1
|
Zhang T, Wang H, Li Q, Fu J, Huang J and
Zhao Y: MALAT1 Activates the P53 signaling pathway by regulating
MDM2 to promote ischemic stroke. Cell Physiol Biochem.
50:2216–2228. 2018.PubMed/NCBI View Article : Google Scholar
|
2
|
Sun MS, Jin H, Sun X, Huang S, Zhang FL,
Guo ZN and Yang Y: Free radical damage in ischemia-reperfusion
injury: An obstacle in acute ischemic stroke after
revascularization therapy. Oxid Med Cell Longev.
2018(3804979)2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Kang R, Kroemer G and Tang D: The Tumor
Suppressor protein p53 and the ferroptosis network. Free Radic Biol
Med. 133:162–168. 2019.PubMed/NCBI View Article : Google Scholar
|
4
|
Bu ZQ, Yu HY, Wang J, He X, Cui YR, Feng
JC and Feng J: Emerging role of ferroptosis in the pathogenesis of
ischemic stroke: A new therapeutic target? ASN Neuro.
13(17590914211037505)2021.PubMed/NCBI View Article : Google Scholar
|
5
|
Liu J, Zhang C, Hu W and Feng Z: Tumor
suppressor p53 and metabolism. J Mol Cell Biol. 11:284–292.
2019.PubMed/NCBI View Article : Google Scholar
|
6
|
Laubach K, Zhang J and Chen X: The p53
Family: A role in lipid and iron metabolism. Front Cell Dev Biol.
9(715974)2021.PubMed/NCBI View Article : Google Scholar
|
7
|
Filichia E, Shen H, Zhou X, Qi X, Jin K,
Greig N, Hoffer B and Luo Y: Forebrain neuronal specific ablation
of p53 gene provides protection in a cortical ischemic stroke
model. Neuroscience. 295:1–10. 2015.PubMed/NCBI View Article : Google Scholar
|
8
|
Hernández Borrero LJ and El-Deiry WS:
Tumor suppressor p53: Biology, signaling pathways, and therapeutic
targeting. Biochim Biophys Acta Rev Cancer.
1876(188556)2021.PubMed/NCBI View Article : Google Scholar
|
9
|
Zhao J, Dong Y, Chen X, Xiao X, Tan B,
Chen G, Hu J, Qi D, Li X and Xie R: p53 inhibition protects against
neuronal ischemia/reperfusion injury by the p53/PRAS40/mTOR
pathway. Oxid Med Cell Longev. 2021(4729465)2021.PubMed/NCBI View Article : Google Scholar
|
10
|
Paul S and Candelario-Jalil E: Emerging
neuroprotective strategies for the treatment of ischemic stroke: An
overview of clinical and preclinical studies. Exp Neurol.
335(113518)2021.PubMed/NCBI View Article : Google Scholar
|
11
|
Kanazawa M, Takahashi T, Ishikawa M,
Onodera O, Shimohata T and del Zoppo GJ: Angiogenesis in the
ischemic core: A potential treatment target? J Cereb Blood Flow
Metab. 39:753–769. 2019.PubMed/NCBI View Article : Google Scholar
|
12
|
del Zoppo GJ, Sharp FR, Heiss WD and
Albers GW: Heterogeneity in the penumbra. J Cereb Blood Flow Metab.
31:1836–1851. 2011.PubMed/NCBI View Article : Google Scholar
|
13
|
Sommer CJ: Ischemic stroke: Experimental
models and reality. Acta Neuropathol. 133:245–261. 2017.PubMed/NCBI View Article : Google Scholar
|
14
|
Granger DN and Kvietys PR: Reperfusion
injury and reactive oxygen species: The evolution of a concept.
Redox Biol. 6:524–551. 2015.PubMed/NCBI View Article : Google Scholar
|
15
|
Abrams D, MacLaren G, Lorusso R, Price S,
Yannopoulos D, Vercaemst L, Bělohlávek J, Taccone FS, Aissaoui N,
Shekar K, et al: Extracorporeal cardiopulmonary resuscitation in
adults: evidence and implications. Intensive Care Med. 48:1–15.
