acids and their signaling pathways in metabolic control. Curr Opin Lipidol. 29:194–202. 2018.PubMed/NCBI View Article : Google Scholar | |
Molinaro A, Wahlström A and Marschall HU: Role of bile acids in metabolic control. Trends Endocrinol Metab. 29:31–41. 2018.PubMed/NCBI View Article : Google Scholar | |
Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo A, Yamamoto H, Mataki C, Pruzanski M, et al: TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 10:167–177. 2009.PubMed/NCBI View Article : Google Scholar | |
Li S, Qiu M, Kong Y, Zhao X, Choi HJ, Reich M, Bunkelman BH, Liu Q, Hu S, Han M, et al: Bile Acid G protein-coupled membrane receptor TGR5 Modulates Aquaporin 2-Mediated water homeostasis. J Am Soc Nephrol. 29:2658–2670. 2018.PubMed/NCBI View Article : Google Scholar | |
Li T and Chiang JY: Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev. 66:948–983. 2014.PubMed/NCBI View Article : Google Scholar | |
Chávez-Talavera O, Tailleux A, Lefebvre P and Staels B: Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology. 152:1679–1694.e3. 2017.PubMed/NCBI View Article : Google Scholar | |
Voiosu A, Wiese S, Voiosu T, Bendtsen F and Møller S: Bile acids and cardiovascular function in cirrhosis. Liver Int. 37:1420–1430. 2017.PubMed/NCBI View Article : Google Scholar | |
Wang XX, Wang D, Luo Y, Myakala K, Dobrinskikh E, Rosenberg AZ, Levi J, Kopp JB, Field A, Hill A, et al: FXR/TGR5 dual agonist prevents progression of nephropathy in diabetes and obesity. J Am Soc Nephrol. 29:118–137. 2018.PubMed/NCBI View Article : Google Scholar | |
Beli E, Yan Y, Moldovan L, Vieira CP, Gao R, Duan Y, Prasad R, Bhatwadekar A, White FA, Townsend SD, et al: Restructuring of the gut microbiome by intermittent fasting prevents retinopathy and prolongs survival in db/db Mice. Diabetes. 67:1867–1879. 2018.PubMed/NCBI View Article : Google Scholar | |
Ren S, Hylemon P, Marques D, Hall E, Redford K, Gil G and Pandak WM: Effect of increasing the expression of cholesterol transporters (StAR, MLN64, and SCP-2) on bile acid synthesis. J Lipid Res. 45:2123–2131. 2004.PubMed/NCBI View Article : Google Scholar | |
Pellicciari R, Gioiello A, Macchiarulo A, Thomas C, Rosatelli E, Natalini B, Sardella R, Pruzanski M, Roda A, Pastorini E, et al: Discovery of 6alpha-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity. J Med Chem. 52:7958–7961. 2009.PubMed/NCBI View Article : Google Scholar | |
Galley HF and Webster NR: Physiology of the endothelium. Br J Anaesth. 93:105–113. 2004.PubMed/NCBI View Article : Google Scholar | |
Cai Z, Yuan S, Zhong Y, Deng L, Li J, Tan X and Feng J: Amelioration of Endothelial dysfunction in diabetes: Role of takeda G protein-coupled receptor 5. Front Pharmacol. 12(637051)2021.PubMed/NCBI View Article : Google Scholar | |
Poredos P, Poredos AV and Gregoric I: Endothelial dysfunction and its clinical implications. Angiology. 72:604–615. 2021.PubMed/NCBI View Article : Google Scholar | |
Basha B, Samuel SM, Triggle CR and Ding H: Endothelial dysfunction in diabetes mellitus: Possible involvement of endoplasmic reticulum stress? Exp Diabetes Res. 2012(481840)2012.PubMed/NCBI View Article : Google Scholar | |
