
Molecular mechanisms of multidrug resistance in clinically relevant enteropathogenic bacteria (Review)
- Authors:
- Julia Alexsandra González-Villarreal
- Katia Jamileth González-Lozano
- Elva Teresa Aréchiga-Carvajal
- Jesús Antonio Morlett-Chávez
- Miriam Paulina Luévanos-Escareño
- Nagamani Balagurusamy
- Mauricio Andrés Salinas-Santander
-
Affiliations: Faculty of Biological Sciences, Autonomous University of Coahuila, Torreón, Coahuila 27275, Mexico, Microbiology Department, Phytopathology and Mycology Laboratory, Faculty of Biological Sciences, Genetic Manipulation Unit, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 66459, Mexico, Research Department, Faculty of Medicine Saltillo Unit, Autonomous University of Coahuila, Saltillo, Coahuila 25000, Mexico, Bioprocesses Laboratory, Faculty of Biological Sciences, Autonomous University of Coahuila, Torreón, Coahuila 27275, Mexico, Bioremediation Laboratory, Faculty of Biological Sciences, Autonomous University of Coahuila, Torreón, Coahuila 27275, Mexico - Published online on: November 8, 2022 https://doi.org/10.3892/etm.2022.11689
- Article Number: 753
-
Copyright: © González-Villarreal et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Sell J and Dolan B: Common gastrointestinal infections. Prim Care. 45:519–532. 2018. | |
Hernández CC, Aguilera AMG and Castro EG: Gastrointestinal diseases, situation in Mexico. Enf Infec Microbiol. 31:137–151. 2011. | |
World Health Organization: WHO's first ever global estimates of foodborne diseases find children under 5 account for almost one third of deaths. Geneva, Switzerland, 2015. Available from: https://www.who.int. | |
World Health Organization: WHO publishes list of bacteria for which new antibiotics are urgently needed. Geneva, Switzerland, 2017. Available from: https://www.who.int. | |
Reis RS and Horn F: Enteropathogenic Escherichia coli, Samonella, Shigella and Yersinia: Cellular aspects of host-bacteria interactions in enteric diseases. Gut Pathog. 2(8)2010.PubMed/NCBI View Article : Google Scholar | |
Zaheer R, Cook SR, Barbieri R, Goji N, Cameron A, Petkau A, Polo RO, Tymensen L, Stamm C, Song J, et al: Surveillance of Enterococcus spp reveals distinct species and antimicrobial resistance diversity across a one-health continuum. Sci Rep. 10(3937)2020.PubMed/NCBI View Article : Google Scholar | |
Fariñas MC and Martínez-Martínez L: Multiresistant gram-negative bacterial infections: Enterobacteria, pseudomonas aeruginosa, Acinetobacter baumannii and other non-fermenting gram-negative bacilli. Enferm Infecc Microbiol Clin. 31:402–409. 2013.PubMed/NCBI View Article : Google Scholar : (In Spanish). | |
Silva-Díaz H, Bustamante-Canelo O, Aguilar-Gamboa F, Mera-Villasis K, Ipanaque-Chozo J, Seclen-Bernabe E and Vergara-Espinosa M: Predominant enteropathogens in acute diarrhea and associated variables in children at the lambayeque regional hospital, Peru. Horiz Med. 17:38–44. 2017. | |
Oliva-Menacho J, Oliva-Candela J and Garcia-Hjarles M: Multi-drug resistant bacteria isolated from medical stethoscopes in a level III hospital. Rev Med Hered. 28:242–246. 2017. | |
Hernandez del Sol CR and Vazquez Hernandez G, Mesa Delgado Z, Bermudez Aleman RI, Sotolongo Rodriguez Y and Vazquez Hernandez G: Enteropathogenic bacteria associated with acute diarrheal disease in children. Acta Médica del Centro. 11:28–34. 2017. | |
López-Pueyo MJ, Barcenilla-Gaite F, Amaya-Villar R and Garnacho-Montero J: Antibiotic multiresistance in critical care units. Med Intensiva. 35:41–53. 2011.PubMed/NCBI View Article : Google Scholar : (In Spanish). | |