2022.PubMed/NCBI View Article : Google Scholar
|
16
|
Barthels D and Das H: Current advances in
ischemic stroke research and therapies. Biochim Biophys Acta Mol
Basis Dis. 1866(165260)2020.PubMed/NCBI View Article : Google Scholar
|
17
|
Wang P, Cui Y, Ren Q, Yan B, Zhao Y, Yu P,
Gao G, Shi H, Chang S and Chang YZ: Mitochondrial ferritin
attenuates cerebral ischaemia/reperfusion injury by inhibiting
ferroptosis. Cell Death Dis. 12(447)2021.PubMed/NCBI View Article : Google Scholar
|
18
|
Przykaza L: Understanding the connection
between common stroke comorbidities, their associated inflammation,
and the course of the cerebral ischemia/reperfusion cascade. Front
Immunol. 12(782569)2021.PubMed/NCBI View Article : Google Scholar
|
19
|
Boehme AK, Esenwa C and Elkind MS: Stroke
risk factors, genetics, and prevention. Circ Res. 120:472–495.
2017.PubMed/NCBI View Article : Google Scholar
|
20
|
Guo H, Zhu L, Tang P, Chen D, Li Y, Li J
and Bao C: Carthamin yellow improves cerebral ischemia-reperfusion
injury by attenuating inflammation and ferroptosis in rats. Int J
Mol Med. 47(52)2021.PubMed/NCBI View Article : Google Scholar
|
21
|
Xie BS, Wang YQ, Lin Y, Mao Q, Feng JF,
Gao GY and Jiang JY: Inhibition of ferroptosis attenuates tissue
damage and improves long-term outcomes after traumatic brain injury
in mice. CNS Neurosci Ther. 25:465–475. 2019.PubMed/NCBI View Article : Google Scholar
|
22
|
Hirschhorn T and Stockwell BR: The
development of the concept of ferroptosis. Free Radic Biol Med.
133:130–143. 2019.PubMed/NCBI View Article : Google Scholar
|
23
|
Magtanong L and Dixon SJ: Ferroptosis and
brain injury. Dev Neurosci. 40:382–395. 2018.PubMed/NCBI View Article : Google Scholar
|
24
|
She X, Lan B, Tian H and Tang B: Cross
talk between ferroptosis and cerebral ischemia. Front Neurosci.
14(776)2020.PubMed/NCBI View Article : Google Scholar
|
25
|
Mao H, Zhao Y, Li H and Lei L: Ferroptosis
as an emerging target in inflammatory diseases. Prog Biophys Mol
Biol. 155:20–28. 2020.PubMed/NCBI View Article : Google Scholar
|
26
|
Yang WS and Stockwell BR: Ferroptosis:
Death by lipid peroxidation. Trends Cell Biol. 26:165–176.
2016.PubMed/NCBI View Article : Google Scholar
|
27
|
Hu X, Xu Y, Xu H, Jin C, Zhang H, Su H, Li
Y, Zhou K and Ni W: Progress in understanding ferroptosis and its
targeting for therapeutic benefits in traumatic brain and spinal
cord injuries. Front Cell Dev Biol. 9(705786)2021.PubMed/NCBI View Article : Google Scholar
|
28
|
Yan N and Zhang JJ: The emerging roles of
ferroptosis in vascular cognitive impairment. Front Neurosci.
13(811)2019.PubMed/NCBI View Article : Google Scholar
|
29
|
Gao M, Yi J, Zhu J, Minikes AM, Monian P,
Thompson CB and Jiang X: Role of mitochondria in ferroptosis. Mol
Cell. 73:354–363 e3. 2019.PubMed/NCBI View Article : Google Scholar
|
30
|
Han C, Liu Y, Dai R, Ismail N, Su W and Li
B: Ferroptosis and its potential role in human diseases. Front
Pharmacol. 11(239)2020.PubMed/NCBI View Article : Google Scholar
|
31
|
Feng H, Schorpp K, Jin J, Yozwiak CE,
Hoffstrom BG, Decker AM, Rajbhandari P, Stokes ME, Bender HG, Csuka
JM, et al: Transferrin receptor is a specific ferroptosis marker.
Cell Rep. 30:3411–3423 e7. 2020.PubMed/NCBI View Article : Google Scholar
|
32
|
Hassannia B, Wiernicki B, Ingold I, Qu F,
Van Herck S, Tyurina YY, Bayır H, Abhari BA, Angeli JPF, Choi SM,
et al: Nano-targeted induction of dual ferroptotic mechanisms
eradicates high-risk neuroblastoma. J Clin Invest. 128:3341–3355.
2018.PubMed/NCBI View Article : Google Scholar
|
33
|
Stockwell BR, Friedmann Angeli JP, Bayir
H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK,
Kagan VE, et al: Ferroptosis: A regulated cell death nexus linking
metabolism, Redox Biology, and Disease. Cell. 171:273–285.
