Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
January-2023 Volume 25 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2023 Volume 25 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Vaccine development for zoonotic viral diseases caused by positive‑sense single‑stranded RNA viruses belonging to the Coronaviridae and Togaviridae families (Review)

  • Authors:
    • Seyed Sajjad Babaeimarzangou
    • Himasadat Zaker
    • Ehsan Soleimannezhadbari
    • Naeimeh Shamsi Gamchi
    • Masoud Kazeminia
    • Shima Tarighi
    • Homayon Seyedian
    • Aristidis Tsatsakis
    • Demetrios A. Spandidos
    • Denisa Margina
  • View Affiliations / Copyright

    Affiliations: Division of Poultry Health and Diseases, Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia 5756151818, Iran, Histology and Microscopic Analysis Division, RASTA Specialized Research Institute (RSRI), West Azerbaijan Science and Technology Park (WASTP), Urmia 5756115322, Iran, Young Researchers Club, Urmia Branch, Islamic Azad University, Urmia 5716963896, Iran, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417935840, Iran, Veterinary Office of West Azerbaijan Province, Urmia 5717617695, Iran, Faculty of Veterinary Medicine, Urmia University, Urmia 5756151818, Iran, Laboratory of Toxicology, Department of Medicine, University of Crete, 71307 Heraklion, Greece, Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece, Department of Biochemistry, Faculty of Pharmacy, ‘Carol Davila’ University of Medicine and Pharmacy, 020956 Bucharest, Romania
    Copyright: © Babaeimarzangou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 42
    |
    Published online on: November 30, 2022
       https://doi.org/10.3892/etm.2022.11741
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Outbreaks of zoonotic viral diseases pose a severe threat to public health and economies worldwide, with this currently being more prominent than it previously was human history. These emergency zoonotic diseases that originated and transmitted from vertebrates to humans have been estimated to account for approximately one billion cases of illness and have caused millions of deaths worldwide annually. The recent emergence of severe acute respiratory syndrome coronavirus‑2 (coronavirus disease 2019) is an excellent example of the unpredictable public health threat causing a pandemic. The present review summarizes the literature data regarding the main vaccine developments in human clinical phase I, II and III trials against the zoonotic positive‑sense single‑stranded RNA viruses belonging to the Coronavirus and Alphavirus genera, including severe acute respiratory syndrome, Middle east respiratory syndrome, Venezuelan equine encephalitis virus, Semliki Forest virus, Ross River virus, Chikungunya virus and O'nyong‑nyong virus. That there are neither vaccines nor effective antiviral drugs available against most of these viruses is undeniable. Therefore, new explosive outbreaks of these zoonotic viruses may surely be expected. The present comprehensive review provides an update on the status of vaccine development in different clinical trials against these viruses, as well as an overview of the present results of these trials.
View Figures

Figure 1

View References

1 

Du L, Tai W, Zhou Y and Jiang S: Vaccines for the prevention against the threat of MERS-CoV. Expert Rev Vaccines. 15:1123–1134. 2016.PubMed/NCBI View Article : Google Scholar

2 

Hui DSC and Zumla A: Severe acute respiratory syndrome: Historical, epidemiologic, and clinical features. Infect Dis Clin North Am. 33:869–889. 2019.PubMed/NCBI View Article : Google Scholar

3 

Ramadan N and Shaib H: Middle East respiratory syndrome coronavirus (MERS-CoV): A review. Germs. 9:35–42. 2019.PubMed/NCBI View Article : Google Scholar

4 

Donnelly CA, Malik MR, Elkholy A, Cauchemez S and Van Kerkhove MD: Worldwide reduction in MERS cases and deaths since 2016. Emerg Infect Dis. 25:1758–1760. 2019.PubMed/NCBI View Article : Google Scholar

5 

Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, et al: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 395:1054–1062. 2020.PubMed/NCBI View Article : Google Scholar

6 

Folegatti PM, Harrison K, Preciado-Llanes L, Lopez FR, Bittaye M, Kim YC, Flaxman A, Bellamy D, Makinson R, Sheridan J, et al: A single dose of ChAdOx1 Chik vaccine induces neutralizing antibodies against four chikungunya virus lineages in a phase 1 clinical trial. Nat Commun. 12(4636)2021.PubMed/NCBI View Article : Google Scholar

7 

Zeller H, Van Bortel W and Sudre B: Chikungunya: Its history in Africa and Asia and its spread to new regions in 2013-2014. J Infect Dis. 214 (Suppl 5):S436–S440. 2016.PubMed/NCBI View Article : Google Scholar

8 

Bernasconi V, Kristiansen PA, Whelan M, Román RG, Bettis A, Yimer SA, Gurry C, Andersen SR, Yeskey D, Mandi H, et al: Developing vaccines against epidemic-prone emerging infectious diseases. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 63:65–73. 2020.PubMed/NCBI View Article : Google Scholar

9 

Zaki AM, Van Boheemen S, Bestebroer TM, Osterhaus AD and Fouchier RA: Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 367:1814–1820. 2012.PubMed/NCBI View Article : Google Scholar

10 

World Health Organization (WHO): ‘MERS situation update, September 2019’. WHO, Geneva, 2019. https://www.emro.who.int/pandemic-epidemic-diseases/mers-cov/mers-situation-update-september-2019.html.

11 

Wang C, Zheng X, Gai W, Wong G, Wang H, Jin H, Feng N, Zhao Y, Zhang W, Li N, et al: Novel chimeric virus-like particles vaccine displaying MERS-CoV receptor-binding domain induce specific humoral and cellular immune response in mice. Antiviral Res. 140:55–61. 2017.PubMed/NCBI View Article : Google Scholar

12 

Yu X, Zhang S, Jiang L, Cui Y, Li D, Wang D, Wang N, Fu L, Shi X, Li Z, et al: Structural basis for the neutralization of MERS-CoV by a human monoclonal antibody MERS-27. Sci Rep. 5(13133)2015.PubMed/NCBI View Article : Google Scholar

13 

Letko M, Marzi A and Munster V: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 5:562–569. 2020.PubMed/NCBI View Article : Google Scholar

14 

Li F and Du L: MERS coronavirus: An emerging zoonotic virus. Viruses. 11(663)2019.PubMed/NCBI View Article : Google Scholar

15 

Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, Geng Q, Auerbach A and Li F: Structural basis of receptor recognition by SARS-CoV-2. Nature. 581:221–224. 2020.PubMed/NCBI View Article : Google Scholar

16 

Woo PCY, Lau SKP, Chen Y, Wong EYM, Chan KH, Chen H, Zhang L, Xia N and Yuen KY: Rapid detection of MERS coronavirus-like viruses in bats: Pote1ntial for tracking MERS coronavirus transmission and animal origin. Emerg Microbes Infect. 7(18)2018.PubMed/NCBI View Article : Google Scholar

17 

Cotten M, Watson SJ, Zumla AI, Makhdoom HQ, Palser AL, Ong SH, Al Rabeeah AA, Alhakeem RF, Assiri A, Al-Tawfiq JA, et al: Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus. mBio. 5:e01062–13. 2014.PubMed/NCBI View Article : Google Scholar

18 

Azhar EI, El-Kafrawy SA, Farraj SA, Hassan AM, Al-Saeed MS, Hashem AM and Madani TA: Evidence for camel-to-human transmission of MERS coronavirus. N Engl J Med. 370:2499–2505. 2014.PubMed/NCBI View Article : Google Scholar

19 

Alshukairi AN, Zheng J, Zhao J, Nehdi A, Baharoon SA, Layqah L, Bokhari A, Al Johani SM, Samman N, Boudjelal M, et al: High prevalence of MERS-CoV infection in camel workers in Saudi Arabia. mBio. 9:e01985–18. 2018.PubMed/NCBI View Article : Google Scholar

20 

Li E, Chi H, Huang P, Yan F, Zhang Y, Liu C, Wang Z, Li G, Zhang S, Mo R, et al: A novel bacterium-like particle vaccine displaying the MERS-CoV receptor-binding domain induces specific mucosal and systemic immune responses in mice. Viruses. 11(799)2019.PubMed/NCBI View Article : Google Scholar

21 

Chi H, Zheng X, Wang X, Wang C, Wang H, Gai W, Perlman S, Yang S, Zhao J and Xia X: DNA vaccine encoding Middle East respiratory syndrome coronavirus S1 protein induces protective immune responses in mice. Vaccine. 35:2069–2075. 2017.PubMed/NCBI View Article : Google Scholar

22 

Al-Amri SS, Abbas AT, Siddiq LA, Alghamdi A, Sanki MA, Al-Muhanna MK, Alhabbab RY, Azhar EI, Li X and Hashem AM: Immunogenicity of candidate MERS-CoV DNA vaccines based on the spike protein. Sci Rep. 7(44875)2017.PubMed/NCBI View Article : Google Scholar

23 

Ababneh M, Alrwashdeh M and Khalifeh M: Recombinant adenoviral vaccine encoding the spike 1 subunit of the Middle East respiratory syndrome coronavirus elicits strong humoral and cellular immune responses in mice. Vet World. 12:1554–1562. 2019.PubMed/NCBI View Article : Google Scholar

24 

Bodmer BS, Fiedler AH, Hanauer JRH, Prüfer S and Mühlebach MD: Live-attenuated bivalent measles virus-derived vaccines targeting Middle East respiratory syndrome coronavirus induce robust and multifunctional T cell responses against both viruses in an appropriate mouse model. Virology. 521:99–107. 2018.PubMed/NCBI View Article : Google Scholar

25 

Langenmayer MC, Lülf-Averhoff AT, Adam-Neumair S, Fux R, Sutter G and Volz A: Distribution and absence of generalized lesions in mice following single dose intramuscular inoculation of the vaccine candidate MVA-MERS-S. Biologicals. 54:58–62. 2018.PubMed/NCBI View Article : Google Scholar

