|
1
|
Xia C, Dong X, Li H, Cao M, Sun D, He S,
Yang F, Yan X, Zhang S, Li N and Chen W: Cancer statistics in China
and United States, 2022: Profiles, trends, and determinants. Chin
Med J (Engl). 135:584–590. 2022.PubMed/NCBI View Article : Google Scholar
|
|
2
|
National Bureau of Statistics of China.
[Cited 2023 June 30]. China Statistical Yearbook, 2023. Available
from: http://www.stats.gov.cn/tjsj/ndsj/.
|
|
3
|
McCabe EM and Rasmussen TP: lncRNA
involvement in cancer stem cell function and epithelial-mesenchymal
transitions. Semin Cancer Biol. 75:38–48. 2021.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Cheng C, Geng F, Cheng X and Guo D: Lipid
metabolism reprogramming and its potential targets in cancer.
Cancer Commun (Lond). 38(27)2018.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Bian X, Liu R, Meng Y, Xing D, Xu D and Lu
Z: Lipid metabolism and cancer. J Exp Med.
218(e20201606)2021.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Liu C, Li H, Chu F, Zhou X, Xie R, Wei Q,
Yang S, Li T, Liang S and Lü M: Long non-coding RNAs: Key
regulators involved in metabolic reprogramming in cancer (review).
Oncol Rep. 45(54)2021.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Ghafouri-Fard S and Taheri M: Long
non-coding RNA signature in gastric cancer. Exp Mol Pathol.
113(104365)2020.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Taniue K and Akimitsu N: The functions and
unique features of LncRNAs in cancer development and tumorigenesis.
Int J Mol Sci. 22(632)2021.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Statello L, Guo CJ, Chen LL and Huarte M:
Gene regulation by long non-coding RNAs and its biological
functions. Nat Rev Mol Cell Bio. 22:96–118. 2021.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Park EG, Pyo SJ, Cui Y, Yoon SH and Nam
JW: Tumor immune microenvironment lncRNAs. Brief Bioinform.
23(bbab504)2022.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Shi L, Duan R, Sun Z, Jia Q, Wu W, Wang F,
Liu J, Zhang H and Xue X: LncRNA GLTC targets LDHA for
succinylation and enzymatic activity to promote progression and
radioiodine resistance in papillary thyroid cancer. Cell Death
Differ. 30:1517–1532. 2023.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Mas AM and Huarte M: Long Noncoding RNA
signatures as cancer biomarkers. J Clin Oncol. 41:3059–3062.
2023.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Huang Z, Zhang M, Li J and Lou C: Long
non-coding RNA MAFG-AS1: A promising therapeutic target for human
cancers. Biomed Pharmacother. 163(114756)2023.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Yang K, Zhang W, Zhong L, Xiao Y, Sahoo S,
Fassan M, Zeng K, Magee P, Garofalo M and Shi L: Long non-coding
RNA HIF1A-As2 and MYC form a double-positive feedback loop to
promote cell proliferation and metastasis in KRAS-driven non-small
cell lung cancer. Cell Death Differ. 30:1533–1549. 2023.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Abdi E, Latifi-Navid S, Abdi F and
Taherian-Esfahani Z: Emerging circulating MiRNAs and LncRNAs in
upper gastrointestinal cancers. Expert Rev Mol Diagn. 20:1121–1138.
2020.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Qi FF, Yang Y, Zhang H and Chen H: Long
non-coding RNAs: Key regulators in oxaliplatin resistance of
colorectal cancer. Biomed Pharmacother. 128(110329)2020.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Chen M, Zhang C, Liu W, Du X, Liu X and
Xing B: Long noncoding RNA LINC01234 promotes hepatocellular
carcinoma progression through orchestrating aspartate metabolic
reprogramming. Mol Ther. 30:2354–2369. 2022.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Zhang Y, Liu Q and Liao Q: Long noncoding
RNA: A dazzling dancer in tumor immune microenvironment. J Exp Clin
Canc Res. 39(231)2020.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Xue W, Zheng Y, Shen Z, Li L, Fan Z, Wang
W, Zhu Z, Zhai Y, Zhao J and Kan Q: Involvement of long non-coding
RNAs in the progression of esophageal cancer. Cancer Commun (Lond).