2017.PubMed/NCBI View Article : Google Scholar
|
34
|
Fan Z, Wirth AK, Chen D, Wruck CJ, Rauh M,
Buchfelder M and Savaskan N: Nrf2-Keap1 pathway promotes cell
proliferation and diminishes ferroptosis. Oncogenesis.
6(e371)2017.PubMed/NCBI View Article : Google Scholar
|
35
|
Lin W, Zhang T, Zheng J, Zhou Y, Lin Z and
Fu X: Ferroptosis is Involved in Hypoxic-ischemic brain damage in
neonatal rats. Neuroscience. 487:131–142. 2022.PubMed/NCBI View Article : Google Scholar
|
36
|
Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao
N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell
Death Dis. 11(88)2020.PubMed/NCBI View Article : Google Scholar
|
37
|
Guo P, Jin Z, Wu H, Li X, Ke J, Zhang Z
and Zhao Q: Effects of irisin on the dysfunction of blood-brain
barrier in rats after focal cerebral ischemia/reperfusion. Brain
Behav. 9(e01425)2019.PubMed/NCBI View Article : Google Scholar
|
38
|
Proneth B and Conrad M: Ferroptosis and
necroinflammation, a yet poorly explored link. Cell Death Differ.
26:14–24. 2019.PubMed/NCBI View Article : Google Scholar
|
39
|
Hambright WS, Fonseca RS, Chen L, Na R and
Ran Q: Ablation of ferroptosis regulator glutathione peroxidase 4
in forebrain neurons promotes cognitive impairment and
neurodegeneration. Redox Biol. 12:8–17. 2017.PubMed/NCBI View Article : Google Scholar
|
40
|
Li Q, Weiland A, Chen X, Lan X, Han X,
Durham F, Liu X, Wan J, Ziai WC, Hanley DF and Wang J:
Ultrastructural characteristics of neuronal death and white matter
injury in mouse brain tissues after intracerebral hemorrhage:
Coexistence of ferroptosis, autophagy, and necrosis. Front Neurol.
9(581)2018.PubMed/NCBI View Article : Google Scholar
|
41
|
Bayir H, Anthonymuthu TS, Tyurina YY,
Patel SJ, Amoscato AA, Lamade AM, Yang Q, Vladimirov GK, Philpott
CC and Kagan VE: Achieving life through death: Redox biology of
lipid peroxidation in ferroptosis. Cell Chem Biol. 27:387–408.
2020.PubMed/NCBI View Article : Google Scholar
|
42
|
Xie Y, Hou W, Song X, Yu Y, Huang J, Sun
X, Kang R and Tang D: Ferroptosis: Process and function. Cell Death
Differ. 23:369–379. 2016.PubMed/NCBI View Article : Google Scholar
|
43
|
Liu J, Zhang C, Wang J, Hu W and Feng Z:
The regulation of ferroptosis by tumor suppressor p53 and its
pathway. Int J Mol Sci. 21(8387)2020.PubMed/NCBI View Article : Google Scholar
|
44
|
Vogt AS, Arsiwala T, Mohsen M, Vogel M,
Manolova V and Bachmann MF: On iron metabolism and its regulation.
Int J Mol Sci. 22(4591)2021.PubMed/NCBI View Article : Google Scholar
|
45
|
Chen X, Li J, Kang R, Klionsky DJ and Tang
D: Ferroptosis: Machinery and regulation. Autophagy. 17:2054–2081.
2021.PubMed/NCBI View Article : Google Scholar
|
46
|
Nemeth E and Ganz T: Hepcidin-Ferroportin
interaction controls systemic iron homeostasis. Int J Mol Sci.
22(6493)2021.PubMed/NCBI View Article : Google Scholar
|
47
|
Li J, Liu J, Xu Y, Wu R, Chen X, Song X,
Zeh H, Kang R, Klionsky DJ, Wang X and Tang D: Tumor heterogeneity
in autophagy-dependent ferroptosis. Autophagy. 17:3361–3374.
2021.PubMed/NCBI View Article : Google Scholar
|
48
|
Zhang Y, Khan S, Liu Y, Zhang R, Li H, Wu
G, Tang Z, Xue M and Yong WV: Modes of brain cell death following
intracerebral hemorrhage. Front Cell Neurosci.