26 

Adney DR, Wang L, Van Doremalen N, Shi W, Zhang Y, Kong WP, Miller MR, Bushmaker T, Scott D, de Wit E, et al: Efficacy of an adjuvanted Middle East respiratory syndrome coronavirus spike protein vaccine in dromedary camels and alpacas. Viruses. 11(212)2019.PubMed/NCBI View Article : Google Scholar

27 

Alharbi NK, Qasim I, Almasoud A, Aljami HA, Alenazi MW, Alhafufi A, Aldibasi OS, Hashem AM, Kasem S, Albrahim R, et al: Humoral immunogenicity and efficacy of a single dose of ChAdOx1 MERS vaccine candidate in dromedary camels. Sci Rep. 9(16292)2019.PubMed/NCBI View Article : Google Scholar

28 

Hashem AM, Algaissi A, Agrawal AS, Al-Amri SS, Alhabbab RY, Sohrab SS, S Almasoud A, Alharbi NK, Peng BH, Russell M, et al: A highly immunogenic, protective, and safe adenovirus-based vaccine expressing Middle East respiratory syndrome coronavirus S1-CD40L fusion protein in a transgenic human dipeptidyl peptidase 4 mouse model. J Infect Dis. 220:1558–1567. 2019.PubMed/NCBI View Article : Google Scholar

29 

Lemiale F, Haddada H, Nabel GJ, Brough DE, King CR and Gall JG: Novel adenovirus vaccine vectors based on the enteric-tropic serotype 41. Vaccine. 25:2074–2084. 2007.PubMed/NCBI View Article : Google Scholar

30 

Alharbi NK, Padron-Regalado E, Thompson CP, Kupke A, Wells D, Sloan MA, Grehan K, Temperton N, Lambe T, Warimwe G, et al: ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice. Vaccine. 35:3780–3788. 2017.PubMed/NCBI View Article : Google Scholar

31 

Liu R, Wang J, Shao Y, Wang X, Zhang H, Shuai L, Ge J, Wen Z and Bu Z: A recombinant VSV-vectored MERS-CoV vaccine induces neutralizing antibody and T cell responses in rhesus monkeys after single dose immunization. Antiviral Res. 150:30–38. 2018.PubMed/NCBI View Article : Google Scholar

32 

Zhou Y, Yang Y, Huang J, Jiang S and Du L: Advances in MERS-CoV vaccines and therapeutics based on the receptor-binding domain. Viruses. 11(60)2019.PubMed/NCBI View Article : Google Scholar

33 

Agnihothram S, Menachery VD, Yount BL Jr, Lindesmith LC, Scobey T, Whitmore A, Schäfer A, Heise MT and Baric RS: Development of a broadly accessible Venezuelan equine encephalitis virus replicon particle vaccine platform. J Virol. 92:e00027–18. 2018.PubMed/NCBI View Article : Google Scholar

34 

Lan J, Yao Y, Deng Y, Chen H, Lu G, Wang W, Bao L, Deng W, Wei Q, Gao GF, et al: Recombinant receptor binding domain protein induces partial protective immunity in rhesus macaques against Middle East respiratory syndrome coronavirus challenge. EEBioMedicine. 2:1438–1446. 2015.PubMed/NCBI View Article : Google Scholar

35 

Wang Q, Qi J, Yuan Y, Xuan Y, Han P, Wan Y, Ji W, Li Y, Wu Y, Wang J, et al: Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26. Cell Host Microbe. 16:328–337. 2014.PubMed/NCBI View Article : Google Scholar

36 

Liu RQ, Ge JY, Wang JL, Yu S, Zhang HL, Wang JL, Wen ZY and Bu ZG: Newcastle disease virus-based MERS-CoV candidate vaccine elicits high-level and lasting neutralizing antibodies in Bactrian camels. J Integr Agric. 16:2264–2273. 2017.PubMed/NCBI View Article : Google Scholar

37 

Pallesen J, Wang N, Corbett KS, Wrapp D, Kirchdoerfer RN, Turner HL, Cottrell CA, Becker MM, Wang L, Shi W, et al: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc Natl Acad Sci USA. 114:E7348–E7357. 2017.PubMed/NCBI View Article : Google Scholar

38 

Wirblich C, Coleman CM, Kurup D, Abraham TS, Bernbaum JG, Jahrling PB, Hensley LE, Johnson RF, Frieman MB and Schnell MJ: One-health: A safe, efficient, dual-use vaccine for humans and animals against Middle East respiratory syndrome coronavirus and rabies virus. J Virol. 91:e02040–16. 2017.PubMed/NCBI View Article : Google Scholar

39 

Tai W, Wang Y, Fett CA, Zhao G, Li F, Perlman S, Jiang S, Zhou Y and Du L: Recombinant receptor-binding domains of multiple Middle East respiratory syndrome coronaviruses (MERS-CoVs) induce cross-neutralizing antibodies against divergent human and camel MERS-CoVs and antibody escape mutants. J Virol. 91:e01651–16. 2016.PubMed/NCBI View Article : Google Scholar

40 

Papageorgiou N, Lichière J, Baklouti A, Ferron F, Sévajol M, Canard B and Coutard B: Structural characterization of the N-terminal part of the MERS-CoV nucleocapsid by X-ray diffraction and small-angle X-ray scattering. Acta Crystallogr D Struct Biol. 72:192–202. 2016.PubMed/NCBI View Article : Google Scholar

41 

Zhang L, Li L, Yan L, Ming Z, Jia Z, Lou Z and Rao Z: Structural and biochemical characterization of endoribonuclease Nsp15 encoded by Middle East respiratory syndrome coronavirus. J Virol. 92:e00893–18. 2018.PubMed/NCBI View Article : Google Scholar

42 

Tang J, Zhang N, Tao X, Zhao G, Guo Y, Tseng CTK, Jiang S, Du L and Zhou Y: Optimization of antigen dose for a receptor-binding domain-based subunit vaccine against MERS coronavirus. Hum Vaccin Immunother. 11:1244–1250. 2015.PubMed/NCBI View Article : Google Scholar

43 

Du L, Zhao G, Kou Z, Ma C, Sun S, Poon VK, Lu L, Wang L, Debnath AK, Zheng BJ, et al: Identification of a receptor-binding domain in the S protein of the novel human coronavirus Middle East respiratory syndrome coronavirus as an essential target for vaccine development. J Virol. 87:9939–9942. 2013.PubMed/NCBI View Article : Google Scholar

44 

Nyon MP, Du L, Tseng CTK, Seid CA, Pollet J, Naceanceno KS, Agrawal A, Algaissi A, Peng BH, Tai W, et al: Engineering a stable CHO cell line for the expression of a MERS-coronavirus vaccine antigen. Vaccine. 36:1853–1862. 2018.PubMed/NCBI View Article : Google Scholar

45 

Tao X, Garron T, Agrawal AS, Algaissi A, Peng BH, Wakamiya M, Chan TS, Lu L, Du L, Jiang S, et al: Characterization and demonstration of the value of a lethal mouse model of Middle East respiratory syndrome coronavirus infection and disease. J Virol. 90:57–67. 2015.PubMed/NCBI View Article : Google Scholar

46 

Hao W, Wojdyla JA, Zhao R, Han R, Das R, Zlatev I, Manoharan M, Wang M and Cui S: Crystal structure of Middle East respiratory syndrome coronavirus helicase. PLoS Pathog. 13(e1006474)2017.PubMed/NCBI View Article : Google Scholar

47 

Wang C, Zheng X, Gai W, Zhao Y, Wang H, Wang H, Feng N, Chi H, Qiu B, Li N, et al: MERS-CoV virus-like particles produced in insect cells induce specific humoural and cellular imminity in rhesus macaques. Oncotarget. 8:12686–12694. 2017.PubMed/NCBI View Article : Google Scholar

48 

Coleman CM, Venkataraman T, Liu YV, Glenn GM, Smith GE, Flyer DC and Frieman MB: MERS-CoV spike nanoparticles protect mice from MERS-CoV infection. Vaccine. 35:1586–1589. 2017.PubMed/NCBI View Article : Google Scholar

49 

Coleman CM, Liu YV, Mu H, Taylor JK, Massare M, Flyer DC, Glenn GM, Smith GE and Frieman MB: Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. Vaccine. 32:3169–3174. 2014.PubMed/NCBI View Article : Google Scholar

50 

Kato T, Takami Y, Kumar Deo V and Park EY: Preparation of virus-like particle mimetic nanovesicles displaying the S protein of Middle East respiratory syndrome coronavirus using insect cells. J Biotechnol. 306:177–184. 2019.PubMed/NCBI View Article : Google Scholar

51 

Jung SY, Kang KW, Lee EY, Seo DW, Kim HL, Kim H, Kwon T, Park HL, Kim H, Lee SM and Nam JH: Heterologous prime-boost vaccination with adenoviral vector and protein nanoparticles induces both Th1 and Th2 responses against Middle East respiratory syndrome coronavirus. Vaccine. 36:3468–3476. 2018.PubMed/NCBI View Article : Google Scholar

52 

Veit S, Jany S, Fux R, Sutter G and Volz A: CD8+ T cells responding to the Middle East respiratory syndrome coronavirus nucleocapsid protein delivered by vaccinia virus MVA in mice. Viruses. 10(718)2018.PubMed/NCBI View Article : Google Scholar

53 

Agrawal AS, Tao X, Algaissi A, Garron T, Narayanan K, Peng BH, Couch RB and Tseng CTK: Immunization with inactivated Middle East respiratory syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus. Hum Vaccin Immunother. 12:2351–2356. 2016.PubMed/NCBI View Article : Google Scholar

54 

Deng Y, Lan J, Bao L, Huang B, Ye F, Chen Y, Yao Y, Wang W, Qin C and Tan W: Enhanced protection in mice induced by immunization with inactivated whole viruses compare to spike protein of middle east respiratory syndrome coronavirus. Emerg Microbes Infect. 7(60)2018.PubMed/NCBI View Article : Google Scholar