41:371–388. 2021.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Zhang H, Wang J, Wang Y, Li J, Zhao L,
Zhang T and Liao X: Long non-coding LEF1-AS1 sponge miR-5100
regulates apoptosis and autophagy in gastric cancer cells via the
miR-5100/DEK/AMPK-mTOR axis. Int J Mol Sci. 23(4787)2022.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Verma S, Sahu BD and Mugale MN: Role of
lncRNAs in hepatocellular carcinoma. Life Sci.
325(121751)2023.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Toker J, Iorgulescu JB, Ling AL, Villa GR,
Gadet JAMA, Parida L, Getz G, Wu CJ, Reardon DA, Chiocca EA and
Mineo M: Clinical importance of the lncRNA NEAT1 in cancer patients
treated with immune checkpoint inhibitors. Clin Cancer Res.
29:2226–2238. 2023.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Guan Z, Wang Y, Wang Y, Liu X, Wang Y,
Zhang W, Chi X, Dong Y, Liu X, Shao S and Zhan Q: Long non-coding
RNA LOC100133669 promotes cell proliferation in oesophageal
squamous cell carcinoma. Cell Prolif. 53(e12750)2020.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Xing C, Sun SG, Yue ZQ and Bai F: Role of
lncRNA LUCAT1 in cancer. Biomed Pharmacother.
134(111158)2021.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Chi J, Liu T, Shi C, Luo H, Wu Z, Xiong B,
Liu S and Zeng Y: Long non-coding RNA LUCAT1 promotes proliferation
and invasion in gastric cancer by regulating miR-134-5p/YWHAZ axis.
Biomed Pharmacother. 118(109201)2019.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Zhou Q, Hou Z, Zuo S, Zhou X, Feng Y, Sun
Y and Yuan X: LUCAT1 promotes colorectal cancer tumorigenesis by
targeting the ribosomal protein L40-MDM2-p53 pathway through
binding with UBA52. Cancer Sci. 110:1194–1207. 2019.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Gu X, Chu Q, Zheng Q, Wang J and Zhu H:
The dual functions of the long noncoding RNA CASC15 in malignancy.
Biomed Pharmacother. 135(111212)2021.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Wu Q, Xiang S, Ma J, Hui P, Wang T, Meng
W, Shi M and Wang Y: Long non-coding RNA CASC15 regulates gastric
cancer cell proliferation, migration and epithelial mesenchymal
transition by targeting CDKN1A and ZEB1. Mol Oncol. 12:799–813.
2018.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Yao XM, Tang JH, Zhu H and Jing Y: High
expression of LncRNA CASC15 is a risk factor for gastric cancer
prognosis and promote the proliferation of gastric cancer. Eur Rev
Med Pharmaco. 21:5661–5667. 2017.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Ghafouri-Fard S, Esmaeili M and Taheri M:
H19 lncRNA: Roles in tumorigenesis. Biomed Pharmacother.
123(109774)2020.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Hashemi M, Moosavi MS, Abed HM, Dehghani
M, Aalipour M, Heydari EA, Behroozaghdam M, Entezari M,
Salimimoghadam S, Gunduz ES, et al: Long non-coding RNA (lncRNA)
H19 in human cancer: From proliferation and metastasis to therapy.