Sorrentino FS, Matteini S, Bonifazzi C, Sebastiani A and Parmeggiani F: Diabetic retinopathy and endothelin system: Microangiopathy versus endothelial dysfunction. Eye (Lond). 32:1157–1163. 2018.PubMed/NCBI View Article : Google Scholar | |
Brownlee M: The pathobiology of diabetic complications: A unifying mechanism. Diabetes. 54:1615–1625. 2005.PubMed/NCBI View Article : Google Scholar | |
Fu D, Yu JY, Yang S, Wu M, Hammad SM, Connell AR, Du M, Chen J and Lyons TJ: Survival or death: A dual role for autophagy in stress-induced pericyte loss in diabetic retinopathy. Diabetologia. 59:2251–2261. 2016.PubMed/NCBI View Article : Google Scholar | |
Kowluru RA: Mitochondrial stability in diabetic retinopathy: Lessons learned from epigenetics. Diabetes. 68:241–247. 2019.PubMed/NCBI View Article : Google Scholar | |
Forrester JV, Kuffova L and Delibegovic M: The role of inflammation in diabetic retinopathy. Front Immunol. 11(583687)2020.PubMed/NCBI View Article : Google Scholar | |
Liang Q and Kobayashi S: Mitochondrial quality control in the diabetic heart. J Mol Cell Cardiol. 95:57–69. 2016.PubMed/NCBI View Article : Google Scholar | |
Williams M and Caino MC: Mitochondrial dynamics in type 2 diabetes and cancer. Front Endocrinol (Lausanne). 9(211)2018.PubMed/NCBI View Article : Google Scholar | |
Madsen-Bouterse SA, Mohammad G, Kanwar M and Kowluru RA: Role of mitochondrial DNA damage in the development of diabetic retinopathy, and the metabolic memory phenomenon associated with its progression. Antioxid Redox Signal. 13:797–805. 2010.PubMed/NCBI View Article : Google Scholar | |
Kowluru RA and Mishra M: Regulation of matrix metalloproteinase in the pathogenesis of diabetic retinopathy. Prog Mol Biol Transl Sci. 148:67–85. 2017.PubMed/NCBI View Article : Google Scholar | |
Zhong Q and Kowluru RA: Diabetic retinopathy and damage to mitochondrial structure and transport machinery. Invest Ophthalmol Vis Sci. 52:8739–8746. 2011.PubMed/NCBI View Article : Google Scholar | |
Singh LP, Devi TS and Yumnamcha T: The role of txnip in mitophagy dysregulation and inflammasome activation in diabetic retinopathy: A new perspective. JOJ Ophthalmol. 4(10)2017.PubMed/NCBI View Article : Google Scholar | |
Noda K, Nakao S, Ishida S and Ishibashi T: Leukocyte adhesion molecules in diabetic retinopathy. J Ophthalmol. 2012(279037)2012.PubMed/NCBI View Article : Google Scholar | |
Kaštelan S, Tomić M, Gverović Antunica A, Salopek Rabatić J and Ljubić S: Inflammation and pharmacological treatment in diabetic retinopathy. Mediators Inflamm. 2013(213130)2013.PubMed/NCBI View Article : Google Scholar | |
Tang J and Kern TS: Inflammation in diabetic retinopathy. Prog Retin Eye Res. 30:343–358. 2011.PubMed/NCBI View Article : Google Scholar | |
Shabab T, Khanabdali R, Moghadamtousi SZ, Kadir HA and Mohan G: Neuroinflammation pathways: A general review. Int J Neurosci. 127:624–633. 2017.PubMed/NCBI View Article : Google Scholar | |
Rübsam A, Parikh S and Fort PE: Role of inflammation in diabetic retinopathy. Int J Mol Sci. 19(942)2018.PubMed/NCBI View Article : Google Scholar | |