55 

Scobey T, Yount BL, Sims AC, Donaldson EF, Agnihothram SS, Menachery VD, Graham RL, Swanstrom J, Bove PF, Kim JD, et al: Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus. Proc Natl Acad Sci USA. 110:16157–16162. 2013.PubMed/NCBI View Article : Google Scholar

56 

Modjarrad K, Roberts CC, Mills KT, Castellano AR, Paolino K, Muthumani K, Reuschel EL, Robb ML, Racine T, Oh MD, et al: Safety and immunogenicity of an anti-Middle East respiratory syndrome coronavirus DNA vaccine: A phase 1, open-label, single-arm, dose-escalation trial. Lancet Infect Dis. 19:1013–1022. 2019.PubMed/NCBI View Article : Google Scholar

57 

Muthumani K, Falzarano D, Reuschel EL, Tingey C, Flingai S, Villarreal DO, Wise M, Patel A, Izmirly A, Aljuaid A, et al: A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates. Sci Transl Med. 7(301ra132)2015.PubMed/NCBI View Article : Google Scholar

58 

Koch T, Dahlke C, Fathi A, Kupke A, Krähling V, Okba NMA, Halwe S, Rohde C, Eickmann M, Volz A, et al: Safety and immunogenicity of a modified vaccinia virus Ankara vector vaccine candidate for Middle East respiratory syndrome: An open-label, phase 1 trial. Lancet Infect Dis. 20:827–838. 2020.PubMed/NCBI View Article : Google Scholar

59 

Zhao J, Li K, Wohlford-Lenane C, Agnihothram SS, Fett C, Zhao J, Gale MJ Jr, Baric RS, Enjuanes L, Gallagher T, et al: Rapid generation of a mouse model for Middle East respiratory syndrome. Proc Natl Acad Sci USA. 111:4970–4975. 2014.PubMed/NCBI View Article : Google Scholar

60 

Folegatti PM, Bittaye M, Flaxman A, Lopez FR, Bellamy D, Kupke A, Mair C, Makinson R, Sheridan J, Rohde C, et al: Safety and immunogenicity of a candidate Middle East respiratory syndrome coronavirus viral-vectored vaccine: A dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial. Lancet Infect Dis. 20:816–826. 2020.PubMed/NCBI View Article : Google Scholar

61 

Bosaeed M, Balkhy HH, Almaziad S, Aljami HA, Alhatmi H, Alanazi H, Alahmadi M, Jawhary A, Alenazi MW, Almasoud A, et al: Safety and immunogenicity of ChAdOx1 MERS vaccine candidate in healthy Middle Eastern adults (MERS002): an open-label, non-randomised, dose-escalation, phase 1b trial. Lancet Microbe. 3:e11–e20. 2022.PubMed/NCBI View Article : Google Scholar

62 

Dolzhikova IV, Grousova DM, Zubkova OV, Tukhvatulin AI, Kovyrshina AV, Lubenets NL, Ozharovskaia TA, Popova O, Esmagambetov IB, Shcheblyakov DV, et al: Preclinical studies of immunogenity, protectivity, and safety of the combined vector vaccine for prevention of the Middle East respiratory syndrome. Acta Naturae. 12:114–123. 2020.PubMed/NCBI View Article : Google Scholar

63 

Chan JFW, Lau SKP and Woo PCY: The emerging novel Middle East respiratory syndrome coronavirus: the ‘knowns’ and ‘unknowns’. J Formos Med Assoc. 112:372–381. 2013.PubMed/NCBI View Article : Google Scholar

64 

Du L, He Y, Zhou Y, Liu S, Zheng BJ and Jiang S: The spike protein of SARS-CoV-a target for vaccine and therapeutic development. Nat Rev Microbiol. 7:226–236. 2009.PubMed/NCBI View Article : Google Scholar

65 

Peiris JS, Guan Y and Yuen KY: Severe acute respiratory syndrome. Nat Med. 10 (12 Suppl):S88–S97. 2004.PubMed/NCBI View Article : Google Scholar

66 

Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, Mazet JK, Hu B, Zhang W, Peng C, et al: Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 503:535–538. 2013.PubMed/NCBI View Article : Google Scholar

67 

Enjuanes L, Dediego ML, Alvarez E, Deming D, Sheahan T and Baric R: Vaccines to prevent severe acute respiratory syndrome coronavirus-induced disease. Virus Res. 133:45–62. 2008.PubMed/NCBI View Article : Google Scholar

68 

Ithete NL, Stoffberg S, Corman VM, Cottontail VM, Richards LR, Schoeman MC, Drosten C, Drexler JF and Preiser W: Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa. Emerg Infect Dis. 19:1697–1699. 2013.PubMed/NCBI View Article : Google Scholar

69 

Minor PD: Live attenuated vaccines: Historical successes and current challenges. Virology. 479:379–392. 2015.PubMed/NCBI View Article : Google Scholar

70 

Lamirande EW, DeDiego ML, Roberts A, Jackson JP, Alvarez E, Sheahan T, Shieh WJ, Zaki SR, Baric R, Enjuanes L and Subbarao K: A live attenuated severe acute respiratory syndrome coronavirus is immunogenic and efficacious in golden Syrian hamsters. J Virol. 82:7721–7724. 2008.PubMed/NCBI View Article : Google Scholar

71 

Robson F, Khan KS, Le TK, Paris C, Demirbag S, Barfuss P, Rocchi P and Ng WL: Coronavirus RNA proofreading: molecular basis and therapeutic targeting. Mol Cell. 79:710–727. 2020.PubMed/NCBI View Article : Google Scholar

72 

Graham RL, Becker MM, Eckerle LD, Bolles M, Denison MR and Baric RS: A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease. Nat Med. 18:1820–1826. 2012.PubMed/NCBI View Article : Google Scholar

73 

Menachery VD, Gralinski LE, Mitchell HD, Dinnon KH III, Leist SR, Yount BL Jr, Graham RL, McAnarney ET, Stratton KG, Cockrell AS, et al: Middle East respiratory syndrome coronavirus nonstructural protein 16 is necessary for interferon resistance and viral pathogenesis. mSphere. 2:e00346–17. 2017.PubMed/NCBI View Article : Google Scholar

74 

Stauffer F, El-Bacha T and Da Poian AT: Advances in the development of inactivated virus vaccines. Recent Pat Antiinfect Drug Discov. 1:291–296. 2006.PubMed/NCBI View Article : Google Scholar

75 

Escriou N, Callendret B, Lorin V, Combredet C, Marianneau P, Février M and Tangy F: Protection from SARS coronavirus conferred by live measles vaccine expressing the spike glycoprotein. Virology. 452:32–41. 2014.PubMed/NCBI View Article : Google Scholar

76 

Zuñiga S, Pascual-Iglesias A, Sanchez CM, Sola I and Enjuanes L: Virulence factors in porcine coronaviruses and vaccine design. Virus Res. 226:142–151. 2016.PubMed/NCBI View Article : Google Scholar

77 

DeDiego ML, Alvarez E, Almazán F, Rejas MT, Lamirande E, Roberts A, Shieh WJ, Zaki SR, Subbarao K and Enjuanes L: A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J Virol. 81:1701–1713. 2007.PubMed/NCBI View Article : Google Scholar

78 

Bukreyev A, Lamirande EW, Buchholz UJ, Vogel LN, Elkins WR, St Claire M, Murphy BR, Subbarao K and Collins PL: Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet. 363:2122–2127. 2004.PubMed/NCBI View Article : Google Scholar

79 

Qin E, Shi H, Tang L, Wang C, Chang G, Ding Z, Zhao K, Wang J, Chen Z, Yu M, et al: Immunogenicity and protective efficacy in monkeys of purified inactivated Vero-cell SARS vaccine. Vaccine. 24:1028–1034. 2006.PubMed/NCBI View Article : Google Scholar

80 

Tseng CT, Sbrana E, Iwata-Yoshikawa N, Newman PC, Garron T, Atmar RL, Peters CJ and Couch RB: Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS One. 7(e35421)2012.PubMed/NCBI View Article : Google Scholar

81 

Iwata-Yoshikawa N, Uda A, Suzuki T, Tsunetsugu-Yokota Y, Sato Y, Morikawa S, Tashiro M, Sata T, Hasegawa H and Nagata N: Effects of Toll-like receptor stimulation on eosinophilic infiltration in lungs of BALB/c mice immunized with UV-inactivated severe acute respiratory syndrome-related coronavirus vaccine. J Virol. 88:8597–8614. 2014.PubMed/NCBI View Article : Google Scholar

82 

Chang CY, Hong WWL, Chong P and Wu SC: Influence of intron and exon splicing enhancers on mammalian cell expression of a truncated spike protein of SARS-CoV and its implication for subunit vaccine development. Vaccine. 24:1132–1141. 2006.PubMed/NCBI View Article : Google Scholar

83 

Feng Y, Wan M, Wang XJ, Zhang PY, Yu YL and Wang LY: Expression of predicted B cell epitope peptide in S2 subunit of SARS coronavirus spike protein in E. coli and identification of its mimic antigenicity. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 23:113–116. 2007.PubMed/NCBI(In Chinese).

