|
1
|
Sell J and Dolan B: Common
gastrointestinal infections. Prim Care. 45:519–532. 2018.
|
|
2
|
Hernández CC, Aguilera AMG and Castro EG:
Gastrointestinal diseases, situation in Mexico. Enf Infec
Microbiol. 31:137–151. 2011.
|
|
3
|
World Health Organization: WHO's first
ever global estimates of foodborne diseases find children under 5
account for almost one third of deaths. Geneva, Switzerland, 2015.
Available from: https://www.who.int.
|
|
4
|
World Health Organization: WHO publishes
list of bacteria for which new antibiotics are urgently needed.
Geneva, Switzerland, 2017. Available from: https://www.who.int.
|
|
5
|
Reis RS and Horn F: Enteropathogenic
Escherichia coli, Samonella, Shigella and Yersinia: Cellular
aspects of host-bacteria interactions in enteric diseases. Gut
Pathog. 2(8)2010.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Zaheer R, Cook SR, Barbieri R, Goji N,
Cameron A, Petkau A, Polo RO, Tymensen L, Stamm C, Song J, et al:
Surveillance of Enterococcus spp reveals distinct species
and antimicrobial resistance diversity across a one-health
continuum. Sci Rep. 10(3937)2020.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Fariñas MC and Martínez-Martínez L:
Multiresistant gram-negative bacterial infections: Enterobacteria,
pseudomonas aeruginosa, Acinetobacter baumannii and other
non-fermenting gram-negative bacilli. Enferm Infecc Microbiol Clin.
31:402–409. 2013.PubMed/NCBI View Article : Google Scholar : (In Spanish).
|
|
8
|
Silva-Díaz H, Bustamante-Canelo O,
Aguilar-Gamboa F, Mera-Villasis K, Ipanaque-Chozo J, Seclen-Bernabe
E and Vergara-Espinosa M: Predominant enteropathogens in acute
diarrhea and associated variables in children at the lambayeque
regional hospital, Peru. Horiz Med. 17:38–44. 2017.
|
|
9
|
Oliva-Menacho J, Oliva-Candela J and
Garcia-Hjarles M: Multi-drug resistant bacteria isolated from
medical stethoscopes in a level III hospital. Rev Med Hered.
28:242–246. 2017.
|
|
10
|
Hernandez del Sol CR and Vazquez Hernandez
G, Mesa Delgado Z, Bermudez Aleman RI, Sotolongo Rodriguez Y and
Vazquez Hernandez G: Enteropathogenic bacteria associated with
acute diarrheal disease in children. Acta Médica del Centro.
11:28–34. 2017.
|
|
11
|
López-Pueyo MJ, Barcenilla-Gaite F,
Amaya-Villar R and Garnacho-Montero J: Antibiotic multiresistance
in critical care units. Med Intensiva. 35:41–53. 2011.PubMed/NCBI View Article : Google Scholar : (In Spanish).
|
|
12
|
Torres C, Alonso CA, Ruiz-Ripa L,
León-Sampedro R, del Campo R and Coque TM: Antimicrobial Resistance
in Enterococcus spp. of animal origin. In: Antimicrobial
Resistance in Bacteria from Livestock and Companion Animals.
Schwarz S, Cavaco LM and Shen J (eds). Wiley Online Library, USA,
pp185-227, 2018.
|
|
13
|
Levin-Reisman I, Brauner A, Ronin I and
Balaban NQ: Epistasis between antibiotic tolerance, persistence,
and resistance mutations. Proc Natl Acad Sci USa. 116:14734–14739.
2019.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Fernández-García L, Fernandez-Cuenca F,
Blasco L, López-Rojas R, Ambroa A, Lopez M, Pascual Á, Bou G and
Tomás M: Relationship between tolerance and persistence mechanisms
in Acinetobacter baumannii strains with AbkAB
toxin-antitoxin system. Antimicrob Agents Chemother. 62:e00250–18.
2018.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Pacios O, Blasco L, Bleriot I,
Fernandez-Garcia L, González Bardanca M, Ambroa A, López M, Bou G
and Tomás M: Strategies to combat multidrug-resistant and
persistent infectious diseases. Antibiotics (Basel).
9(65)2020.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Brauner A, Fridman O, Gefen O and Balaban
NQ: . Distinguishing between resistance, tolerance and persistence
to antibiotic treatment. Nat Rev Microbiol. 14:320–330.
2016.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Remes Troche JM: Reflections on antibiotic
resistance and what to do about it. Rev Gastroenterol Mex. 81:1–2.