Torres C, Alonso CA, Ruiz-Ripa L, León-Sampedro R, del Campo R and Coque TM: Antimicrobial Resistance in Enterococcus spp. of animal origin. In: Antimicrobial Resistance in Bacteria from Livestock and Companion Animals. Schwarz S, Cavaco LM and Shen J (eds). Wiley Online Library, USA, pp185-227, 2018. | |
Levin-Reisman I, Brauner A, Ronin I and Balaban NQ: Epistasis between antibiotic tolerance, persistence, and resistance mutations. Proc Natl Acad Sci USa. 116:14734–14739. 2019.PubMed/NCBI View Article : Google Scholar | |
Fernández-García L, Fernandez-Cuenca F, Blasco L, López-Rojas R, Ambroa A, Lopez M, Pascual Á, Bou G and Tomás M: Relationship between tolerance and persistence mechanisms in Acinetobacter baumannii strains with AbkAB toxin-antitoxin system. Antimicrob Agents Chemother. 62:e00250–18. 2018.PubMed/NCBI View Article : Google Scholar | |
Pacios O, Blasco L, Bleriot I, Fernandez-Garcia L, González Bardanca M, Ambroa A, López M, Bou G and Tomás M: Strategies to combat multidrug-resistant and persistent infectious diseases. Antibiotics (Basel). 9(65)2020.PubMed/NCBI View Article : Google Scholar | |
Brauner A, Fridman O, Gefen O and Balaban NQ: . Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol. 14:320–330. 2016.PubMed/NCBI View Article : Google Scholar | |
Remes Troche JM: Reflections on antibiotic resistance and what to do about it. Rev Gastroenterol Mex. 81:1–2. 2016.PubMed/NCBI View Article : Google Scholar : (In English, Spanish). | |
Thapa Shrestha U, Adhikari N, Maharjan R, Banjara MR, Rijal KR, Basnyat SR and Agrawal VP: Mutildrug resistant Vibrio cholerae O1 from clinical and environmental samples in Kathmandu city. BMC Infect Dis. 15(104)2015.PubMed/NCBI View Article : Google Scholar | |
Hawkey PM, Warren RE, Livermore DM, McNulty CAM, Enoch DA, Otter JA and Wilson A: Treatment of infections caused by multidrug-resistant gram-negative bacteria: Report of the British society for antimicrobial chemotherapy/healthcare infection society/British infection association joint working party. J Antimicrob Chemother. 73 (Suppl 3):iii2–iii78. 2018.PubMed/NCBI View Article : Google Scholar | |
Alkofide H, Alhammad AM, Alruwaili A, Aldemerdash A, Almangour TA, Alsuwayegh A, Almoqbel D, Albati A, Alsaud A and Enani M: Multidrug-resistant and extensively drug-resistant Enterobacteriaceae: Prevalence, treatments, and outcomes-a retrospective cohort study. Infect Drug Resist. 13:4653–4662. 2020.PubMed/NCBI View Article : Google Scholar | |
Nadeem SF, Gohar UF, Tahir SF, Mukhtar H, Pornpukdeewattana S, Nukthamna P, Moula Ali AM, Bavisetty S and Masa S: Antimicrobial resistance: More than 70 years of war between humans and bacteria. Crit Rev Microbiol. 46:578–599. 2020.PubMed/NCBI View Article : Google Scholar | |
Wiedenbeck J and Cohan FM: Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev. 35:957–976. 2011.PubMed/NCBI View Article : Google Scholar | |
Toft C and Andersson SGE: Evolutionary microbial genomics: Insights into bacterial host adaptation. Nat Rev Genet. 11:465–475. 2010.PubMed/NCBI View Article : Google Scholar | |
Bliven KA and Maurelli AT: Evolution of bacterial pathogens within the human host. Microbiol Spectr 4: 10.1128/microbiolspec.VMBF-0017-2015, 2016. | |
Soler N and Forterre P: Vesiduction: The fourth way of HGT. Environ Microbiol. 22:2457–2460. 2020.PubMed/NCBI View Article : Google Scholar | |
Griffith F: The significance of pneumococcal types. J Hyg (Lond). 27:113–159. 1928.PubMed/NCBI View Article : Google Scholar | |
Lederberg J and Tatum EL: Gene recombination in Escherichia coli. Nature. 158(558)1946.PubMed/NCBI View Article : Google Scholar | |