84 

Li J, Ulitzky L, Silberstein E, Taylor DR and Viscidi R: Immunogenicity and protection efficacy of monomeric and trimeric recombinant SARS coronavirus spike protein subunit vaccine candidates. Viral Immunol. 26:126–132. 2013.PubMed/NCBI View Article : Google Scholar

85 

He Y, Li J, Heck S, Lustigman S and Jiang S: Antigenic and immunogenic characterization of recombinant baculovirus-expressed severe acute respiratory syndrome coronavirus spike protein: Implication for vaccine design. J Virol. 80:5757–5767. 2006.PubMed/NCBI View Article : Google Scholar

86 

Du L, Zhao G, Chan CC, Li L, He Y, Zhou Y, Zheng BJ and Jiang S: A 219-mer CHO-expressing receptor-binding domain of SARS-CoV S protein induces potent immune responses and protective immunity. Viral Immunol. 23:211–219. 2010.PubMed/NCBI View Article : Google Scholar

87 

He Y, Zhou Y, Liu S, Kou Z, Li W, Farzan M and Jiang S: Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: Implication for developing subunit vaccine. Biochem Biophys Res Commun. 324:773–781. 2004.PubMed/NCBI View Article : Google Scholar

88 

Liu RY, Wu LZ, Huang BJ, Huang JL, Zhang YL, Ke ML, Wang JM, Tan WP, Zhang RH, Chen HK, et al: Adenoviral expression of a truncated S1 subunit of SARS-CoV spike protein results in specific humoral immune responses against SARS-CoV in rats. Virus Res. 112:24–31. 2005.PubMed/NCBI View Article : Google Scholar

89 

Wang N, Shang J, Jiang S and Du L: Subunit vaccines against emerging pathogenic human coronaviruses. Front Microbiol. 11(298)2020.PubMed/NCBI View Article : Google Scholar

90 

Buchholz UJ, Bukreyev A, Yang L, Lamirande EW, Murphy BR, Subbarao K and Collins PL: Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proc Natl Acad Sci USA. 101:9804–9809. 2004.PubMed/NCBI View Article : Google Scholar

91 

Li YD, Chi WY, Su JH, Ferrall L, Hung CF and Wu TC: Coronavirus vaccine development: From SARS and MERS to COVID-19. J Biomed Sci. 27(104)2020.PubMed/NCBI View Article : Google Scholar

92 

Bouard D, Alazard-Dany N and Cosset FL: Viral vectors: From virology to transgene expression. Br J Pharmacol. 157:153–165. 2009.PubMed/NCBI View Article : Google Scholar

93 

Gao W, Tamin A, Soloff A, D'Aiuto L, Nwanegbo E, Robbins PD, Bellini WJ, Barratt-Boyes S and Gambotto A: Effects of a SARS-associated coronavirus vaccine in monkeys. Lancet. 362:1895–1896. 2003.PubMed/NCBI View Article : Google Scholar

94 

Kobinger GP, Figueredo JM, Rowe T, Zhi Y, Gao G, Sanmiguel JC, Bell P, Wivel NA, Zitzow LA, Flieder DB, et al: Adenovirus-based vaccine prevents pneumonia in ferrets challenged with the SARS coronavirus and stimulates robust immune responses in macaques. Vaccine. 25:5220–5231. 2007.PubMed/NCBI View Article : Google Scholar

95 

Zhang CH, Lu JH, Wang YF, Zheng HY, Xiong S, Zhang MY, Liu XJ, Li JX, Wan ZY, Yan XG, et al: Immune responses in Balb/c mice induced by a candidate SARS-CoV inactivated vaccine prepared from F69 strain. Vaccine. 23:3196–3201. 2005.PubMed/NCBI View Article : Google Scholar

96 

Bisht H, Roberts A, Vogel L, Bukreyev A, Collins PL, Murphy BR, Subbarao K and Moss B: Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc Natl Acad Sci USA. 101:6641–6646. 2004.PubMed/NCBI View Article : Google Scholar

97 

Chen Z, Zhang L, Qin C, Ba L, Yi CE, Zhang F, Wei Q, He T, Yu W, Yu J, et al: Recombinant modified vaccinia virus Ankara expressing the spike glycoprotein of severe acute respiratory syndrome coronavirus induces protective neutralizing antibodies primarily targeting the receptor binding region. J Virol. 79:2678–2688. 2005.PubMed/NCBI View Article : Google Scholar

98 

Weingartl H, Czub M, Czub S, Neufeld J, Marszal P, Gren J, Smith G, Jones S, Proulx R, Deschambault Y, et al: Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J Virol. 78:12672–12676. 2004.PubMed/NCBI View Article : Google Scholar

99 

Czub M, Weingartl H, Czub S, He R and Cao J: Evaluation of modified vaccinia virus Ankara based recombinant SARS vaccine in ferrets. Vaccine. 23:2273–2279. 2005.PubMed/NCBI View Article : Google Scholar

100 

Deming D, Sheahan T, Heise M, Yount B, Davis N, Sims A, Suthar M, Harkema J, Whitmore A, Pickles R, et al: Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants. PLoS Med. 3(e525)2006.PubMed/NCBI View Article : Google Scholar

101 

Kapadia SU, Rose JK, Lamirande E, Vogel L, Subbarao K and Roberts A: Long-term protection from SARS coronavirus infection conferred by a single immunization with an attenuated VSV-based vaccine. Virology. 340:174–182. 2005.PubMed/NCBI View Article : Google Scholar

102 

Lokugamage KG, Yoshikawa-Iwata N, Ito N, Watts DM, Wyde PR, Wang N, Newman P, Kent Tseng CT, Peters C and Makino S: Chimeric coronavirus-like particles carrying severe acute respiratory syndrome coronavirus (SCoV) S protein protect mice against challenge with SCoV. Vaccine. 26:797–808. 2008.PubMed/NCBI View Article : Google Scholar

103 

Yang ZY, Kong WP, Huang Y, Roberts A, Murphy BR, Subbarao K and Nabel GJ: A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature. 428:561–564. 2004.PubMed/NCBI View Article : Google Scholar

104 

Martin JE, Louder MK, Holman LA, Gordon IJ, Enama ME, Larkin BD, Andrews CA, Vogel L, Koup RA, Roederer M, et al: A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a phase I clinical trial. Vaccine. 26:6338–6343. 2008.PubMed/NCBI View Article : Google Scholar

105 

Lin J, Zhang JS, Su N, Xu JG, Wang N, Chen JT, Chen X, Liu YX, Gao H, Jia YP, et al: Safety and immunogenicity from a phase I trial of inactivated severe acute respiratory syndrome coronavirus vaccine. Antivir Ther. 12:1107–1113. 2007.PubMed/NCBI

106 

Tang L, Zhu Q, Qin E, Yu M, Ding Z, Shi H, Cheng X, Wang C, Chang G, Zhu Q, et al: Inactivated SARS-CoV vaccine prepared from whole virus induces a high level of neutralizing antibodies in BALB/c mice. DNA Cell Biol. 23:391–394. 2004.PubMed/NCBI View Article : Google Scholar

107 

Leta S, Beyene TJ, De Clercq EM, Amenu K, Kraemer MUG and Revie CW: Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int J Infect Dis. 67:25–35. 2018.PubMed/NCBI View Article : Google Scholar

108 

Vega-Rúa A, Zouache K, Girod R, Failloux AB and Lourenço-de-Oliveira R: High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of chikungunya virus. J Virol. 88:6294–6306. 2014.PubMed/NCBI View Article : Google Scholar

109 

Harrison VR, Binn LN and Randall R: Comparative immunogenicities of chikungunya vaccines prepared in avian and mammalian tissues. Am J Trop Med Hyg. 16:786–791. 1967.PubMed/NCBI

110 

Mallilankaraman K, Shedlock DJ, Bao H, Kawalekar OU, Fagone P, Ramanathan AA, Ferraro B, Stabenow J, Vijayachari P, Sundaram SG, et al: A DNA vaccine against chikungunya virus is protective in mice and induces neutralizing antibodies in mice and nonhuman primates. PLoS Negl Trop Dis. 5(e928)2011.PubMed/NCBI View Article : Google Scholar

111 

Tretyakova I, Hearn J, Wang E, Weaver S and Pushko P: DNA vaccine initiates replication of live attenuated chikungunya virus in vitro and elicits protective immune response in mice. J Infect Dis. 209:1882–1890. 2014.PubMed/NCBI View Article : Google Scholar

112 

Wang E, Volkova E, Adams AP, Forrester N, Xiao SY, Frolov I and Weaver SC: Chimeric alphavirus vaccine candidates for chikungunya. Vaccine. 26:5030–5039. 2008.PubMed/NCBI View Article : Google Scholar

113 

Hallengärd D, Kakoulidou M, Lulla A, Kümmerer BM, Johansson DX, Mutso M, Lulla V, Fazakerley JK, Roques P, Le Grand R, et al: Novel attenuated chikungunya vaccine candidates elicit protective immunity in C57BL/6 mice. J Virol. 88:2858–2866. 2014.PubMed/NCBI View Article : Google Scholar

114 

Chattopadhyay A, Wang E, Seymour R, Weaver SC and Rose JK: A chimeric vesiculo/alphavirus is an effective alphavirus vaccine. J Virol. 87:395–402. 2013.PubMed/NCBI View Article : Google Scholar

115 

Plante K, Wang E, Partidos CD, Weger J, Gorchakov R, Tsetsarkin K, Borland EM, Powers AM, Seymour R, Stinchcomb DT, et al: Novel chikungunya vaccine candidate with an IRES-based attenuation and host range alteration mechanism. PLoS Pathog. 7(e1002142)2011.PubMed/NCBI View Article : Google Scholar

116 

Levitt NH, Ramsburg HH, Hasty SE, Repik PM, Cole FE Jr and Lupton HW: Development of an attenuated strain of chikungunya virus for use in vaccine production. Vaccine. 4:157–162. 1986.PubMed/NCBI View Article : Google Scholar

117 

Edelman R, Tacket CO, Wasserman SS, Bodison SA, Perry JG and Mangiafico JA: Phase II safety and immunogenicity study of live chikungunya virus vaccine TSI-GSD-218. Am J Trop Med Hyg. 62:681–685. 2000.PubMed/NCBI View Article : Google Scholar

118 

Kushnir N, Streatfield SJ and Yusibov V: Virus-like particles as a highly efficient vaccine platform: Diversity of targets and production systems and advances in clinical development. Vaccine. 31:58–83. 2012.PubMed/NCBI View Article : Google Scholar