2016.PubMed/NCBI View Article : Google Scholar : (In English,
Spanish).
|
|
18
|
Thapa Shrestha U, Adhikari N, Maharjan R,
Banjara MR, Rijal KR, Basnyat SR and Agrawal VP: Mutildrug
resistant Vibrio cholerae O1 from clinical and environmental
samples in Kathmandu city. BMC Infect Dis. 15(104)2015.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Hawkey PM, Warren RE, Livermore DM,
McNulty CAM, Enoch DA, Otter JA and Wilson A: Treatment of
infections caused by multidrug-resistant gram-negative bacteria:
Report of the British society for antimicrobial
chemotherapy/healthcare infection society/British infection
association joint working party. J Antimicrob Chemother. 73 (Suppl
3):iii2–iii78. 2018.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Alkofide H, Alhammad AM, Alruwaili A,
Aldemerdash A, Almangour TA, Alsuwayegh A, Almoqbel D, Albati A,
Alsaud A and Enani M: Multidrug-resistant and extensively
drug-resistant Enterobacteriaceae: Prevalence, treatments, and
outcomes-a retrospective cohort study. Infect Drug Resist.
13:4653–4662. 2020.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Nadeem SF, Gohar UF, Tahir SF, Mukhtar H,
Pornpukdeewattana S, Nukthamna P, Moula Ali AM, Bavisetty S and
Masa S: Antimicrobial resistance: More than 70 years of war between
humans and bacteria. Crit Rev Microbiol. 46:578–599.
2020.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Wiedenbeck J and Cohan FM: Origins of
bacterial diversity through horizontal genetic transfer and
adaptation to new ecological niches. FEMS Microbiol Rev.
35:957–976. 2011.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Toft C and Andersson SGE: Evolutionary
microbial genomics: Insights into bacterial host adaptation. Nat
Rev Genet. 11:465–475. 2010.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Bliven KA and Maurelli AT: Evolution of
bacterial pathogens within the human host. Microbiol Spectr 4:
10.1128/microbiolspec.VMBF-0017-2015, 2016.
|
|
25
|
Soler N and Forterre P: Vesiduction: The
fourth way of HGT. Environ Microbiol. 22:2457–2460. 2020.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Griffith F: The significance of
pneumococcal types. J Hyg (Lond). 27:113–159. 1928.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Lederberg J and Tatum EL: Gene
recombination in Escherichia coli. Nature.
158(558)1946.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Zinder ND and Lederberg J: Genetic
exchange in Salmonella. J Bacteriol. 64:679–699. 1952.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Domingues S, Nielsen KM and da Silva GJ:
Various pathways leading to the acquisition of antibiotic
resistance by natural transformation. Mob Genet Elements.
2:257–260. 2012.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Calderón G and Aguilar L: Antimicrobial
resistance: More resistant microorganisms and antibiotics. Rev Méd
Costa Rica Centroam. 73:757–763. 2016.
|
|
31
|
Ellison CK, Dalia TN, Vidal Ceballos A,
Wang JC, Biais N, Brun YV and Dalia AB: Retraction of DNA-bound
type IV competence pili initiates DNA uptake during natural
transformation in Vibrio cholerae. Nat Microbiol. 3:773–780.
2018.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Graf FE, Palm M, Warringer J and Farewell
A: Inhibiting conjugation as a tool in the fight against antibiotic
resistance. Drug Dev Res. 80:19–23. 2019.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Krenek P, Samajova O, Luptovciak I,
Doskocilova A, Komis G and Samaj J: Transient plant transformation
mediated by Agrobacterium tumefaciens: Principles, methods and
applications. Biotechnol Adv. 33:1024–1042. 2015.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Bitto NJ, Chapman R, Pidot S, Costin A, Lo
C, Choi J, D'Cruze T, Reynolds EC, Dashper SG, Turnbull L, et al:
Bacterial membrane vesicles transport their DNA cargo into host
cells. Sci Rep. 7(7072)2017.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Parkinson JS: Classic spotlight: The
discovery of bacterial transduction. J Bacteriol. 198:2899–2900.
2016.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Abebe E, Tegegne B and Tibebu S: A review
on molecular mechanisms of bacterial resistance to antibiotics. Eur
J Appl Sci. 8:301–310. 2016.
|
|
37
|
Balcázar JL: Implications of
bacteriophages on the acquisition and spread of antibiotic
resistance in the environment. Int Microbiol. 23:475–479.
2020.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Brown L, Wolf JM, Prados-Rosales R and
Casadevall A: Through the wall: Extracellular vesicles in
gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol.