Pharmacol Res. 184(106418)2022.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Ding D, Li C, Zhao T, Li D, Yang L and
Zhang B: LncRNA H19/miR-29b-3p/PGRN axis promoted
epithelial-mesenchymal transition of colorectal cancer cells by
acting on Wnt signaling. Mol Cells. 41:423–435. 2018.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Zheng Q, Zhang Q, Yu X, He Y and Guo W:
FENDRR: A pivotal, cancer-related, long non-coding RNA. Biomed
Pharmacother. 137(111390)2021.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Luo T, Zhao J, Lu Z, Bi J, Pang T, Cui H,
Yang B, Li W, Wang Y, Wu S and Xue X: Characterization of long
non-coding RNAs and MEF2C-AS1 identified as a novel biomarker in
diffuse gastric cancer. Transl Oncol. 11:1080–1089. 2018.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Ghafouri-Fard S, Shoorei H, Dashti S,
Branicki W and Taheri M: Expression profile of lncRNAs and miRNAs
in esophageal cancer: Implications in diagnosis, prognosis, and
therapeutic response. J Cell Physiol. 235:9269–9290.
2020.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Yang Y, Jin L, He J, Wang R, Wang Y, Bai
J, Chen Y and Luo Z: Upregulation LncRNA MEG3 expression suppresses
proliferation and metastasis in melanoma via miR-208/SOX4. Mol Cell
Biochem. 478:407–414. 2023.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Soghala S, Harsiny K, Momeni P, Hatami M,
Kholghi Oskooei V, Hussen BM, Taheri M and Ghafouri-Fard S:
Down-regulation of LINC-ROR, HOXA-AS2 and MEG3 in gastric cancer.
Heliyon. 8(e11155)2022.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Butler LM, Perone Y, Dehairs J, Lupien LE,
de Laat V, Talebi A, Loda M, Kinlaw WB and Swinnen JV: Lipids and
cancer: Emerging roles in pathogenesis, diagnosis and therapeutic
intervention. Adv Drug Deliver Rev. 159:245–293. 2020.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Liu X, Hu J and Liu B: Characteristics and
clinical significance of lipid metabolism in patients with
gastrointestinal stromal tumor. Lipids Health Dis.
21(1)2022.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Machala M, Procházková J, Hofmanová J,
Králiková L, Slavík J, Tylichová Z, Ovesná P, Kozubík A and
Vondráček J: Colon cancer and perturbations of the sphingolipid
metabolism. Int J Mol Sci. 20(6051)2019.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Pakiet A, Kobiela J, Stepnowski P,
Sledzinski T and Mika A: Changes in lipids composition and
metabolism in colorectal cancer: A review. Lipids Health Dis.
18(29)2019.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Zheng M, Wang W, Liu J, Zhang X and Zhang
R: Lipid metabolism in cancer cells. Adv Exp Med Biol. 1316:49–69.
2021.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Broadfield LA, Pane AA, Talebi A, Swinnen
JV and Fendt SM: Lipid metabolism in cancer: New perspectives and
emerging mechanisms. Dev Cell. 56:1363–1393. 2021.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Bacci M, Lorito N, Smiriglia A and Morandi
A: Fat and furious: Lipid metabolism in antitumoral therapy
response and resistance. Trends Cancer. 7:198–213. 2021.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Zheng L, Jiang J, Liu Y, Zheng X and Wu C:
Correlations of recurrence after radical surgery for esophageal
cancer with glucose-lipid metabolism, insulin resistance,
inflammation, stress and serum p53 expression. J BUON.