119 

Ramsauer K, Schwameis M, Firbas C, Müllner M, Putnak RJ, Thomas SJ, Desprès P, Tauber E, Jilma B and Tangy F: Immunogenicity, safety, and tolerability of a recombinant measles-virus-based chikungunya vaccine: A randomised, double-blind, placebo-controlled, active-comparator, first-in-man trial. Lancet Infect Dis. 15:519–527. 2015.PubMed/NCBI View Article : Google Scholar

120 

Reisinger EC, Tschismarov R, Beubler E, Wiedermann U, Firbas C, Loebermann M, Pfeiffer A, Muellner M, Tauber E and Ramsauer K: Immunogenicity, safety, and tolerability of the measles-vectored chikungunya virus vaccine MV-CHIK: A double-blind, randomised, placebo-controlled and active-controlled phase 2 trial. Lancet. 392:2718–2727. 2019.PubMed/NCBI View Article : Google Scholar

121 

Chang LJ, Dowd KA, Mendoza FH, Saunders JG, Sitar S, Plummer SH, Yamshchikov G, Sarwar UN, Hu Z, Enama ME, et al: Safety and tolerability of chikungunya virus-like particle vaccine in healthy adults: A phase 1 dose-escalation trial. Lancet. 384:2046–2052. 2014.PubMed/NCBI View Article : Google Scholar

122 

Brandler S, Ruffié C, Combredet C, Brault JB, Najburg V, Prevost MC, Habel A, Tauber E, Desprès P and Tangy F: A recombinant measles vaccine expressing chikungunya virus-like particles is strongly immunogenic and protects mice from lethal challenge with chikungunya virus. Vaccine. 31:3718–3725. 2013.PubMed/NCBI View Article : Google Scholar

123 

Weinbren M, Haddow AJ and Williams M: The occurrence of chikungunya virus in Uganda. I. Isolation from mosquitoes. Trans R Soc Trop Med Hyg. 52:253–262. 1958.PubMed/NCBI View Article : Google Scholar

124 

Halstead SB and Buescher EL: Hemorrhagic disease in rodents infected with virus associated with Thai hemorrhagic fever. Science. 134:475–476. 1961.PubMed/NCBI View Article : Google Scholar

125 

Shah KV, Gibbs CJ and Banerjee G: Virological investigation of the epidemic of haemorrhagic fever in Calcutta: Isolation of three strains of chikungunya virus. Indian J Med Res. 52:676–683. 1964.PubMed/NCBI

126 

Liu H, Fang G, Wu H, Li Z and Ye Q: L-cysteine production in Escherichia coli based on rational metabolic engineering and modular strategy. Biotechnol J. 13(1700695)2018.PubMed/NCBI View Article : Google Scholar

127 

Akahata W, Yang ZY, Andersen H, Sun S, Holdaway HA, Kong WP, Lewis MG, Higgs S, Rossmann MG and Rao S: A virus-like particle vaccine for epidemic chikungunya virus protects nonhuman primates against infection. Nat Med. 16:334–338. 2010.PubMed/NCBI View Article : Google Scholar

128 

Saraswat S, Athmaram TN, Parida M, Agarwal A, Saha A and Dash PK: Expression and characterization of yeast derived chikungunya virus like particles (CHIK-VLPs) and its evaluation as a potential vaccine candidate. PLoS Negl Trop Dis. 10(e0004782)2016.PubMed/NCBI View Article : Google Scholar

129 

Wang E, Petrakova O, Adams AP, Aguilar PV, Kang W, Paessler S, Volk SM, Frolov I and Weaver SC: Chimeric Sindbis/eastern equine encephalitis vaccine candidates are highly attenuated and immunogenic in mice. Vaccine. 25:7573–7581. 2007.PubMed/NCBI View Article : Google Scholar

130 

Van Den Doel P, Volz A, Roose JM, Sewbalaksing VD, Pijlman GP, van Middelkoop I, Duiverman V, van de Wetering E, Sutter G, Osterhaus AD and Martina BE: Recombinant modified vaccinia virus Ankara expressing glycoprotein E2 of chikungunya virus protects AG129 mice against lethal challenge. PLoS Negl Trop Dis. 8(e3101)2014.PubMed/NCBI View Article : Google Scholar

131 

Weger-Lucarelli J, Chu H, Aliota MT, Partidos CD and Osorio JE: A novel MVA vectored chikungunya virus vaccine elicits protective immunity in mice. PLoS Negl Trop Dis. 8(e2970)2014.PubMed/NCBI View Article : Google Scholar

132 

García-Arriaza J, Cepeda V, Hallengärd D, Sorzano CÓS, Kümmerer BM, Liljeström P and Esteban M: A novel poxvirus-based vaccine, MVA-CHIKV, is highly immunogenic and protects mice against chikungunya infection. J Virol. 88:3527–3547. 2014.PubMed/NCBI View Article : Google Scholar

133 

Wang D, Suhrbier A, Penn-Nicholson A, Woraratanadharm J, Gardner J, Luo M, Le TT, Anraku I, Sakalian M, Einfeld D and Dong JY: A complex adenovirus vaccine against chikungunya virus provides complete protection against viraemia and arthritis. Vaccine. 29:2803–2809. 2011.PubMed/NCBI View Article : Google Scholar

134 

Kumar M, Sudeep AB and Arankalle VA: Evaluation of recombinant E2 protein-based and whole-virus inactivated candidate vaccines against chikungunya virus. Vaccine. 30:6142–6149. 2012.PubMed/NCBI View Article : Google Scholar

135 

Khan M, Dhanwani R, Rao PVL and Parida M: Subunit vaccine formulations based on recombinant envelope proteins of chikungunya virus elicit balanced Th1/Th2 response and virus-neutralizing antibodies in mice. Virus Res. 167:236–246. 2012.PubMed/NCBI View Article : Google Scholar

136 

Chu H, Das SC, Fuchs JF, Suresh M, Weaver SC, Stinchcomb DT, Partidos CD and Osorio JE: Deciphering the protective role of adaptive immunity to CHIKV/IRES a novel candidate vaccine against Chikungunya in the A129 mouse model. Vaccine. 31:3353–3360. 2013.PubMed/NCBI View Article : Google Scholar

137 

Malinoski FJ, Ksiazek T, Ramsburg H, Lupton HW and Meadors GF (eds): Safety and immunogenicity of a new chikungunya virus vaccine: double-blind, placebo controlled human trial. 38th Annual Meeting of the Amer Soc Trop Med Hyg, Section 8.2, 1989.

138 

Chen P, Demirji J, Ivleva VB, Horwitz J, Schwartz R and Arnold F: The transient expression of CHIKV VLP in large stirred tank bioreactors. Cytotechnology. 71:1079–1093. 2019.PubMed/NCBI View Article : Google Scholar

139 

Chen GL, Coates EE, Plummer SH, Carter CA, Berkowitz N, Conan-Cibotti M, Cox JH, Beck A, O'Callahan M, Andrews C, et al: Effect of a chikungunya virus-like particle vaccine on safety and tolerability outcomes: A randomized clinical trial. JAMA. 323:1369–1377. 2020.PubMed/NCBI View Article : Google Scholar

140 

Partidos CD, Paykel J, Weger J, Borland EM, Powers AM, Seymour R, Weaver SC, Stinchcomb DT and Osorio JE: Cross-protective immunity against o'nyong-nyong virus afforded by a novel recombinant chikungunya vaccine. Vaccine. 30:4638–4643. 2012.PubMed/NCBI View Article : Google Scholar

141 

Fine DL, Roberts BA, Teehee ML, Terpening SJ, Kelly CL, Raetz JL, Baker DC, Powers AM and Bowen RA: Venezuelan equine encephalitis virus vaccine candidate (V3526) safety, immunogenicity and efficacy in horses. Vaccine. 25:1868–1876. 2007.PubMed/NCBI View Article : Google Scholar

142 

Sharma A and Knollmann-Ritschel B: Current understanding of the molecular basis of Venezuelan equine encephalitis virus pathogenesis and vaccine development. Viruses. 11(164)2019.PubMed/NCBI View Article : Google Scholar

143 

Howley PM, Knipe DM and Whelan S: Fields virology: Emerging viruses. Lippincott Williams & Wilkins, 2020.

144 

Weaver SC, Pfeffer M, Marriott K, Kang W and Kinney RM: Genetic evidence for the origins of Venezuelan equine encephalitis virus subtype IAB outbreaks. Am J Trop Med Hyg. 60:441–448. 1999.PubMed/NCBI View Article : Google Scholar

145 

Chosewood LC and Wilson DE: Centers for disease control and prevention: Biosafety in microbiological and biomedical laboratories, US Department of Health and Human Services. Public Health Service, Centers for Disease Control and Prevention, National Institutes of Health, Washington, DC, 2009.

146 

Lundberg L, Carey B and Kehn-Hall K: Venezuelan equine encephalitis virus capsid-the clever caper. Viruses. 9(279)2017.PubMed/NCBI View Article : Google Scholar

147 

Berge TO, Banks IS and Tigertt WD: Attenua-lion of Venezuelan equine encephalomyelitis virus by ire vitro cultivation in guinea-pig heart cells. Am J Hyg. 73:209–218. 1961.