13:620–630. 2015.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Schwechheimer C and Kuehn MJ:
Outer-membrane vesicles from gram-negative bacteria: Biogenesis and
functions. Nat Rev Microbiol. 13:605–619. 2015.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Acosta RG and Vargas CM: Bacterial
resistance mechanism. Diagnóstico. 57:82–86. 2018.
|
|
41
|
Reygaert WC: An overview of the
antimicrobial resistance mechanisms of bacteria. AIMS Microbiol.
4:482–501. 2018.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Cox G and Wright GD: Intrinsic antibiotic
resistance: Mechanisms, origins, challenges and solutions. Int J
Med Microbiol. 303:287–292. 2013.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Martinez JL: General principles of
antibiotic resistance in bacteria. Drug Discov Today Technol.
11:33–39. 2014.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Bébéar CM and Pereyre S: Mechanisms of
drug resistance in Mycoplasma pneumoniae. Curr Drug Targets
Infect Disord. 5:263–271. 2005.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Zhao F, Liu J, Shi W, Huang F, Liu L, Zhao
S and Zhang J: Antimicrobial susceptibility and genotyping of
Mycoplasma pneumoniae isolates in Beijing, China, from 2014
to 2016. Antimicrob Resist Infect Control. 8(18)2019.PubMed/NCBI View Article : Google Scholar
|
|
46
|
O'Shea R and Moser HE: Physicochemical
properties of antibacterial compounds: Implications for drug
discovery. J Med Chem. 51:2871–2878. 2008.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Davies J and Davies D: Origins and
evolution of antibiotic resistance. Microbiol Mol Biol Rev.
74:417–433. 2010.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Martinez JL and Baquero F: Mutation
frequencies and antibiotic resistance. Antimicrob Agents Chemother.
44:1771–1777. 2000.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Binet R and Maurelli AT: Frequency of
spontaneous mutations that confer antibiotic resistance in
Chlamydia spp. Antimicrob Agents Chemother. 49:2865–2873.
2005.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Wang G, Wilson TJM, Jiang Q and Taylor DE:
Spontaneous mutations that confer antibiotic resistance in
Helicobacter pylori. Antimicrob Agents Chemother.
45:727–733. 2001.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Coculescu BI: Antimicrobial resistance
induced by genetic changes. J Med Life. 2:114–123. 2009.PubMed/NCBI
|
|
52
|
Meštrović T, Virok DP, Ljubin-Sternak S,
Raffai T, Burián K and Vraneš J: Antimicrobial resistance screening
in Chlamydia trachomatis by optimized McCoy cell culture
system and direct qPCR-based monitoring of chlamydial growth.
Methods Mol Biol. 2042:33–43. 2019.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Kondrashov FA: Gene duplication as a
mechanism of genomic adaptation to a changing environment. Proc
Biol Sci. 279:5048–5057. 2012.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Calçada C, Silva M, Baptista V, Thathy V,
Silva-Pedrosa R, Granja D, Ferreira PE, Gil JP, Fidock DA and Veiga
MI: Expansion of a specific Plasmodium falciparum PfMDR1
haplotype in southeast Asia with increased substrate transport.
mBio. 11:e02093–20. 2020.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Munita JM and Arias CA: Mechanisms of
antibiotic resistance. Microbiol Spectr 4: 10.1128/microbiolspec.
VMBF-0016-2015, 2016.
|
|
56
|
Begum S, Begum T, Rahman N and Khan RA: A
review on antibiotic resistance and way of combating antimicrobial
resistance. GSC Biol Pharm Sci. 14:87–97. 2021.
|
|
57
|
Etebu E and Arikekpar I: Antibiotics:
Classification and mechanisms of action with emphasis on molecular
perspectives. Int J Appl Microbiol Biotechnol Res. 4:90–101.
2016.
|
|
58
|
Poulikakos P, Tansarli GS and Falagas ME:
Combination antibiotic treatment versus monotherapy for
multidrug-resistant, extensively drug-resistant, and
pandrug-resistant Acinetobacter infections: A systematic
review. Eur J Clin Microbiol Infect Dis. 33:1675–1685.
2014.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Kapoor G, Saigal S and Elongavan A: Action
and resistance mechanisms of antibiotics: A guide for clinicians. J
Anaesthesiol Clin Pharmacol. 33:300–305. 2017.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Epand RM, Walker C, Epand RF and Magarvey
NA: Molecular mechanisms of membrane targeting antibiotics. Biochim
Biophys Acta. 1858:980–987. 2016.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Hooper DC and Jacoby GA: Topoisomerase
inhibitors: Fluoroquinolone mechanisms of action and resistance.
Cold Spring Harb Perspect Med. 6(a025320)2016.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Santajit S and Indrawattana N: Mechanisms
of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int.