Zinder ND and Lederberg J: Genetic exchange in Salmonella. J Bacteriol. 64:679–699. 1952.PubMed/NCBI View Article : Google Scholar | |
Domingues S, Nielsen KM and da Silva GJ: Various pathways leading to the acquisition of antibiotic resistance by natural transformation. Mob Genet Elements. 2:257–260. 2012.PubMed/NCBI View Article : Google Scholar | |
Calderón G and Aguilar L: Antimicrobial resistance: More resistant microorganisms and antibiotics. Rev Méd Costa Rica Centroam. 73:757–763. 2016. | |
Ellison CK, Dalia TN, Vidal Ceballos A, Wang JC, Biais N, Brun YV and Dalia AB: Retraction of DNA-bound type IV competence pili initiates DNA uptake during natural transformation in Vibrio cholerae. Nat Microbiol. 3:773–780. 2018.PubMed/NCBI View Article : Google Scholar | |
Graf FE, Palm M, Warringer J and Farewell A: Inhibiting conjugation as a tool in the fight against antibiotic resistance. Drug Dev Res. 80:19–23. 2019.PubMed/NCBI View Article : Google Scholar | |
Krenek P, Samajova O, Luptovciak I, Doskocilova A, Komis G and Samaj J: Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications. Biotechnol Adv. 33:1024–1042. 2015.PubMed/NCBI View Article : Google Scholar | |
Bitto NJ, Chapman R, Pidot S, Costin A, Lo C, Choi J, D'Cruze T, Reynolds EC, Dashper SG, Turnbull L, et al: Bacterial membrane vesicles transport their DNA cargo into host cells. Sci Rep. 7(7072)2017.PubMed/NCBI View Article : Google Scholar | |
Parkinson JS: Classic spotlight: The discovery of bacterial transduction. J Bacteriol. 198:2899–2900. 2016.PubMed/NCBI View Article : Google Scholar | |
Abebe E, Tegegne B and Tibebu S: A review on molecular mechanisms of bacterial resistance to antibiotics. Eur J Appl Sci. 8:301–310. 2016. | |
Balcázar JL: Implications of bacteriophages on the acquisition and spread of antibiotic resistance in the environment. Int Microbiol. 23:475–479. 2020.PubMed/NCBI View Article : Google Scholar | |
Brown L, Wolf JM, Prados-Rosales R and Casadevall A: Through the wall: Extracellular vesicles in gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol. 13:620–630. 2015.PubMed/NCBI View Article : Google Scholar | |
Schwechheimer C and Kuehn MJ: Outer-membrane vesicles from gram-negative bacteria: Biogenesis and functions. Nat Rev Microbiol. 13:605–619. 2015.PubMed/NCBI View Article : Google Scholar | |
Acosta RG and Vargas CM: Bacterial resistance mechanism. Diagnóstico. 57:82–86. 2018. | |
Reygaert WC: An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 4:482–501. 2018.PubMed/NCBI View Article : Google Scholar | |
Cox G and Wright GD: Intrinsic antibiotic resistance: Mechanisms, origins, challenges and solutions. Int J Med Microbiol. 303:287–292. 2013.PubMed/NCBI View Article : Google Scholar | |
Martinez JL: General principles of antibiotic resistance in bacteria. Drug Discov Today Technol. 11:33–39. 2014.PubMed/NCBI View Article : Google Scholar | |
Bébéar CM and Pereyre S: Mechanisms of drug resistance in Mycoplasma pneumoniae. Curr Drug Targets Infect Disord. 5:263–271. 2005.PubMed/NCBI View Article : Google Scholar | |
Zhao F, Liu J, Shi W, Huang F, Liu L, Zhao S and Zhang J: Antimicrobial susceptibility and genotyping of Mycoplasma pneumoniae isolates in Beijing, China, from 2014 to 2016. Antimicrob Resist Infect Control. 8(18)2019.PubMed/NCBI View Article : Google Scholar | |
O'Shea R and Moser HE: Physicochemical properties of antibacterial compounds: Implications for drug discovery. J Med Chem. 51:2871–2878. 2008.PubMed/NCBI View Article : Google Scholar | |