148 

Paessler S and Weaver SC: Vaccines for Venezuelan equine encephalitis. Vaccine. 27 (Suppl 4):D80–D85. 2009.PubMed/NCBI View Article : Google Scholar

149 

Cole FE Jr, May SW and Robinson DM: Formalin-inactivated Venezuelan equine encephalomyelitis (Trinidad strain) vaccine produced in rolling-bottle cultures of chicken embryo cells. Appl Microbiol. 25:262–265. 1973.PubMed/NCBI View Article : Google Scholar

150 

Kinney RM, Tsuchiya KR, Sneider JM and Trent DW: Molecular evidence for the origin of the widespread Venezuelan equine encephalitis epizootic of 1969 to 1972. J Gen Virol. 73:3301–3305. 1992.PubMed/NCBI View Article : Google Scholar

151 

Kinney RM, Johnson BJ, Welch JB, Tsuchiya KR and Trent DW: The full-length nucleotide sequences of the virulent Trinidad donkey strain of Venezuelan equine encephalitis virus and its attenuated vaccine derivative, strain TC-83. Virology. 170:19–30. 1989.PubMed/NCBI View Article : Google Scholar

152 

Pittman PR, Makuch RS, Mangiafico JA, Cannon TL, Gibbs PH and Peters CJ: Long-term duration of detectable neutralizing antibodies after administration of live-attenuated VEE vaccine and following booster vaccination with inactivated VEE vaccine. Vaccine. 14:337–343. 1996.PubMed/NCBI View Article : Google Scholar

153 

Rayfield E, Gorelkin L, Cumow R and Jahrling P: Virus-induced pancreatid disease induced by Venezuelan equine encephalitis virus. Alterations in glucose tolerance and insulin release. J Am Diab Assoc. 25:621–623. 1976.PubMed/NCBI View Article : Google Scholar

154 

Sharma A, Raviv Y, Puri A, Viard M, Blumenthal R and Maheshwari RK: Complete inactivation of Venezuelan equine encephalitis virus by 1,5-iodonaphthylazide. Biochem Biophys Res Commun. 358:392–398. 2007.PubMed/NCBI View Article : Google Scholar

155 

Sharma A, Gupta P, Glass PJ, Parker MD and Maheshwari RK: Safety and protective efficacy of INA-inactivated Venezuelan equine encephalitis virus: Implication in vaccine development. Vaccine. 29:953–959. 2011.PubMed/NCBI View Article : Google Scholar

156 

Gupta P, Sharma A, Spurgers KB, Bakken RR, Eccleston LT, Cohen JW, Honnold SP, Glass PJ and Maheshwari RK: 1,5-Iodonaphthyl azide-inactivated V3526 protects against aerosol challenge with virulent venezuelan equine encephalitis virus. Vaccine. 34:2762–2765. 2016.PubMed/NCBI View Article : Google Scholar

157 

Martin SS, Bakken RR, Lind CM, Garcia P, Jenkins E, Glass PJ, Parker MD, Hart MK and Fine DL: Comparison of the immunological responses and efficacy of gamma-irradiated V3526 vaccine formulations against subcutaneous and aerosol challenge with Venezuelan equine encephalitis virus subtype IAB. Vaccine. 28:1031–1040. 2010.PubMed/NCBI View Article : Google Scholar

158 

Fine DL, Jenkins E, Martin SS, Glass P, Parker MD and Grimm B: A multisystem approach for development and evaluation of inactivated vaccines for Venezuelan equine encephalitis virus (VEEV). J Virol Methods. 163:424–432. 2010.PubMed/NCBI View Article : Google Scholar

159 

Gaidamakova EK, Myles IA, McDaniel DP, Fowler CJ, Valdez PA, Naik S, Gayen M, Gupta P, Sharma A, Glass PJ, et al: Preserving immunogenicity of lethally irradiated viral and bacterial vaccine epitopes using a radio-protective Mn2+-peptide complex from Deinococcus. Cell Host Microbe. 12:117–124. 2012.PubMed/NCBI View Article : Google Scholar

160 

Gayen M, Gupta P, Morazzani EM, Gaidamakova EK, Knollmann-Ritschel B, Daly MJ, Glass PJ and Maheshwari RK: Deinococcus Mn2+-peptide complex: A novel approach to alphavirus vaccine development. Vaccine. 35:3672–3681. 2017.PubMed/NCBI View Article : Google Scholar

161 

Paessler S, Fayzulin RZ, Anishchenko M, Greene IP, Weaver SC and Frolov I: Recombinant sindbis/Venezuelan equine encephalitis virus is highly attenuated and immunogenic. J Virol. 77:9278–9286. 2003.PubMed/NCBI View Article : Google Scholar

162 

Paessler S, Ni H, Petrakova O, Fayzulin RZ, Yun N, Anishchenko M, Weaver SC and Frolov I: Replication and clearance of Venezuelan equine encephalitis virus from the brains of animals vaccinated with chimeric SIN/VEE viruses. J Virol. 80:2784–2796. 2006.PubMed/NCBI View Article : Google Scholar

163 

Erasmus JH, Seymour RL, Kaelber JT, Kim DY, Leal G, Sherman MB, Frolov I, Chiu W, Weaver SC and Nasar F: Novel insect-specific eilat virus-based chimeric vaccine candidates provide durable, mono-and multivalent, single-dose protection against lethal alphavirus challenge. J Virol. 92:e01274–17. 2018.PubMed/NCBI View Article : Google Scholar

164 

Hu WG, Steigerwald R, Kalla M, Volkmann A, Noll D and Nagata LP: Protective efficacy of monovalent and trivalent recombinant MVA-based vaccines against three encephalitic alphaviruses. Vaccine. 36:5194–5203. 2018.PubMed/NCBI View Article : Google Scholar

165 

Kafai NM, Williamson LE, Binshtein E, Sukupolvi-Petty S, Gardner CL, Liu J, Mackin S, Kim AS, Kose N, Carnahan RH, et al: Neutralizing antibodies protect mice against Venezuelan equine encephalitis virus aerosol challenge. J Exp Med. 219(e20212532)2022.PubMed/NCBI View Article : Google Scholar

166 

Dupuy LC, Richards MJ, Reed DS and Schmaljohn CS: Immunogenicity and protective efficacy of a DNA vaccine against Venezuelan equine encephalitis virus aerosol challenge in nonhuman primates. Vaccine. 28:7345–7350. 2010.PubMed/NCBI View Article : Google Scholar

167 

Lee J, Arun Kumar S, Jhan YY and Bishop CJ: Engineering DNA vaccines against infectious diseases. Acta Biomater. 80:31–47. 2018.PubMed/NCBI View Article : Google Scholar

168 

Dupuy LC, Locher CP, Paidhungat M, Richards MJ, Lind CM, Bakken R, Parker MD, Whalen RG and Schmaljohn CS: Directed molecular evolution improves the immunogenicity and protective efficacy of a Venezuelan equine encephalitis virus DNA vaccine. Vaccine. 27:4152–4160. 2009.PubMed/NCBI View Article : Google Scholar

169 

Tretyakova I, Lukashevich IS, Glass P, Wang E, Weaver S and Pushko P: Novel vaccine against Venezuelan equine encephalitis combines advantages of DNA immunization and a live attenuated vaccine. Vaccine. 31:1019–1025. 2013.PubMed/NCBI View Article : Google Scholar

170 

Rico AB, Phillips AT, Schountz T, Jarvis DL, Tjalkens RB, Powers AM and Olson KE: Venezuelan and western equine encephalitis virus E1 liposome antigen nucleic acid complexes protect mice from lethal challenge with multiple alphaviruses. Virology. 499:30–39. 2016.PubMed/NCBI View Article : Google Scholar

171 

Ni H, Yun NE, Zacks MA, Weaver SC, Tesh RB, Da Rosa APT, Powers AM, Frolov I and Paessler S: Recombinant alphaviruses are safe and useful serological diagnostic tools. Am J Trop Med Hyg. 76:774–781. 2007.PubMed/NCBI

172 

Liljeström P and Garoff H: A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology (N Y). 9:1356–1361. 1991.PubMed/NCBI View Article : Google Scholar

173 

Konopka JL, Thompson JM, Whitmore AC, Webb DL and Johnston RE: Acute infection with Venezuelan equine encephalitis virus replicon particles catalyzes a systemic antiviral state and protects from lethal virus challenge. J Virol. 83:12432–12442. 2009.PubMed/NCBI View Article : Google Scholar

174 

Grieder FB, Davis BK, Zhou XD, Chen SJ, Finkelman FD and Gause WC: Kinetics of cytokine expression and regulation of host protection following infection with molecularly cloned Venezuelan equine encephalitis virus. Virology. 233:302–312. 1997.PubMed/NCBI View Article : Google Scholar

175 

Phillpotts RJ, O'brien L, Appleton RE, Carr S and Bennett A: Intranasal immunisation with defective adenovirus serotype 5 expressing the Venezuelan equine encephalitis virus E2 glycoprotein protects against airborne challenge with virulent virus. Vaccine. 23:1615–1623. 2005.PubMed/NCBI View Article : Google Scholar

176 

Phillpotts RJ, Jones LD and Howard SC: Monoclonal antibody protects mice against infection and disease when given either before or up to 24 h after airborne challenge with virulent Venezuelan equine encephalitis virus. Vaccine. 20:1497–1504. 2002.PubMed/NCBI View Article : Google Scholar

177 

Parker MD, Buckley MJ, Melanson VR, Glass PJ, Norwood D and Hart MK: Antibody to the E3 glycoprotein protects mice against lethal Venezuelan equine encephalitis virus infection. J Virol. 84:12683–12690. 2010.PubMed/NCBI View Article : Google Scholar

178 

O'Brien LM, Underwood-Fowler CD, Goodchild SA, Phelps AL and Phillpotts RJ: Development of a novel monoclonal antibody with reactivity to a wide range of Venezuelan equine encephalitis virus strains. Virol J. 6(206)2009.PubMed/NCBI View Article : Google Scholar

179 

Alevizatos AC, McKinney RW and Feigin RD: Live, attenuated Venezuelan equine encephalomyelitis virus vaccine. I. Clinical effects in man. Am J Trop Med Hyg. 16:762–768. 1967.PubMed/NCBI

180 

Pedersen CE Jr, Robinson DM and Cole FE Jr: Isolation of the vaccine strain of Venezuelan equine encephalomyelitis virus from mosquitoes in Louisiana. Am J Epidemiol. 95:490–496. 1972.PubMed/NCBI View Article : Google Scholar

181 

Erwin-Cohen R, Porter A, Pittman P, Rossi C and Dasilva L: Host responses to live-attenuated Venezuelan equine encephalitis virus (TC-83): Comparison of naïve, vaccine responder and nonresponder to TC-83 challenge in human peripheral blood mononuclear cells. Hum Vaccin Immunother. 8:1053–1065. 2012.PubMed/NCBI View Article : Google Scholar

182 

Grieder FB, Davis NL, Aronson JF, Charles PC, Sellon DC, Suzuki K and Johnston RE: Specific restrictions in the progression of Venezuelan equine encephalitis virus-induced disease resulting from single amino acid changes in the glycoproteins. Virology. 206:994–1006. 1995.PubMed/NCBI View Article : Google Scholar

183 

Davis NL, Powell N, Greenwald GF, Willis LV, Johnson BJ, Smith JF and Johnston RE: Attenuating mutations in the E2 glycoprotein gene of Venezuelan equine encephalitis virus: Construction of single and multiple mutants in a full-length cDNA clone. Virology. 183:20–31. 1991.PubMed/NCBI View Article : Google Scholar

184 

Edelman R, Ascher MS, Oster CN, Ramsburg HH, Cole FE and Eddy GA: Evaluation in humans of a new, inactivated vaccine for Venezuelan equine encephalitis virus (C-84). J Infect Dis. 140:708–715. 1979.PubMed/NCBI View Article : Google Scholar

185 

Johnson DM: Development of rationally designed live attenuated vaccines for Lassa fever and Venezuelan equine encephalitis. Electron Theses Diss. (3393)2020.