24:1666–1672. 2019.PubMed/NCBI
|
|
46
|
Luo Q, Zheng N, Jiang L, Wang T, Zhang P,
Liu Y, Zheng P, Wang W, Xie G, Chen L, et al: Lipid accumulation in
macrophages confers protumorigenic polarization and immunity in
gastric cancer. Cancer Sci. 111:4000–4011. 2020.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Mejia JC and Pasko J: Primary liver
cancers: intrahepatic cholangiocarcinoma and hepatocellular
carcinoma. Surg Clin North Am. 100:535–549. 2020.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Tiong TY, Weng PW, Wang CH, Setiawan SA,
Yadav VK, Pikatan NW, Fong IH, Yeh CT, Hsu CH and Kuo KT: Targeting
the SREBP-1/Hsa-Mir-497/SCAP/FASN oncometabolic axis inhibits the
cancer stem-like and chemoresistant phenotype of non-small cell
lung carcinoma cells. Int J Mol Sci. 23(7283)2022.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Sun Q, Yu X, Peng C, Liu N, Chen W, Xu H,
Wei H, Fang K, Dong Z, Fu C, et al: Activation of SREBP-1c alters
lipogenesis and promotes tumor growth and metastasis in gastric
cancer. Biomed Pharmacother. 128(110274)2020.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Pascual G, Domínguez D, Elosúa-Bayes M,
Beckedorff F, Laudanna C, Bigas C, Douillet D, Greco C, Symeonidi
A, Hernández I, et al: Dietary palmitic acid promotes a
prometastatic memory via Schwann cells. Nature. 599:485–490.
2021.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Zhang X, Li X, Xiong G, Yun F, Feng Y, Ni
Q, Wu N, Yang L, Yi Z, Zhang Q, et al: Palmitic acid promotes lung
metastasis of melanomas via the TLR4/TRIF-Peli1-pNF-κB pathway.
Metabolites. 12(1132)2022.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Yin H, Li W, Mo L, Deng S, Lin W, Ma C,
Luo Z, Luo C and Hong H: Adipose triglyceride lipase promotes the
proliferation of colorectal cancer cells via enhancing the
lipolytic pathway. J Cell Mol Med. 25:3963–3975. 2021.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Wen YA, Xiong X, Zaytseva YY, Napier DL,
Vallee E, Li AT, Wang C, Weiss HL, Evers BM and Gao T:
Downregulation of SREBP inhibits tumor growth and initiation by
altering cellular metabolism in colon cancer. Cell Death Dis.
9(265)2018.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Hall Z, Chiarugi D, Charidemou E, Leslie
J, Scott E, Pellegrinet L, Allison M, Mocciaro G, Anstee QM, Evan
GI, et al: Lipid remodeling in hepatocyte proliferation and
hepatocellular carcinoma. Hepatology. 73:1028–1044. 2021.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Wang Z, Qin H, Liu S, Sheng J and Zhang X:
Precision diagnosis of hepatocellular carcinoma. Chin Med J (Engl).
136:1155–1165. 2023.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Pope ER III, Kimbrough EO, Vemireddy LP,
Surapaneni PK, Copland JR III and Mody K: Aberrant lipid metabolism
as a therapeutic target in liver cancer. Expert Opin Ther Tar.
23:473–483. 2019.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Li D and Li Y: The interaction between
ferroptosis and lipid metabolism in cancer. Signal Transduct Target
Ther. 5(108)2020.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Chen J, Ding C, Chen Y, Hu W, Yu C, Peng
C, Feng X, Cheng Q, Wu W, Lu Y, et al: ACSL4 reprograms fatty acid
metabolism in hepatocellular carcinoma via c-Myc/SREBP1 pathway.
Cancer Lett. 502:154–165. 2021.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Buechler C and Aslanidis C: Role of lipids
in pathophysiology, diagnosis and therapy of hepatocellular
carcinoma. Biochim Biophys Acta Mol Cell Biol Lipids.
1865(158658)2020.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Lin W, Zhou Q, Wang CQ, Zhu L, Bi C, Zhang
S, Wang X and Jin H: LncRNAs regulate metabolism in cancer. Int J
Biol Sci. 16:1194–1206. 2020.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Xu Y, Qiu M, Shen M, Dong S, Ye G, Shi X
and Sun M: The emerging regulatory roles of long non-coding RNAs
implicated in cancer metabolism. Mol Ther. 29:2209–2218.