Bucolo C, Marrazzo G, Platania CB, Drago F, Leggio GM and Salomone S: Fortified extract of red berry, Ginkgo biloba, and white willow bark in experimental early diabetic retinopathy. J Diabetes Res. 2013(432695)2013.PubMed/NCBI View Article : Google Scholar | |
Bucolo C, Drago F, Maisto R, Romano GL, D'Agata V, Maugeri G and Giunta S: Curcumin prevents high glucose damage in retinal pigment epithelial cells through ERK1/2-mediated activation of the Nrf2/HO-1 pathway. J Cell Physiol. 234:17295–17304. 2019.PubMed/NCBI View Article : Google Scholar | |
Platania CBM, Lazzara F, Fidilio A, Fresta CG, Conti F, Giurdanella G, Leggio GM, Salomone S, Drago F and Bucolo C: Blood-retinal barrier protection against high glucose damage: The role of P2X7 receptor. Biochem Pharmacol. 168:249–258. 2019.PubMed/NCBI View Article : Google Scholar | |
Tassetto M, Scialdone A, Solini A and Di Virgilio F: The P2X7 receptor: A promising pharmacological target in diabetic retinopathy. Int J Mol Sci. 22(7110)2021.PubMed/NCBI View Article : Google Scholar | |
Platania CBM, Drago F and Bucolo C: The P2X7 receptor as a new pharmacological target for retinal diseases. Biochem Pharmacol. 198(114942)2022.PubMed/NCBI View Article : Google Scholar | |
Maruyama T, Miyamoto Y, Nakamura T, Tamai Y, Okada H, Sugiyama E, Nakamura T, Itadani H and Tanaka K: Identification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res Commun. 298:714–719. 2002.PubMed/NCBI View Article : Google Scholar | |
Hov JR, Keitel V, Laerdahl JK, Spomer L, Ellinghaus E, ElSharawy A, Melum E, Boberg KM, Manke T, Balschun T, et al: Mutational characterization of the bile acid receptor TGR5 in primary sclerosing cholangitis. PLoS One. 5(e12403)2010.PubMed/NCBI View Article : Google Scholar | |
Macchiarulo A, Gioiello A, Thomas C, Pols TW, Nuti R, Ferrari C, Giacchè N, De Franco F, Pruzanski M, Auwerx J, et al: Probing the binding site of bile acids in TGR5. ACS Med Chem Lett. 4:1158–1162. 2013.PubMed/NCBI View Article : Google Scholar | |
Guo C, Chen WD and Wang YD: TGR5, not only a metabolic regulator. Front Physiol. 7(646)2016.PubMed/NCBI View Article : Google Scholar | |
Chen G, Wang X, Ge Y, Ma L, Chen Q, Liu H, Du Y, Ye RD, Hu H and Ren R: Cryo-EM structure of activated bile acids receptor TGR5 in complex with stimulatory G protein. Signal Transduct Target Ther. 5(142)2020.PubMed/NCBI View Article : Google Scholar | |
Renga B, Cipriani S, Carino A, Simonetti M, Zampella A and Fiorucci S: Reversal of Endothelial Dysfunction by GPBAR1 agonism in portal hypertension involves a AKT/FOXOA1 dependent regulation of H2S generation and endothelin-1. PLoS One. 10(e0141082)2015.PubMed/NCBI View Article : Google Scholar | |
Carino A, Marchianò S, Biagioli M, Bucci M, Vellecco V, Brancaleone V, Fiorucci C, Zampella A, Monti MC, Distrutti E and Fiorucci S: Agonism for the bile acid receptor GPBAR1 reverses liver and vascular damage in a mouse model of steatohepatitis. FASEB J. 33:2809–2822. 2019.PubMed/NCBI View Article : Google Scholar | |
Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ and Valko M: Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci. 38:592–607. 2017.PubMed/NCBI View Article : Google Scholar | |
Prasad S, Gupta SC and Tyagi AK: Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett. 387:95–105. 2017.PubMed/NCBI View Article : Google Scholar | |