16(799753)2022.PubMed/NCBI View Article : Google Scholar
|
49
|
Zhou SY, Cui GZ, Yan XL, Wang X, Qu Y, Guo
ZN and Jin H: Mechanism of ferroptosis and its relationships with
other types of programmed cell death: insights for potential
interventions after intracerebral hemorrhage. Front Neurosci.
14(589042)2020.PubMed/NCBI View Article : Google Scholar
|
50
|
Cepelak I, Dodig S and Dodig DC:
Ferroptosis: Regulated cell death. Arh Hig Rada Toksikol.
71:99–109. 2020.PubMed/NCBI View Article : Google Scholar
|
51
|
Kerins MJ and Ooi A: The Roles of NRF2 in
modulating cellular iron homeostasis. Antioxid Redox Signal.
29:1756–1773. 2018.PubMed/NCBI View Article : Google Scholar
|
52
|
Yang WS, Kim KJ, Gaschler MM, Patel M,
Shchepinov MS and Stockwell BR: Peroxidation of polyunsaturated
fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci
USA. 113:E4966–E4975. 2016.PubMed/NCBI View Article : Google Scholar
|
53
|
Lee JY, Kim WK, Bae KH, Lee SC and Lee EW:
Lipid metabolism and ferroptosis. Biology (Basel).
10(184)2021.PubMed/NCBI View Article : Google Scholar
|
54
|
Wan J, Ren H and Wang J: Iron toxicity,
lipid peroxidation and ferroptosis after intracerebral haemorrhage.
Stroke Vasc Neurol. 4:92–95. 2019.PubMed/NCBI View Article : Google Scholar
|
55
|
Yan HF, Tuo QZ, Yin QZ and Lei P: The
pathological role of ferroptosis in ischemia/reperfusion-related
injury. Zool Res. 41:220–230. 2020.PubMed/NCBI View Article : Google Scholar
|
56
|
Magtanong L, Ko PJ and Dixon SJ: Emerging
roles for lipids in non-apoptotic cell death. Cell Death Differ.
23:1099–1109. 2016.PubMed/NCBI View Article : Google Scholar
|
57
|
Bian X, Liu R, Meng Y, Xing D, Xu D and Lu
Z: Lipid metabolism and cancer. J Exp Med.
218(e20201606)2021.PubMed/NCBI View Article : Google Scholar
|
58
|
Cao Y, Li Y, He C, Yan F, Li JR, Xu HZ,
Zhuang JF, Zhou H, Peng YC, Fu XJ, et al: Selective ferroptosis
inhibitor liproxstatin-1 attenuates neurological deficits and
neuroinflammation after subarachnoid hemorrhage. Neurosci Bull.
37:535–549. 2021.PubMed/NCBI View Article : Google Scholar
|
59
|
Zou Y and Schreiber SL: Progress in
understanding ferroptosis and challenges in its targeting for
therapeutic benefit. Cell Chem Biol. 27:463–471. 2020.PubMed/NCBI View Article : Google Scholar
|
60
|
Karuppagounder SS, Alin L, Chen Y, Brand
D, Bourassa MW, Dietrich K, Wilkinson CM, Nadeau CA, Kumar A, Perry
S, et al: N-acetylcysteine targets 5 lipoxygenase-derived, toxic
lipids and can synergize with prostaglandin E2 to inhibit
ferroptosis and improve outcomes following hemorrhagic stroke in
mice. Ann Neurol. 84:854–872. 2018.PubMed/NCBI View Article : Google Scholar
|
61
|
Shah R, Shchepinov MS and Pratt DA:
Resolving the role of lipoxygenases in the initiation and execution
of ferroptosis. ACS Cent Sci. 4:387–396. 2018.PubMed/NCBI View Article : Google Scholar
|
62
|
Koppula P, Zhuang L and Gan B: Cystine
transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient
dependency, and cancer therapy. Protein Cell. 12:599–620.
2021.PubMed/NCBI View Article : Google Scholar
|
63
|
Zhang Z, Yao Z, Wang L, Ding H, Shao J,
Chen A, Zhang F and Zheng S: Activation of ferritinophagy is
required for the RNA-binding protein ELAVL1/HuR to regulate
ferroptosis in hepatic stellate cells. Autophagy. 14:2083–2103.