Davies J and Davies D: Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 74:417–433. 2010.PubMed/NCBI View Article : Google Scholar | |
Martinez JL and Baquero F: Mutation frequencies and antibiotic resistance. Antimicrob Agents Chemother. 44:1771–1777. 2000.PubMed/NCBI View Article : Google Scholar | |
Binet R and Maurelli AT: Frequency of spontaneous mutations that confer antibiotic resistance in Chlamydia spp. Antimicrob Agents Chemother. 49:2865–2873. 2005.PubMed/NCBI View Article : Google Scholar | |
Wang G, Wilson TJM, Jiang Q and Taylor DE: Spontaneous mutations that confer antibiotic resistance in Helicobacter pylori. Antimicrob Agents Chemother. 45:727–733. 2001.PubMed/NCBI View Article : Google Scholar | |
Coculescu BI: Antimicrobial resistance induced by genetic changes. J Med Life. 2:114–123. 2009.PubMed/NCBI | |
Meštrović T, Virok DP, Ljubin-Sternak S, Raffai T, Burián K and Vraneš J: Antimicrobial resistance screening in Chlamydia trachomatis by optimized McCoy cell culture system and direct qPCR-based monitoring of chlamydial growth. Methods Mol Biol. 2042:33–43. 2019.PubMed/NCBI View Article : Google Scholar | |
Kondrashov FA: Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc Biol Sci. 279:5048–5057. 2012.PubMed/NCBI View Article : Google Scholar | |
Calçada C, Silva M, Baptista V, Thathy V, Silva-Pedrosa R, Granja D, Ferreira PE, Gil JP, Fidock DA and Veiga MI: Expansion of a specific Plasmodium falciparum PfMDR1 haplotype in southeast Asia with increased substrate transport. mBio. 11:e02093–20. 2020.PubMed/NCBI View Article : Google Scholar | |
Munita JM and Arias CA: Mechanisms of antibiotic resistance. Microbiol Spectr 4: 10.1128/microbiolspec. VMBF-0016-2015, 2016. | |
Begum S, Begum T, Rahman N and Khan RA: A review on antibiotic resistance and way of combating antimicrobial resistance. GSC Biol Pharm Sci. 14:87–97. 2021. | |
Etebu E and Arikekpar I: Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. Int J Appl Microbiol Biotechnol Res. 4:90–101. 2016. | |
Poulikakos P, Tansarli GS and Falagas ME: Combination antibiotic treatment versus monotherapy for multidrug-resistant, extensively drug-resistant, and pandrug-resistant Acinetobacter infections: A systematic review. Eur J Clin Microbiol Infect Dis. 33:1675–1685. 2014.PubMed/NCBI View Article : Google Scholar | |
Kapoor G, Saigal S and Elongavan A: Action and resistance mechanisms of antibiotics: A guide for clinicians. J Anaesthesiol Clin Pharmacol. 33:300–305. 2017.PubMed/NCBI View Article : Google Scholar | |
Epand RM, Walker C, Epand RF and Magarvey NA: Molecular mechanisms of membrane targeting antibiotics. Biochim Biophys Acta. 1858:980–987. 2016.PubMed/NCBI View Article : Google Scholar | |
Hooper DC and Jacoby GA: Topoisomerase inhibitors: Fluoroquinolone mechanisms of action and resistance. Cold Spring Harb Perspect Med. 6(a025320)2016.PubMed/NCBI View Article : Google Scholar | |
Santajit S and Indrawattana N: Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int. 2016(2475067)2016.PubMed/NCBI View Article : Google Scholar | |
Troncoso C, Pavez M, Santos A, Salazar R and Barrientos Díaz L: Structural and physiological implications of bacterial cell in antibiotic resistance mechanisms. Int J Morphol. 35:1214–1223. 2017. | |
Zhou G, Shi QS, Huang XM and Xie XB: The three bacterial lines of defense against antimicrobial agents. Int J Mol Sci. 16:21711–21733. 2015.PubMed/NCBI View Article : Google Scholar | |
Borges A, Abreu AC, Dias C, Saavedra MJ, Borges F and Simões M: New perspectives on the use of phytochemicals as an emergent strategy to control bacterial infections including biofilms. Molecules. 21(877)2016.PubMed/NCBI View Article : Google Scholar | |