Shutt T, Geoffrion M, Milne R and McBride HM: The intracellular redox state is a core determinant of mitochondrial fusion. EMBO Rep. 13:909–915. 2012.PubMed/NCBI View Article : Google Scholar | |
Sabouny R, Fraunberger E, Geoffrion M, Ng AC, Baird SD, Screaton RA, Milne R, McBride HM and Shutt TE: The Keap1-Nrf2 stress response pathway promotes mitochondrial hyperfusion through degradation of the mitochondrial fission protein Drp1. Antioxid Redox Signal. 27:1447–1459. 2017.PubMed/NCBI View Article : Google Scholar | |
Ferrington DA, Fisher CR and Kowluru RA: Mitochondrial defects drive degenerative retinal diseases. Trends Mol Med. 26:105–118. 2020.PubMed/NCBI View Article : Google Scholar | |
Sabouny R and Shutt TE: Reciprocal regulation of mitochondrial fission and fusion. Trends Biochem Sci. 45:564–577. 2020.PubMed/NCBI View Article : Google Scholar | |
Lutty GA: Effects of diabetes on the eye. Invest Ophthalmol Vis Sci. 54:ORSF81–ORSF87. 2013.PubMed/NCBI View Article : Google Scholar | |
Zhang MY, Zhu L, Zheng X, Xie TH, Wang W, Zou J, Li Y, Li HY, Cai J, Gu S, et al: TGR5 activation ameliorates mitochondrial homeostasis via regulating the PKCδ/Drp1-HK2 signaling in diabetic retinopathy. Front Cell Dev Biol. 9(759421)2022.PubMed/NCBI View Article : Google Scholar | |
Zhu L, Wang W, Xie TH, Zou J, Nie X, Wang X, Zhang MY, Wang ZY, Gu S, Zhuang M, et al: TGR5 receptor activation attenuates diabetic retinopathy through suppression of RhoA/ROCK signaling. FASEB J. 34:4189–4203. 2020.PubMed/NCBI View Article : Google Scholar | |
Mishra P and Chan DC: Metabolic regulation of mitochondrial dynamics. J Cell Biol. 212:379–387. 2016.PubMed/NCBI View Article : Google Scholar | |
Rovira-Llopis S, Bañuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M and Victor VM: Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications. Redox Biol. 11:637–645. 2017.PubMed/NCBI View Article : Google Scholar | |
Huang M, Wei R, Wang Y, Su T, Li P and Chen X: The uremic toxin hippurate promotes endothelial dysfunction via the activation of Drp1-mediated mitochondrial fission. Redox Biol. 16:303–313. 2018.PubMed/NCBI View Article : Google Scholar | |
Alam NM, Mills WC IV, Wong AA, Douglas RM, Szeto HH and Prusky GT: A mitochondrial therapeutic reverses visual decline in mouse models of diabetes. Dis Model Mech. 8:701–710. 2015.PubMed/NCBI View Article : Google Scholar | |
Huang J, Li X, Li M, Li J, Xiao W, Ma W, Chen X, Liang X, Tang S and Luo Y: Mitochondria-targeted antioxidant peptide SS31 protects the retinas of diabetic rats. Curr Mol Med. 13:935–945. 2013.PubMed/NCBI View Article : Google Scholar | |
Dikalov SI, Nazarewicz RR, Bikineyeva A, Hilenski L, Lassègue B, Griendling KK, Harrison DG and Dikalova AE: Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension. Antioxid Redox Signal. 20:281–294. 2014.PubMed/NCBI View Article : Google Scholar | |
Verónica Donoso M, Hernández F, Villalón T, Acuña-Castillo C and Pablo Huidobro-Toro J: Pharmacological dissection of the cellular mechanisms associated to the spontaneous and the mechanically stimulated ATP release by mesentery endothelial cells: Roles of thrombin and TRPV. Purinergic Signal. 14:121–139. 2018.PubMed/NCBI View Article : Google Scholar | |