2021.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Li D, Cheng M, Niu Y, Chi X, Liu X, Fan J,
Fan H, Chang Y and Yang W: Identification of a novel human long
non-coding RNA that regulates hepatic lipid metabolism by
inhibiting SREBP-1c. Int J Biol Sci. 13:349–357. 2017.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Li D, Guo L, Deng B, Li M, Yang T, Yang F
and Yang Z: Long non-coding RNA HR1 participates in the expression
of SREBP-1c through phosphorylation of the PDK1/AKT/FoxO1 pathway.
Mol Med Rep. 18:2850–2856. 2018.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Gong CY, Tang R, Nan W, Zhou KS and Zhang
HH: Role of SNHG16 in human cancer. Clin Chim Acta. 503:175–180.
2020.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Yu Y, Dong JT, He B, Zou YF, Li XS, Xi CH
and Yu Y: LncRNA SNHG16 induces the SREBP2 to promote lipogenesis
and enhance the progression of pancreatic cancer. Future Oncol.
15:3831–3844. 2019.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Panzitt K, Tschernatsch MM, Guelly C,
Moustafa T, Stradner M, Strohmaier HM, Buck CR, Denk H, Schroeder
R, Trauner M and Zatloukal K: Characterization of HULC, a novel
gene with striking up-regulation in hepatocellular carcinoma, as
noncoding RNA. Gastroenterology. 132:330–342. 2007.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Du Y, Kong G, You X, Zhang S, Zhang T, Gao
Y, Ye L and Zhang X: Elevation of highly up-regulated in liver
cancer (HULC) by hepatitis B virus X protein promotes hepatoma cell
proliferation via down-regulating p18. J Biol Chem.
287:26302–26311. 2012.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Cui M, Xiao Z, Wang Y, Zheng M, Song T,
Cai X, Sun B, Ye L and Zhang X: Long noncoding RNA HULC modulates
abnormal lipid metabolism in hepatoma cells through an
miR-9-mediated RXRA signaling pathway. Cancer Res. 75:846–857.
2015.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Hu B, Lin JZ, Yang XB and Sang XT:
Aberrant lipid metabolism in hepatocellular carcinoma cells as well
as immune microenvironment: A review. Cell Prolif.
53(e12772)2020.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Christensen LL, True K, Hamilton MP,
Nielsen MM, Damas ND, Damgaard CK, Ongen H, Dermitzakis E, Bramsen
JB, Pedersen JS, et al: SNHG16 is regulated by the Wnt pathway in
colorectal cancer and affects genes involved in lipid metabolism.
Mol Oncol. 10:1266–1282. 2016.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Guo S, Zhang Y, Wang S, Yang T, Ma B, Li
X, Zhang Y and Jiang X: LncRNA PCA3 promotes antimony-induced lipid
metabolic disorder in prostate cancer by targeting MIR-132-3
P/SREBP1 signaling. Toxicol Lett. 348:50–58. 2021.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Ma J, Feng J and Zhou X: Long non-coding
RNA HAGLROS regulates lipid metabolism reprogramming in
intrahepatic cholangiocarcinoma via the mTOR signaling pathway. Exp
Mol Pathol. 115(104466)2020.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Wang X, Liu H, Zhang Q, Zhang X, Qin Y,
Zhu G, Dang J, Wang F, Yang X and Fan R: LINC00514 promotes
lipogenesis and tumor progression in esophageal squamous cell
carcinoma by sponging miR-378a-5p to enhance SPHK1 expression. Int
J Oncol. 59(86)2021.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Xu K, Xia P, Gongye X, Zhang X, Ma S, Chen
Z, Zhang H, Liu J, Liu Y, Guo Y, et al: A novel lncRNA
RP11-386G11.10 reprograms lipid metabolism to promote
hepatocellular carcinoma progression. Mol Metab.
63(101540)2022.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Duan J, Huang Z, Nice EC, Xie N, Chen M
and Huang C: Current advancements and future perspectives of long
noncoding RNAs in lipid metabolism and signaling. J Adv Res.