2016(2475067)2016.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Troncoso C, Pavez M, Santos A, Salazar R
and Barrientos Díaz L: Structural and physiological implications of
bacterial cell in antibiotic resistance mechanisms. Int J Morphol.
35:1214–1223. 2017.
|
|
64
|
Zhou G, Shi QS, Huang XM and Xie XB: The
three bacterial lines of defense against antimicrobial agents. Int
J Mol Sci. 16:21711–21733. 2015.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Borges A, Abreu AC, Dias C, Saavedra MJ,
Borges F and Simões M: New perspectives on the use of
phytochemicals as an emergent strategy to control bacterial
infections including biofilms. Molecules. 21(877)2016.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Pérez-Cano H and Robles-Contreras A: Basic
aspects of the mechanisms of bacterial resistance. Rev Med MD.
4:186–191. 2013.
|
|
67
|
Sager M, Benten WP, Engelhardt E, Gougoula
C and Benga L: Characterization of biofilm formation in
[Pasteurella] pneumotropica and [Actinobacillus] muris isolates of
mouse origin. PLoS One. 10(e0138778)2015.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Martinez JL, Vicente MF, Delgado-Iribarren
A, Perez-Diaz JC and Baquero F: Small plasmids are involved in
amoxicillin-clavulanate resistance in Escherichia coli.
Antimicrob Agents Chemother. 33(595)1989.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Sideraki V, Huang W, Palzkill T and
Gilbert HF: A secondary drug resistance mutation of TEM-1
beta-lactamase that suppresses misfolding and aggregation. Proc
Natl Acad Sci USA. 98:283–288. 2001.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Salverda ML, De Visser JA and Barlow M:
Natural evolution of TEM-1 β-lactamase: experimental reconstruction
and clinical relevance. FEMS Microbiol Rev. 34:1015–1036.
2010.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Delgado-Valverde M, Sojo-Dorado J, Pascual
A and Rodríguez-Baño J: Clinical management of infections caused by
multidrug-resistant Enterobacteriaceae. Ther Adv Infect Dis.
1:49–69. 2013.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Rodríguez-Baño J, Gutiérrez-Gutiérrez B,
Machuca I and Pascual A: Treatment of infections caused by
extended-spectrum-beta-lactamase-, AmpC-, and
carbapenemase-producing Enterobacteriaceae. Clin Microbiol Rev.
31:e00079–17. 2018.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Retamar P, Portillo MM, López-Prieto MD,
Rodríguez-López F, de Cueto M, García MV, Gómez MJ, Del Arco A,
Muñoz A, Sánchez-Porto A, et al: Impact of inadequate empirical
therapy on the mortality of patients with bloodstream infections: A
propensity score-based analysis. Antimicrob Agents Chemother.
56:472–478. 2012.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Nørgaard SM, Jensen CS, Aalestrup J,
Vandenbroucke-Grauls CM, de Boer MG and Pedersen AB: Choice of
therapeutic interventions and outcomes for the treatment of
infections caused by multidrug-resistant gram-negative pathogens: A
systematic review. Antimicrob Resist Infect Control.
8(170)2019.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Falagas ME, Karageorgopoulos DE and
Nordmann P: Therapeutic options for infections with
Enterobacteriaceae producing carbapenem-hydrolyzing enzymes. Future
Microbiol. 6:653–666. 2011.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Gill EE, Franco OL and Hancock REW:
Antibiotic adjuvants: Diverse strategies for controlling
drug-resistant pathogens. Chem Biol Drug Des. 85:56–78.
2015.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Lin DM, Koskella B and Lin HC: Phage
therapy: An alternative to antibiotics in the age of multi-drug
resistance. World J Gastrointest Pharmacol Ther. 8:162–173.
2017.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Reina J and Reina N: Phage theraphy, an
alternative to antibiotic therapy? Rev Esp Quimioter. 31:101–104.
2018.PubMed/NCBI(In Spanish).
|
|
79
|
Castañeda GCD: Intestinal microbota,
probiotics and prebiotics. Enferm Inv (Ambato). 2:156–160.
2017.
|
|
80
|
Játiva-Mariño E, Manterola C, Macias R and
Narváez D: Probiotics and Prebiotics: Its role in childhood acute
diarrheal disease therapy. Int J Morphol. 39:294–301. 2021.
|
|
81
|
Olveira G and González-Molero I: An update
on probiotics, prebiotics and symbiotics in clinical nutrition.