186 

Hannaman D, Dupuy LC, Ellefsen B and Schmaljohn CS: A phase 1 clinical trial of a DNA vaccine for Venezuelan equine encephalitis delivered by intramuscular or intradermal electroporation. Vaccine. 34:3607–3612. 2016.PubMed/NCBI View Article : Google Scholar

187 

Powell LA, Miller A, Fox JM, Kose N, Klose T, Kim AS, Bombardi R, Tennekoon RN, Dharshan de Silva A, Carnahan RH, et al: Human mAbs broadly protect against arthritogenic alphaviruses by recognizing conserved elements of the Mxra8 receptor-binding site. Cell Host Microbe. 28:699–711.e7. 2020.PubMed/NCBI View Article : Google Scholar

188 

Tupanceska D, Zaid A, Rulli NE, Thomas S, Lidbury B, Matthaei K, Ramirez R and Mahalingam S: Ross River virus: An arthritogenic alphavirus of significant importance in the asia pacific. In: Lal SK (ed). Emerging viral diseases of Southeast Asia. Vol. 4. Issues Infect Dis. Basel, Karger, pp94-111, 2007.

189 

Claflin SB and Webb CE: Ross River virus: Many vectors and unusual hosts make for an unpredictable pathogen. PLoS Pathog. 11(e1005070)2015.PubMed/NCBI View Article : Google Scholar

190 

Earnest JT, Basore K, Roy V, Bailey AL, Wang D, Alter G, Fremont DH and Diamond MS: Neutralizing antibodies against Mayaro virus require Fc effector functions for protective activity. J Exp Med. 216:2282–2301. 2019.PubMed/NCBI View Article : Google Scholar

191 

Fox JM, Long F, Edeling MA, Lin H, van Duijl-Richter MKS, Fong RH, Kahle KM, Smit JM, Jin J, Simmons G, et al: Broadly neutralizing alphavirus antibodies bind an epitope on E2 and inhibit entry and egress. Cell. 163:1095–1107. 2015.PubMed/NCBI View Article : Google Scholar

192 

Holzer GW, Coulibaly S, Aichinger G, Savidis-Dacho H, Mayrhofer J, Brunner S, Schmid K, Kistner O, Aaskov JG, Falkner FG, et al: Evaluation of an inactivated Ross River virus vaccine in active and passive mouse immunization models and establishment of a correlate of protection. Vaccine. 29:4132–4141. 2011.PubMed/NCBI View Article : Google Scholar

193 

Aichinger G, Ehrlich HJ, Aaskov JG, Fritsch S, Thomasser C, Draxler W, Wolzt M, Müller M, Pinl F, Van Damme P, et al: Safety and immunogenicity of an inactivated whole virus Vero cell-derived Ross River virus vaccine: A randomized trial. Vaccine. 29:9376–9384. 2011.PubMed/NCBI View Article : Google Scholar

194 

Strauss JH and Strauss EG: The alphaviruses: Gene expression, replication, and evolution. Microbiol Rev. 58:491–562. 1994.PubMed/NCBI View Article : Google Scholar

195 

Ljungberg K and Liljeström P: Self-replicating alphavirus RNA vaccines. Expert Rev Vaccines. 14:177–194. 2015.PubMed/NCBI View Article : Google Scholar

196 

Frolov I, Hoffman TA, Prágai BM, Dryga SA, Huang HV, Schlesinger S and Rice CM: Alphavirus-based expression vectors: Strategies and applications. Proc Natl Acad Sci USA. 93:11371–11377. 1996.PubMed/NCBI View Article : Google Scholar

197 

Choo QL, Kuo G, Ralston R, Weiner A, Chien D, Van Nest G, Han J, Berger K, Thudium K, Kuo C, et al: Vaccination of chimpanzees against infection by the hepatitis C virus. Vaccination of chimpanzees against infection by the hepatitis C virus USA. 91:1294–1298. 1994.PubMed/NCBI View Article : Google Scholar

198 

Lópex-Días de Cerio AL, Casares N, Lasarte JJ, Sarobe P, Pérez-Mediavilla LA, Ruiz M, Prieto J and Borrás-Cuesta F: T(h)1 but not T(h)0 cell help is efficient to induce cytotoxic T lymphocytes by immunization with short synthetic peptides. Int Immunol. 11:2025–2034. 1999.PubMed/NCBI View Article : Google Scholar

199 

Shirai M, Akatsuka T, Pendleton CD, Houghten R, Wychowski C, Mihalik K, Feinstone S and Berzofsky JA: Induction of cytotoxic T cells to a cross-reactive epitope in the hepatitis C virus nonstructural RNA polymerase-like protein. J Virol. 66:4098–4106. 1992.PubMed/NCBI View Article : Google Scholar

200 

Leitner WW, Ying H and Restifo NP: DNA and RNA-based vaccines: Principles, progress and prospects. Vaccine. 18:765–777. 1999.PubMed/NCBI View Article : Google Scholar

201 

Baumert TF, Vergalla J, Satoi J, Thomson M, Lechmann M, Herion D, Greenberg HB, Ito S and Liang TJ: Hepatitis C virus-like particles synthesized in insect cells as a potential vaccine candidate. Gastroenterology. 117:1397–1407. 1999.PubMed/NCBI View Article : Google Scholar

202 

Makimura M, Miyake S, Akino N, Takamori K, Matsuura Y, Miyamura T and Saito I: Induction of antibodies against structural proteins of hepatitis C virus in mice using recombinant adenovirus. Vaccine. 14:28–36. 1996.PubMed/NCBI View Article : Google Scholar

203 

Brinster C and Inchauspé G: DNA vaccines for hepatitis C virus. Intervirology. 44:143–153. 2001.PubMed/NCBI View Article : Google Scholar

204 

Amara RR, Villinger F, Altman JD, Lydy SL, O'Neil SP, Staprans SI, Montefiori DC, Xu Y, Herndon JG, Wyatt LS, et al: Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science. 292:69–74. 2001.PubMed/NCBI View Article : Google Scholar

205 

Ying H, Zaks TZ, Wang RF, Irvine KR, Kammula US, Marincola FM, Leitner WW and Restifo NP: Cancer therapy using a self-replicating RNA vaccine. Nat Med. 5:823–827. 1999.PubMed/NCBI View Article : Google Scholar

206 

Berglund P, Fleeton MN, Smerdou C and Liljeström P: Immunization with recombinant Semliki Forest virus induces protection against influenza challenge in mice. Vaccine. 17:497–507. 1999.PubMed/NCBI View Article : Google Scholar

207 

Fleeton MN, Liljeström P, Sheahan BJ and Atkins GJ: Recombinant Semliki Forest virus particles expressing louping ill virus antigens induce a better protective response than plasmid-based DNA vaccines or an inactivated whole particle vaccine. J Gen Virol. 81:749–758. 2000.PubMed/NCBI View Article : Google Scholar

208 

Ajbani SP, Velhal SM, Kadam RB, Patel VV and Bandivdekar AH: Immunogenicity of Semliki Forest virus based self-amplifying RNA expressing Indian HIV-1C genes in mice. Int J Biol Macromol. 81:794–802. 2015.PubMed/NCBI View Article : Google Scholar

209 

Van De Wall S, Ljungberg K, IP PP, Boerma A, Nijman HW, Liljeström P and Daemen T: Development of a next generation Semliki Forest virus-based DNA vaccine against cervical cancer. Hum Gene Ther. 25(A30)2014.