2018.PubMed/NCBI View Article : Google Scholar
|
64
|
Wenzel SE, Tyurina YY, Zhao J, St Croix
CM, Dar HH, Mao G, Tyurin VA, Anthonymuthu TS, Kapralov AA,
Amoscato AA, et al: PEBP1 wardens ferroptosis by enabling
lipoxygenase generation of lipid death signals. Cell. 171:628–641,
e26. 2017.PubMed/NCBI View Article : Google Scholar
|
65
|
Doll S, Proneth B, Tyurina YY, Panzilius
E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A,
et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular
lipid composition. Nat Chem Biol. 13:91–98. 2017.PubMed/NCBI View Article : Google Scholar
|
66
|
Kagan VE, Mao G, Qu F, Angeli JP, Doll S,
Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, et al: Oxidized
arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem
Biol. 13:81–90. 2017.PubMed/NCBI View Article : Google Scholar
|
67
|
Wang GX, Tu HC, Dong Y, Skanderup AJ, Wang
Y, Takeda S, Ganesan YT, Han S, Liu H, Hsieh JJ and Cheng EH:
DeltaNp63 inhibits oxidative stress-induced cell death, including
ferroptosis, and cooperates with the BCL-2 family to promote
clonogenic survival. Cell Rep. 21:2926–2939. 2017.PubMed/NCBI View Article : Google Scholar
|
68
|
Anthonymuthu TS, Kenny EM, Lamade AM,
Kagan VE and Bayir H: Oxidized phospholipid signaling in traumatic
brain injury. Free Radic Biol Med. 124:493–503. 2018.PubMed/NCBI View Article : Google Scholar
|
69
|
Li Q, Han X, Lan X, Gao Y, Wan J, Durham
F, Cheng T, Yang J, Wang Z, Jiang C, et al: Inhibition of neuronal
ferroptosis protects hemorrhagic brain. JCI Insight.
2(e90777)2017.PubMed/NCBI View Article : Google Scholar
|
70
|
Venkatesh D, O'Brien NA, Zandkarimi F,
Tong DR, Stokes ME, Dunn DE, Kengmana ES, Aron AT, Klein AM, Csuka
JM, et al: MDM2 and MDMX promote ferroptosis by PPARα-mediated
lipid remodeling. Genes Dev. 34:526–543. 2020.PubMed/NCBI View Article : Google Scholar
|
71
|
Liu Y, Tavana O and Gu W: p53
modifications: Exquisite decorations of the powerful guardian. J
Mol Cell Biol. 11:564–577. 2019.PubMed/NCBI View Article : Google Scholar
|
72
|
Ho T, Tan BX and Lane D: How the other
half lives: What p53 does when it is not being a transcription
factor. Int J Mol Sci. 21(13)2019.PubMed/NCBI View Article : Google Scholar
|
73
|
Karni-Schmidt O, Lokshin M and Prives C:
The Roles of MDM2 and MDMX in Cancer. Annu Rev Pathol. 11:617–644.
2016.PubMed/NCBI View Article : Google Scholar
|
74
|
He F, Borcherds W, Song T, Wei X, Das M,
Chen L, Daughdrill GW and Chen J: Interaction between p53 N
terminus and core domain regulates specific and nonspecific DNA
binding. Proc Natl Acad Sci USA. 116:8859–8868. 2019.PubMed/NCBI View Article : Google Scholar
|
75
|
Levine AJ: The many faces of p53:
Something for everyone. J Mol Cell Biol. 11:524–530.
2019.PubMed/NCBI View Article : Google Scholar
|
76
|
Nagpal I and Yuan ZM: The basally
expressed p53-mediated homeostatic function. Front Cell Dev Biol.
9(775312)2021.PubMed/NCBI View Article : Google Scholar
|
77
|
Lou J, Hao Y, Lin K, Lyu Y, Chen M, Wang
H, Zou D, Jiang X, Wang R, Jin D, et al: Circular RNA CDR1as
disrupts the p53/MDM2 complex to inhibit Gliomagenesis. Mol Cancer.
19(138)2020.PubMed/NCBI View Article : Google Scholar
|
78
|
Gencel-Augusto J and Lozano G: p53
tetramerization: At the center of the dominant-negative effect of
mutant p53. Genes Dev. 34:1128–1146. 2020.PubMed/NCBI View Article : Google Scholar
|
79
|
Hamard PJ, Lukin DJ and Manfredi JJ: p53
basic C terminus regulates p53 functions through DNA binding
modulation of subset of target genes. J Biol Chem. 287:22397–22407.