Endocrinol Nutr. 63:482–494. 2016.PubMed/NCBI View Article : Google Scholar : (In English,
Spanish).
|
|
82
|
Suárez JE: Autochthonous microbiota,
probiotics and prebiotics. Nutr Hosp. 31 (Suppl 1):S3–S9.
2015.PubMed/NCBI View Article : Google Scholar : (In Spanish).
|
|
83
|
Feria MG, Taborda NA, Hernandez JC and
Rugeles MT: Effects of prebiotics and probiotics on
gastrointestinal tract lymphoid tissue in hiv infected patients.
Rev Med Chil. 145:219–229. 2017.PubMed/NCBI View Article : Google Scholar : (In Spanish).
|
|
84
|
Pandey KR, Naik SR and Vakil BV:
Probiotics, prebiotics and synbiotics-a review. J Food Sci Technol.
52:7577–7587. 2015.PubMed/NCBI View Article : Google Scholar
|
|
85
|
González-Torralba A, García-Esteban C and
Alós JI: Enteropathogens and antibiotics. Enferm Infecc Microbiol
Clin (Engl Ed). 36:47–54. 2018.PubMed/NCBI View Article : Google Scholar : (In English,
Spanish).
|
|
86
|
Alcántar-Curiel MD, Blackburn D, Saldaña
Z, Gayosso-Vázquez C, Iovine NM, De la Cruz MA and Girón JA:
Multi-functional analysis of Klebsiella pneumoniae fimbrial types
in adherence and biofilm formation. Virulence. 4:129–138.
2013.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Clarke SC, Haigh RD, Freestone PP and
Williams PH: Virulence of enteropathogenic Escherichia coli,
a global pathogen. Clin Microbiol Rev. 16:365–378. 2003.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Gallego-Maldonado G, Otálora-Díaz AS,
Urbano-Cáceres EX and Morales-Súarez C: Bacterial multiresistance:
Therapeutic challenge in renal transplantation. Univ Salud.
21:72–87. 2019.
|
|
89
|
Schroeder GN and Hilbi H: Molecular
pathogenesis of Shigella spp.: Controlling host cell
signaling, invasion, and death by type III secretion. Clin
Microbiol Rev. 21:134–156. 2008.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Tanwar J, Das S, Fatima Z and Hameed S:
Multidrug resistance: An emerging crisis. Interdiscip Perspect
Infect Dis. 2014(541340)2014.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Alonso-Pérez C, Alcántara-Salinas A,
Escobar-Rojas V, Ramírez-Sandoval MP, Reyes-Hernández MU,
Guerrero-Becerra M, Vargas-Mosso ME, Hernández-Magaña R,
Anzures-Gutiérrez SA, Cuevas-López LL, et al: Gastroenteritis by
Campylobacter in children. Current concepts. Bol Clin Hosp
Infant Edo Son. 36:88–101. 2019.
|
|
92
|
Navon-Venezia S, Kondratyeva K and
Carattoli A: Klebsiella pneumoniae: A major worldwide source and
shuttle for antibiotic resistance. FEMS Microbiol Rev. 41:252–275.
2017.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Fernández-Abreu A, Bravo-Fariñas LC,
Rivero-Navea G, Nuñez-Fernández FA, Cruz-Infante Y, Águila-Sánchez
A and Hernández-Martínez JL: Determination of biofilms and
extended-spectrum beta-lactamases in Vibrio cholerae non-O1,
non-O139 isolates from patients with diarrhea in Cuba. Rev Cubana
Med Trop. 71:1–7. 2019.
|
|
94
|
Riveros M and Ochoa TJ: Relevant public
health enteropathogens. Rev Peru Med Exp Salud Publica. 32:157–164.
2015.PubMed/NCBI(In Spanish).
|
|
95
|
Macero-Gualpa LJ, Vásquez-Véliz RM and
Reyes-Sánchez RR: Wound infection by aeromona hydrophila, a case
report in ecuador. Rev Med FCM-UCSG. 23:95–99. 2019.
|
|
96
|
Fàbrega A and Vila J: Yersinia
enterocolitica: Pathogenesis, virulence and antimicrobial
resistance. Enferm Infecc Microbiol Clin. 30:24–32. 2012.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Liu GY: Molecular pathogenesis of
Staphylococcus aureus infection. Pediatr Res. 65:71R–77R.
2009.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Harnisz M and Korzeniewska E: The
prevalence of multidrug-resistant Aeromonas spp in the
municipal wastewater system and their dissemination in the
environment. Sci Total Environ. 626:377–383. 2018.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Fiore E, Van Tyne D and Gilmore MS:
Pathogenicity of enterococci. Microbiol Spectr.
7:10.1128/microbiolspec.GPP3-0053-2018. 2019.
|