Chen C, Huang J, Shen J and Bai Q: Quercetin improves endothelial insulin sensitivity in obese mice by inhibiting Drp1 phosphorylation at serine 616 and mitochondrial fragmentation. Acta Biochim Biophys Sin (Shanghai). 51:1250–1257. 2019.PubMed/NCBI View Article : Google Scholar | |
Slupe AM, Merrill RA, Flippo KH, Lobas MA, Houtman JC and Strack S: A calcineurin docking motif (LXVP) in dynamin-related protein 1 contributes to mitochondrial fragmentation and ischemic neuronal injury. J Biol Chem. 288:12353–12365. 2013.PubMed/NCBI View Article : Google Scholar | |
Bo T, Yamamori T, Suzuki M, Sakai Y, Yamamoto K and Inanami O: Calmodulin-dependent protein kinase II (CaMKII) mediates radiation-induced mitochondrial fission by regulating the phosphorylation of dynamin-related protein 1 (Drp1) at serine 616. Biochem Biophys Res Commun. 495:1601–1607. 2018.PubMed/NCBI View Article : Google Scholar | |
Cho B, Cho HM, Jo Y, Kim HD, Song M, Moon C, Kim H, Kim K, Sesaki H, Rhyu IJ, et al: Constriction of the mitochondrial inner compartment is a priming event for mitochondrial division. Nat Commun. 8(15754)2017.PubMed/NCBI View Article : Google Scholar | |
Cook SJ, Stuart K, Gilley R and Sale MJ: Control of cell death and mitochondrial fission by ERK1/2 MAP kinase signalling. FEBS J. 284:4177–4195. 2017.PubMed/NCBI View Article : Google Scholar | |
Chakrabarti R, Ji WK, Stan RV, de Juan Sanz J, Ryan TA and Higgs HN: INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner membrane constriction, and division. J Cell Biol. 217:251–268. 2018.PubMed/NCBI View Article : Google Scholar | |
Schmukler E, Solomon S, Simonovitch S, Goldshmit Y, Wolfson E, Michaelson DM and Pinkas-Kramarski R: Altered mitochondrial dynamics and function in APOE4-expressing astrocytes. Cell Death Dis. 11(578)2020.PubMed/NCBI View Article : Google Scholar | |
Xu S and Herschman HR: A Tumor agnostic therapeutic strategy for hexokinase 1-Null/Hexokinase 2-positive cancers. Cancer Res. 79:5907–5914. 2019.PubMed/NCBI View Article : Google Scholar | |
Li M, Shao J, Guo Z, Jin C, Wang L, Wang F, Jia Y, Zhu Z, Zhang Z, Zhang F, et al: Novel mitochondrion-targeting copper(II) complex induces HK2 malfunction and inhibits glycolysis via Drp1-mediating mitophagy in HCC. J Cell Mol Med. 24:3091–3107. 2020.PubMed/NCBI View Article : Google Scholar | |
Clausell N, Kalil P, Biolo A, Molossi S and Azevedo M: Increased expression of tumor necrosis factor-alpha in diabetic macrovasculopathy. Cardiovasc Pathol. 8:145–151. 1999.PubMed/NCBI View Article : Google Scholar | |
Zhou X and Guan Z, Jin X, Zhao J, Chen G, Ding J, Ren Y, Zhai X, Zhou Q and Guan Z: Reversal of alopecia areata, osteoporosis follow treatment with activation of Tgr5 in mice. Biosci Rep. 41(BSR20210609)2021.PubMed/NCBI View Article : Google Scholar | |
Wang TY, Tao SY, Wu YX, An T, Lv BH, Liu JX, Liu YT and Jiang GJ: Quinoa Reduces High-Fat diet-induced obesity in mice via potential microbiota-gut-brain-liver interaction mechanisms. Microbiol Spectr. 10(e0032922)2022.PubMed/NCBI View Article : Google Scholar | |