2012.PubMed/NCBI View Article : Google Scholar
|
80
|
Laptenko O, Shiff I, Freed-Pastor W,
Zupnick A, Mattia M, Freulich E, Shamir I, Kadouri N, Kahan T,
Manfredi J, et al: The p53 C terminus controls site-specific DNA
binding and promotes structural changes within the central DNA
binding domain. Mol Cell. 57:1034–1046. 2015.PubMed/NCBI View Article : Google Scholar
|
81
|
Xiong Y, Zhang Y, Xiong S and
Williams-Villalobo AE: A glance of p53 functions in brain
development, neural stem cells, and brain cancer. Biology (Basel).
9(285)2020.PubMed/NCBI View Article : Google Scholar
|
82
|
Kastenhuber ER and Lowe SW: Putting p53 in
Context. Cell. 170:1062–1078. 2017.PubMed/NCBI View Article : Google Scholar
|
83
|
Li Y, Cao Y, Xiao J, Shang J, Tan Q, Ping
F, Huang W, Wu F, Zhang H and Zhang X: Inhibitor of
apoptosis-stimulating protein of p53 inhibits ferroptosis and
alleviates intestinal ischemia/reperfusion-induced acute lung
injury. Cell Death Differ. 27:2635–2650. 2020.PubMed/NCBI View Article : Google Scholar
|
84
|
Zhao Y, Wu L, Yue X, Zhang C, Wang J, Li
J, Sun X, Zhu Y, Feng Z and Hu W: A polymorphism in the tumor
suppressor p53 affects aging and longevity in mouse models. Elife.
7(e34701)2018.PubMed/NCBI View Article : Google Scholar
|
85
|
Gnanapradeepan K, Basu S, Barnoud T,
Budina-Kolomets A, Kung CP and Murphy ME: The p53 tumor suppressor
in the control of metabolism and ferroptosis. Front Endocrinol
(Lausanne). 9(124)2018.PubMed/NCBI View Article : Google Scholar
|
86
|
Ou Y, Wang SJ, Li D, Chu B and Gu W:
Activation of SAT1 engages polyamine metabolism with p53-mediated
ferroptotic responses. Proc Natl Acad Sci USA. 113:E6806–E6812.
2016.PubMed/NCBI View Article : Google Scholar
|
87
|
Chu B, Kon N, Chen D, Li T, Liu T, Jiang
L, Song S, Tavana O and Gu W: ALOX12 is required for p53-mediated
tumour suppression through a distinct ferroptosis pathway. Nat Cell
Biol. 21:579–591. 2019.PubMed/NCBI View Article : Google Scholar
|
88
|
Venkatesh D, Stockwell BR and Prives C:
p21 can be a barrier to ferroptosis independent of p53. Aging
(Albany NY). 12:17800–17814. 2020.PubMed/NCBI View Article : Google Scholar
|
89
|
Kenny EM, Fidan E, Yang Q, Anthonymuthu
TS, New LA, Meyer EA, Wang H, Kochanek PM, Dixon CE, Kagan VE and
Bayir H: Ferroptosis contributes to neuronal death and functional
outcome after traumatic brain injury. Crit Care Med. 47:410–418.
2019.PubMed/NCBI View Article : Google Scholar
|
90
|
Liu DS, Duong CP, Haupt S, Montgomery KG,
House CM, Azar WJ, Pearson HB, Fisher OM, Read M, Guerra GR, et al:
Inhibiting the system xC-/glutathione axis selectively
targets cancers with mutant-p53 accumulation. Nat Commun.
8(14844)2017.PubMed/NCBI View Article : Google Scholar
|
91
|
Jiang L, Kon N, Li T..Wang SJ, Su T,
Hibshoosh H, Baer R and Gu W: Ferroptosis as a p53-mediated
activity during tumour suppression. Nature. 520:57–62.
2015.PubMed/NCBI View Article : Google Scholar
|
92
|
Snyder NA and Silva GM: Deubiquitinating
enzymes (DUBs): Regulation, homeostasis, and oxidative stress
response. J Biol Chem. 297(101077)2021.PubMed/NCBI View Article : Google Scholar
|
93
|
Shen J, Sheng X, Chang Z, Wu Q, Wang S,
Xuan Z, Li D, Wu Y, Shang Y, Kong X, et al: Iron metabolism
regulates p53 signaling through direct heme-p53 interaction and
modulation of p53 localization, stability, and function. Cell Rep.
7:180–193. 2014.PubMed/NCBI View Article : Google Scholar
|
94
|
Chaudhary R and Lal A: Long noncoding RNAs
in the p53 network. Wiley Interdiscip Rev RNA. 8:10.1002/wrna.1410.
2017.PubMed/NCBI View Article : Google Scholar
|