Pérez-Cano H and Robles-Contreras A: Basic aspects of the mechanisms of bacterial resistance. Rev Med MD. 4:186–191. 2013. | |
Sager M, Benten WP, Engelhardt E, Gougoula C and Benga L: Characterization of biofilm formation in [Pasteurella] pneumotropica and [Actinobacillus] muris isolates of mouse origin. PLoS One. 10(e0138778)2015.PubMed/NCBI View Article : Google Scholar | |
Martinez JL, Vicente MF, Delgado-Iribarren A, Perez-Diaz JC and Baquero F: Small plasmids are involved in amoxicillin-clavulanate resistance in Escherichia coli. Antimicrob Agents Chemother. 33(595)1989.PubMed/NCBI View Article : Google Scholar | |
Sideraki V, Huang W, Palzkill T and Gilbert HF: A secondary drug resistance mutation of TEM-1 beta-lactamase that suppresses misfolding and aggregation. Proc Natl Acad Sci USA. 98:283–288. 2001.PubMed/NCBI View Article : Google Scholar | |
Salverda ML, De Visser JA and Barlow M: Natural evolution of TEM-1 β-lactamase: experimental reconstruction and clinical relevance. FEMS Microbiol Rev. 34:1015–1036. 2010.PubMed/NCBI View Article : Google Scholar | |
Delgado-Valverde M, Sojo-Dorado J, Pascual A and Rodríguez-Baño J: Clinical management of infections caused by multidrug-resistant Enterobacteriaceae. Ther Adv Infect Dis. 1:49–69. 2013.PubMed/NCBI View Article : Google Scholar | |
Rodríguez-Baño J, Gutiérrez-Gutiérrez B, Machuca I and Pascual A: Treatment of infections caused by extended-spectrum-beta-lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae. Clin Microbiol Rev. 31:e00079–17. 2018.PubMed/NCBI View Article : Google Scholar | |
Retamar P, Portillo MM, López-Prieto MD, Rodríguez-López F, de Cueto M, García MV, Gómez MJ, Del Arco A, Muñoz A, Sánchez-Porto A, et al: Impact of inadequate empirical therapy on the mortality of patients with bloodstream infections: A propensity score-based analysis. Antimicrob Agents Chemother. 56:472–478. 2012.PubMed/NCBI View Article : Google Scholar | |
Nørgaard SM, Jensen CS, Aalestrup J, Vandenbroucke-Grauls CM, de Boer MG and Pedersen AB: Choice of therapeutic interventions and outcomes for the treatment of infections caused by multidrug-resistant gram-negative pathogens: A systematic review. Antimicrob Resist Infect Control. 8(170)2019.PubMed/NCBI View Article : Google Scholar | |
Falagas ME, Karageorgopoulos DE and Nordmann P: Therapeutic options for infections with Enterobacteriaceae producing carbapenem-hydrolyzing enzymes. Future Microbiol. 6:653–666. 2011.PubMed/NCBI View Article : Google Scholar | |
Gill EE, Franco OL and Hancock REW: Antibiotic adjuvants: Diverse strategies for controlling drug-resistant pathogens. Chem Biol Drug Des. 85:56–78. 2015.PubMed/NCBI View Article : Google Scholar | |
Lin DM, Koskella B and Lin HC: Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther. 8:162–173. 2017.PubMed/NCBI View Article : Google Scholar | |
Reina J and Reina N: Phage theraphy, an alternative to antibiotic therapy? Rev Esp Quimioter. 31:101–104. 2018.PubMed/NCBI(In Spanish). | |
Castañeda GCD: Intestinal microbota, probiotics and prebiotics. Enferm Inv (Ambato). 2:156–160. 2017. | |
Játiva-Mariño E, Manterola C, Macias R and Narváez D: Probiotics and Prebiotics: Its role in childhood acute diarrheal disease therapy. Int J Morphol. 39:294–301. 2021. | |
Olveira G and González-Molero I: An update on probiotics, prebiotics and symbiotics in clinical nutrition. Endocrinol Nutr. 63:482–494. 2016.PubMed/NCBI View Article : Google Scholar : (In English, Spanish). | |