Malik S, Suchal K, Khan SI, Bhatia J, Kishore K, Dinda AK and Arya DS: Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways. Am J Physiol Renal Physiol. 313:F414–F422. 2017.PubMed/NCBI View Article : Google Scholar | |
Xiang E, Han B, Zhang Q, Rao W, Wang Z, Chang C, Zhang Y, Tu C, Li C and Wu D: Human umbilical cord-derived mesenchymal stem cells prevent the progression of early diabetic nephropathy through inhibiting inflammation and fibrosis. Stem Cell Res Ther. 11(336)2020.PubMed/NCBI View Article : Google Scholar | |
Khaloo P, Qahremani R, Rabizadeh S, Omidi M, Rajab A, Heidari F, Farahmand G, Bitaraf M, Mirmiranpour H, Esteghamati A and Nakhjavani M: Nitric oxide and TNF-α are correlates of diabetic retinopathy independent of hs-CRP and HbA1c. Endocrine. 69:536–541. 2020.PubMed/NCBI View Article : Google Scholar | |
Mikelis CM, Simaan M, Ando K, Fukuhara S, Sakurai A, Amornphimoltham P, Masedunskas A, Weigert R, Chavakis T, Adams RH, et al: RhoA and ROCK mediate histamine-induced vascular leakage and anaphylactic shock. Nat Commun. 6(6725)2015.PubMed/NCBI View Article : Google Scholar | |
Hu X, Yan J, Huang L, Araujo C, Peng J, Gao L, Liu S, Tang J, Zuo G and Zhang JH: INT-777 attenuates NLRP3-ASC inflammasome-mediated neuroinflammation via TGR5/cAMP/PKA signaling pathway after subarachnoid hemorrhage in rats. Brain Behav Immun. 91:587–600. 2021.PubMed/NCBI View Article : Google Scholar | |
Haselow K, Bode JG, Wammers M, Ehlting C, Keitel V, Kleinebrecht L, Schupp AK, Häussinger D and Graf D: Bile acids PKA-dependently induce a switch of the IL-10/IL-12 ratio and reduce proinflammatory capability of human macrophages. J Leukoc Biol. 94:1253–1264. 2013.PubMed/NCBI View Article : Google Scholar | |
Kolka CM and Bergman RN: The endothelium in diabetes: Its role in insulin access and diabetic complications. Rev Endocr Metab Disord. 14:13–19. 2013.PubMed/NCBI View Article : Google Scholar | |
Sampedro J, Bogdanov P, Ramos H, Solà-Adell C, Turch M, Valeri M, Simó-Servat O, Lagunas C, Simó R and Hernández C: New insights into the mechanisms of action of topical administration of GLP-1 in an experimental model of diabetic retinopathy. J Clin Med. 8(339)2019.PubMed/NCBI View Article : Google Scholar | |
Wang LY, Cheng KC, Li Y, Niu CS, Cheng JT and Niu HS: Glycyrrhizic acid increases glucagon like peptide-1 secretion via TGR5 activation in type 1-like diabetic rats. Biomed Pharmacother. 95:599–604. 2017.PubMed/NCBI View Article : Google Scholar | |
Claybaugh T, Decker S, McCall K, Slyvka Y, Steimle J, Wood A, Schaefer M, Thuma J and Inman S: L-Arginine supplementation in type II diabetic rats preserves renal function and improves insulin sensitivity by altering the nitric oxide pathway. Int J Endocrinol. 2014(171546)2014.PubMed/NCBI View Article : Google Scholar | |
Kida T, Tsubosaka Y, Hori M, Ozaki H and Murata T: Bile acid receptor TGR5 agonism induces NO production and reduces monocyte adhesion in vascular endothelial cells. Arterioscler Thromb Vasc Biol. 33:1663–1669. 2013.PubMed/NCBI View Article : Google Scholar | |
Gloerich M and Bos JL: Epac: Defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol. 50:355–375. 2010.PubMed/NCBI View Article : Google Scholar | |