210 

Mussgay M and Weiland E: Preparation of inactivated vaccines against alphaviruses using Semliki Forest virus-white mouse as a model. I. Inactivation experiments and evaluation of double inactivated subunit vaccines. Intervirology. 1:259–268. 1973.PubMed/NCBI View Article : Google Scholar

211 

Brinster C, Chen M, Boucreux D, Paranhos-Baccala G, Liljeström P, Lemmonier F and Inchauspé G: Hepatitis C virus non-structural protein 3-specific cellular immune responses following single or combined immunization with DNA or recombinant Semliki Forest virus particles. J Gen Virol. 83:369–381. 2002.PubMed/NCBI View Article : Google Scholar

212 

Oñate AA, Donoso G, Moraga-Cid G, Folch H, Céspedes S and Andrews E: An RNA vaccine based on recombinant Semliki Forest virus particles expressing the Cu,Zn superoxide dismutase protein of Brucella abortus induces protective immunity in BALB/c mice. Infect Immun. 73:3294–3300. 2005.PubMed/NCBI View Article : Google Scholar

213 

Jiang X and Baldwin CL: Effects of cytokines on intracellular growth of Brucella abortus. Infect Immun. 61:124–134. 1993.PubMed/NCBI View Article : Google Scholar

214 

Jones SM and Winter AJ: Survival of virulent and attenuated strains of Brucella abortus in normal and gamma interferon-activated murine peritoneal macrophages. Infect Immun. 60:3011–3014. 1992.PubMed/NCBI View Article : Google Scholar

215 

Stevens MG, Pugh GW Jr and Tabatabai LB: Effects of gamma interferon and indomethacin in preventing Brucella abortus infections in mice. Infect Immun. 60:4407–4409. 1992.PubMed/NCBI View Article : Google Scholar

216 

Zhan Y and Cheers C: Endogenous gamma interferon mediates resistance to Brucella abortus infection. Infect Immun. 61:4899–4901. 1993.PubMed/NCBI View Article : Google Scholar

217 

Ko J and Splitter GA: Molecular host-pathogen interaction in brucellosis: Current understanding and future approaches to vaccine development for mice and humans. Clin Microbiol Rev. 16:65–78. 2003.PubMed/NCBI View Article : Google Scholar

218 

Muñoz-Montesino C, Andrews E, Rivers R, González-Smith A, Moraga-Cid G, Folch H, Céspedes S and Oñate AA: Intraspleen delivery of a DNA vaccine coding for superoxide dismutase (SOD) of Brucella abortus induces SOD-specific CD4+ and CD8+ T cells. Infect Immun. 72:2081–2087. 2004.PubMed/NCBI View Article : Google Scholar

219 

Colmenero P, Berglund P, Kambayashi T, Biberfeld P, Liljeström P and Jondal M: Recombinant Semliki Forest virus vaccine vectors: The route of injection determines the localization of vector RNA and subsequent T cell response. Gene Ther. 8:1307–1314. 2001.PubMed/NCBI View Article : Google Scholar

220 

Smerdou C and Liljestrom P: Two-helper RNA system for production of recombinant Semliki forest virus particles. J Virol. 73:1092–1098. 1999.PubMed/NCBI View Article : Google Scholar

221 

Berglund P, Quesada-Rolander M, Putkonen P, Biberfeld G, Thorstensson R and Liljeström P: Outcome of immunization of cynomolgus monkeys with recombinant Semliki Forest virus encoding human immunodeficiency virus type 1 envelope protein and challenge with a high dose of SHIV-4 virus. AIDS Res Hum Retroviruses. 13:1487–1495. 1997.PubMed/NCBI View Article : Google Scholar

222 

Chen M, Hu KF, Rozell B, Örvell C, Morein B and Liljeström P: Vaccination with recombinant alphavirus or immune-stimulating complex antigen against respiratory syncytial virus. J Immunol. 169:3208–3216. 2002.PubMed/NCBI View Article : Google Scholar

223 

Singh A, Koutsoumpli G, van de Wall S and Daemen T: An alphavirus-based therapeutic cancer vaccine: From design to clinical trial. Cancer Immunol Immunother. 68:849–859. 2019.PubMed/NCBI View Article : Google Scholar

224 

Daemen T, Riezebos-Brilman A, Regts J, Dontje B, van der Zee A and Wilschut J: Superior therapeutic efficacy of alphavirus-mediated immunization against human papilloma virus type 16 antigens in a murine tumour model: Effects of the route of immunization. Antivir Ther. 9:733–742. 2004.PubMed/NCBI

225 

Komdeur FL, Singh A, van de Wall S, Meulenberg JJM, Boerma A, Hoogeboom BN, Paijens ST, Oyarce C, de Bruyn M, Schuuring E, et al: First-in-human phase I clinical trial of an SFV-based RNA replicon cancer vaccine against HPV-induced cancers. Mol Ther. 29:611–625. 2021.PubMed/NCBI View Article : Google Scholar

226 

Vignuzzi M, Gerbaud S, van der Werf S and Escriou N: Naked RNA immunization with replicons derived from poliovirus and Semliki Forest virus genomes for the generation of a cytotoxic T cell response against the influenza A virus nucleoprotein. J Gen Virol. 82:1737–1747. 2001.PubMed/NCBI View Article : Google Scholar

227 

Brand D, Lemiale F, Turbica I, Buzelay L, Brunet S and Barin F: Comparative analysis of humoral immune responses to HIV type 1 envelope glycoproteins in mice immunized with a DNA vaccine, recombinant Semliki Forest virus RNA, or recombinant Semliki Forest virus particles. AIDS Res Hum Retroviruses. 14:1369–1377. 1998.PubMed/NCBI View Article : Google Scholar

228 

Zhou X, Berglund P, Rhodes G, Parker SE, Jondal M and Liljeström P: Self-replicating Semliki Forest virus RNA as recombinant vaccine. Vaccine. 12:1510–1514. 1994.PubMed/NCBI View Article : Google Scholar

229 

Johansson DX, Ljungberg K, Kakoulidou M and Liljeström P: Intradermal electroporation of naked replicon RNA elicits strong immune responses. PLoS One. 7(e29732)2012.PubMed/NCBI View Article : Google Scholar

230 

Phenix KV, Wark K, Luke CJ, Skinner MA, Smyth JA, Mawhinney KA and Todd D: Recombinant Semliki Forest virus vector exhibits potential for avian virus vaccine development. Vaccine. 19:3116–3123. 2001.PubMed/NCBI View Article : Google Scholar

231 

Goo J, Jeong Y, Park YS, Yang E, Jung DI, Rho S, Park U, Sung H, Park PG, Choi JA, et al: Characterization of novel monoclonal antibodies against MERS-coronavirus spike protein. Virus Res. 278(197863)2020.PubMed/NCBI View Article : Google Scholar

232 

Heinz FX, Holzmann H, Essl A and Kundi M: Field effectiveness of vaccination against tick-borne encephalitis. Vaccine. 25:7559–7567. 2007.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Babaeimarzangou SS, Zaker H, Soleimannezhadbari E, Gamchi NS, Kazeminia M, Tarighi S, Seyedian H, Tsatsakis A, Spandidos DA, Margina D, Margina D, et al: Vaccine development for zoonotic viral diseases caused by positive‑sense single‑stranded RNA viruses belonging to the <em>Coronaviridae</em> and <em>Togaviridae</em> families (Review). Exp Ther Med 25: 42, 2023.
APA
Babaeimarzangou, S.S., Zaker, H., Soleimannezhadbari, E., Gamchi, N.S., Kazeminia, M., Tarighi, S. ... Margina, D. (2023). Vaccine development for zoonotic viral diseases caused by positive‑sense single‑stranded RNA viruses belonging to the <em>Coronaviridae</em> and <em>Togaviridae</em> families (Review). Experimental and Therapeutic Medicine, 25, 42. https://doi.org/10.3892/etm.2022.11741
MLA
Babaeimarzangou, S. S., Zaker, H., Soleimannezhadbari, E., Gamchi, N. S., Kazeminia, M., Tarighi, S., Seyedian, H., Tsatsakis, A., Spandidos, D. A., Margina, D."Vaccine development for zoonotic viral diseases caused by positive‑sense single‑stranded RNA viruses belonging to the <em>Coronaviridae</em> and <em>Togaviridae</em> families (Review)". Experimental and Therapeutic Medicine 25.1 (2023): 42.
Chicago
Babaeimarzangou, S. S., Zaker, H., Soleimannezhadbari, E., Gamchi, N. S., Kazeminia, M., Tarighi, S., Seyedian, H., Tsatsakis, A., Spandidos, D. A., Margina, D."Vaccine development for zoonotic viral diseases caused by positive‑sense single‑stranded RNA viruses belonging to the <em>Coronaviridae</em> and <em>Togaviridae</em> families (Review)". Experimental and Therapeutic Medicine 25, no. 1 (2023): 42. https://doi.org/10.3892/etm.2022.11741
Copy and paste a formatted citation
x
Spandidos Publications style
Babaeimarzangou SS, Zaker H, Soleimannezhadbari E, Gamchi NS, Kazeminia M, Tarighi S, Seyedian H, Tsatsakis A, Spandidos DA, Margina D, Margina D, et al: Vaccine development for zoonotic viral diseases caused by positive‑sense single‑stranded RNA viruses belonging to the <em>Coronaviridae</em> and <em>Togaviridae</em> families (Review). Exp Ther Med 25: 42, 2023.
APA
Babaeimarzangou, S.S., Zaker, H., Soleimannezhadbari, E., Gamchi, N.S., Kazeminia, M., Tarighi, S. ... Margina, D. (2023). Vaccine development for zoonotic viral diseases caused by positive‑sense single‑stranded RNA viruses belonging to the <em>Coronaviridae</em> and <em>Togaviridae</em> families (Review). Experimental and Therapeutic Medicine, 25, 42. https://doi.org/10.3892/etm.2022.11741
MLA
Babaeimarzangou, S. S., Zaker, H., Soleimannezhadbari, E., Gamchi, N. S., Kazeminia, M., Tarighi, S., Seyedian, H., Tsatsakis, A., Spandidos, D. A., Margina, D."Vaccine development for zoonotic viral diseases caused by positive‑sense single‑stranded RNA viruses belonging to the <em>Coronaviridae</em> and <em>Togaviridae</em> families (Review)". Experimental and Therapeutic Medicine 25.1 (2023): 42.
Chicago
Babaeimarzangou, S. S., Zaker, H., Soleimannezhadbari, E., Gamchi, N. S., Kazeminia, M., Tarighi, S., Seyedian, H., Tsatsakis, A., Spandidos, D. A., Margina, D."Vaccine development for zoonotic viral diseases caused by positive‑sense single‑stranded RNA viruses belonging to the <em>Coronaviridae</em> and <em>Togaviridae</em> families (Review)". Experimental and Therapeutic Medicine 25, no. 1 (2023): 42. https://doi.org/10.3892/etm.2022.11741
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team