Suárez JE: Autochthonous microbiota, probiotics and prebiotics. Nutr Hosp. 31 (Suppl 1):S3–S9. 2015.PubMed/NCBI View Article : Google Scholar : (In Spanish). | |
Feria MG, Taborda NA, Hernandez JC and Rugeles MT: Effects of prebiotics and probiotics on gastrointestinal tract lymphoid tissue in hiv infected patients. Rev Med Chil. 145:219–229. 2017.PubMed/NCBI View Article : Google Scholar : (In Spanish). | |
Pandey KR, Naik SR and Vakil BV: Probiotics, prebiotics and synbiotics-a review. J Food Sci Technol. 52:7577–7587. 2015.PubMed/NCBI View Article : Google Scholar | |
González-Torralba A, García-Esteban C and Alós JI: Enteropathogens and antibiotics. Enferm Infecc Microbiol Clin (Engl Ed). 36:47–54. 2018.PubMed/NCBI View Article : Google Scholar : (In English, Spanish). | |
Alcántar-Curiel MD, Blackburn D, Saldaña Z, Gayosso-Vázquez C, Iovine NM, De la Cruz MA and Girón JA: Multi-functional analysis of Klebsiella pneumoniae fimbrial types in adherence and biofilm formation. Virulence. 4:129–138. 2013.PubMed/NCBI View Article : Google Scholar | |
Clarke SC, Haigh RD, Freestone PP and Williams PH: Virulence of enteropathogenic Escherichia coli, a global pathogen. Clin Microbiol Rev. 16:365–378. 2003.PubMed/NCBI View Article : Google Scholar | |
Gallego-Maldonado G, Otálora-Díaz AS, Urbano-Cáceres EX and Morales-Súarez C: Bacterial multiresistance: Therapeutic challenge in renal transplantation. Univ Salud. 21:72–87. 2019. | |
Schroeder GN and Hilbi H: Molecular pathogenesis of Shigella spp.: Controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev. 21:134–156. 2008.PubMed/NCBI View Article : Google Scholar | |
Tanwar J, Das S, Fatima Z and Hameed S: Multidrug resistance: An emerging crisis. Interdiscip Perspect Infect Dis. 2014(541340)2014.PubMed/NCBI View Article : Google Scholar | |
Alonso-Pérez C, Alcántara-Salinas A, Escobar-Rojas V, Ramírez-Sandoval MP, Reyes-Hernández MU, Guerrero-Becerra M, Vargas-Mosso ME, Hernández-Magaña R, Anzures-Gutiérrez SA, Cuevas-López LL, et al: Gastroenteritis by Campylobacter in children. Current concepts. Bol Clin Hosp Infant Edo Son. 36:88–101. 2019. | |
Navon-Venezia S, Kondratyeva K and Carattoli A: Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev. 41:252–275. 2017.PubMed/NCBI View Article : Google Scholar | |
Fernández-Abreu A, Bravo-Fariñas LC, Rivero-Navea G, Nuñez-Fernández FA, Cruz-Infante Y, Águila-Sánchez A and Hernández-Martínez JL: Determination of biofilms and extended-spectrum beta-lactamases in Vibrio cholerae non-O1, non-O139 isolates from patients with diarrhea in Cuba. Rev Cubana Med Trop. 71:1–7. 2019. | |
Riveros M and Ochoa TJ: Relevant public health enteropathogens. Rev Peru Med Exp Salud Publica. 32:157–164. 2015.PubMed/NCBI(In Spanish). | |
Macero-Gualpa LJ, Vásquez-Véliz RM and Reyes-Sánchez RR: Wound infection by aeromona hydrophila, a case report in ecuador. Rev Med FCM-UCSG. 23:95–99. 2019. | |
Fàbrega A and Vila J: Yersinia enterocolitica: Pathogenesis, virulence and antimicrobial resistance. Enferm Infecc Microbiol Clin. 30:24–32. 2012.PubMed/NCBI View Article : Google Scholar | |
Liu GY: Molecular pathogenesis of Staphylococcus aureus infection. Pediatr Res. 65:71R–77R. 2009.PubMed/NCBI View Article : Google Scholar | |
Harnisz M and Korzeniewska E: The prevalence of multidrug-resistant Aeromonas spp in the municipal wastewater system and their dissemination in the environment. Sci Total Environ. 626:377–383. 2018.PubMed/NCBI View Article : Google Scholar | |
Fiore E, Van Tyne D and Gilmore MS: Pathogenicity of enterococci. Microbiol Spectr. 7:10.1128/microbiolspec.GPP3-0053-2018. 2019. |