48:105–123. 2023.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Chen J, Alduais Y, Zhang K, Zhu X and Chen
B: CCAT1/FABP5 promotes tumour progression through mediating fatty
acid metabolism and stabilizing PI3K/AKT/mTOR signalling in lung
adenocarcinoma. J Cell Mol Med. 25:9199–9213. 2021.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Wang H, Zhang Y, Guan X, Li X, Zhao Z, Gao
Y, Zhang X and Chen R: An integrated transcriptomics and proteomics
analysis implicates lncRNA MALAT1 in the regulation of lipid
metabolism. Mol Cell Proteomics. 20(100141)2021.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Liu S, Sun Y, Hou Y, Yang L, Wan X, Qin Y,
Liu Y, Wang R, Zhu P, Teng Y and Liu M: A novel lncRNA
ROPM-mediated lipid metabolism governs breast cancer stem cell
properties. J Hematol Oncol. 14(178)2021.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Liu Y, Li C, Fang L, Wang L, Liu H, Tian
H, Zheng Y, Fan T and He J: Lipid metabolism-related lncRNA
SLC25A21-AS1 promotes the progression of oesophageal squamous cell
carcinoma by regulating the NPM1/c-Myc axis and SLC25A21
expression. Clin Transl Med. 12(e944)2022.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Tito C, Ganci F, Sacconi A, Masciarelli S,
Fontemaggi G, Pulito C, Gallo E, Laquintana V, Iaiza A, De Angelis
L, et al: LINC00174 is a novel prognostic factor in thymic
epithelial tumors involved in cell migration and lipid metabolism.
Cell Death Dis. 11(959)2020.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Bo H, Zhang W, Zhong X, Chen J, Liu Y,
Cheong KL, Fan P and Tang S: LINC00467, driven by copy number
amplification and DNA demethylation, is associated with oxidative
lipid metabolism and immune infiltration in breast cancer. Oxid Med
Cell Longev. 2021(4586319)2021.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Zuo X, Chen Z, Gao W, Zhang Y, Wang J,
Wang J, Cao M, Cai J, Wu J and Wang X: M6A-mediated upregulation of
LINC00958 increases lipogenesis and acts as a nanotherapeutic
target in hepatocellular carcinoma. J Hematol Oncol.
13(5)2020.PubMed/NCBI View Article : Google Scholar
|
|
83
|
He W, Liang B, Wang C, Li S, Zhao Y, Huang
Q, Liu Z, Yao Z, Wu Q, Liao W, et al: MSC-regulated lncRNA
MACC1-AS1 promotes stemness and chemoresistance through fatty acid
oxidation in gastric cancer. Oncogene. 38:4637–4654.
2019.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Lin Y, Xiao Y, Liu S, Hong L, Shao L and
Wu J: Role of a lipid metabolism-related lncRNA signature in risk
stratification and immune microenvironment for colon cancer. Bmc
Med Genomics. 15(221)2022.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Liu X, Liang Y, Song R, Yang G, Han J, Lan
Y, Pan S, Zhu M, Liu Y, Wang Y, et al: Long non-coding RNA
NEAT1-modulated abnormal lipolysis via ATGL drives hepatocellular
carcinoma proliferation. Mol Cancer. 17(90)2018.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Lu C, Ma J and Cai D: Increased HAGLR
expression promotes non-small cell lung cancer proliferation and
invasion via enhanced de novo lipogenesis. Tumour Biol.
39(1010428317697574)2017.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Mazar J, Zhao W, Khalil AM, Lee B, Shelley
J, Govindarajan SS, Yamamoto F, Ratnam M, Aftab MN, Collins S, et
al: The functional characterization of long noncoding RNA SPRY4-IT1
in human melanoma cells. Oncotarget. 5:8959–8969. 2014.PubMed/NCBI View Article : Google Scholar
|