Lezoualc'h F, Fazal L, Laudette M and Conte C: Cyclic AMP Sensor EPAC proteins and their role in cardiovascular function and disease. Circ Res. 118:881–897. 2016.PubMed/NCBI View Article : Google Scholar | |
Gündüz D, Troidl C, Tanislav C, Rohrbach S, Hamm C and Aslam M: Role of PI3K/Akt and MEK/ERK Signalling in cAMP/Epac-Mediated endothelial barrier stabilisation. Front Physiol. 10(1387)2019.PubMed/NCBI View Article : Google Scholar | |
Yuan Y, Engler AJ, Raredon MS, Le A, Baevova P, Yoder MC and Niklason LE: Epac agonist improves barrier function in iPSC-derived endothelial colony forming cells for whole organ tissue engineering. Biomaterials. 200:25–34. 2019.PubMed/NCBI View Article : Google Scholar | |
Garcia-Morales V, Friedrich J, Jorna LM, Campos-Toimil M, Hammes HP, Schmidt M and Krenning G: The microRNA-7-mediated reduction in EPAC-1 contributes to vascular endothelial permeability and eNOS uncoupling in murine experimental retinopathy. Acta Diabetol. 54:581–591. 2017.PubMed/NCBI View Article : Google Scholar | |
Ramos CJ, Lin C, Liu X and Antonetti DA: The EPAC-Rap1 pathway prevents and reverses cytokine-induced retinal vascular permeability. J Biol Chem. 293:717–730. 2018.PubMed/NCBI View Article : Google Scholar | |
Liu L, Jiang Y, Chahine A, Curtiss E and Steinle JJ: Epac1 agonist decreased inflammatory proteins in retinal endothelial cells, and loss of Epac1 increased inflammatory proteins in the retinal vasculature of mice. Mol Vis. 23:1–7. 2017.PubMed/NCBI | |
Luchetti F, Crinelli R, Cesarini E, Canonico B, Guidi L, Zerbinati C, Di Sario G, Zamai L, Magnani M, Papa S and Iuliano L: Endothelial cells, endoplasmic reticulum stress and oxysterols. Redox Biol. 13:581–587. 2017.PubMed/NCBI View Article : Google Scholar | |
Song J, Li J, Hou F, Wang X and Liu B: Mangiferin inhibits endoplasmic reticulum stress-associated thioredoxin-interacting protein/NLRP3 inflammasome activation with regulation of AMPK in endothelial cells. Metabolism. 64:428–437. 2015.PubMed/NCBI View Article : Google Scholar | |
Fiorentino TV, Procopio T, Mancuso E, Arcidiacono GP, Andreozzi F, Arturi F, Sciacqua A, Perticone F, Hribal ML and Sesti G: SRT1720 counteracts glucosamine-induced endoplasmic reticulum stress and endothelial dysfunction. Cardiovasc Res. 107:295–306. 2015.PubMed/NCBI View Article : Google Scholar | |
Sasaki T, Kuboyama A, Mita M, Murata S, Shimizu M, Inoue J, Mori K and Sato R: The exercise-inducible bile acid receptor Tgr5 improves skeletal muscle function in mice. J Biol Chem. 293:10322–10332. 2018.PubMed/NCBI View Article : Google Scholar | |
Dicks N, Gutierrez K, Currin L, de Macedo MP, Glanzner WG, Mondadori RG, Michalak M, Agellon LB and Bordignon V: Tauroursodeoxycholic acid/TGR5 signaling promotes survival and early development of glucose-stressed porcine embryos†. Biol Reprod. 105:76–86. 2021.PubMed/NCBI View Article : Google Scholar | |
Dicks N, Gutierrez K, Currin L, Priotto de Macedo M, Glanzner W, Michalak M, Agellon LB and Bordignon V: Tauroursodeoxycholic acid acts via TGR5 receptor to facilitate DNA damage repair and improve early porcine embryo development. Mol Reprod Dev. 87:161–173. 2020.PubMed/NCBI View Article : Google Scholar |