|
1
|
Singh D, Vignat J, Lorenzoni V, Eslahi M,
Ginsburg O, Lauby-Secretan B, Arbyn M, Basu P, Bray F and
Vaccarella S: Global estimates of incidence and mortality of
cervical cancer in 2020: A baseline analysis of the WHO global
cervical cancer elimination initiative. Lancet Glob Health.
11:e197–e206. 2023.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Tax C, Rovers MM, de Graaf C, Zusterzeel
PL and Bekkers RL: The sentinel node procedure in early stage
cervical cancer, taking the next step; a diagnostic review. Gynecol
Oncol. 139:559–567. 2015.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Bhatla N, Aoki D, Sharma DN and
Sankaranarayanan R: Cancer of the cervix uteri. Int J Gynaecol
Obstet. 143 (Suppl 2):S22–S36. 2018.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Jürgenliemk-Schulz IM, Beriwal S, de Leeuw
AAC, Lindegaard JC, Nomden CN, Pötter R, Tanderup K, Viswanathan AN
and Erickson B: Management of nodal disease in advanced cervical
cancer. Semin Radiat Oncol. 29:158–165. 2019.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Dadafarin S, Carnazza M, Islam HK,
Moscatello A, Tiwari RK and Geliebter J: Noncoding RNAs in
papillary thyroid cancer: Interaction with cancer-associated
fibroblasts (CAFs) in the tumor microenvironment (TME) and
regulators of differentiation and lymph node metastasis. Adv Exp
Med Biol. 1350:145–155. 2021.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Solis-Castillo LA, Garcia-Romo GS,
Diaz-Rodriguez A, Reyes-Hernandez D, Tellez-Rivera E,
Rosales-Garcia VH, Mendez-Cruz AR, Jimenez-Flores JR,
Villafana-Vazquez VH and Pedroza-Gonzalez A: Tumor-infiltrating
regulatory T cells, CD8/Treg ratio, and cancer stem cells are
correlated with lymph node metastasis in patients with early breast
cancer. Breast Cancer. 27:837–849. 2020.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Griffith JW, Sokol CL and Luster AD:
Chemokines and chemokine receptors: Positioning cells for host
defense and immunity. Annu Rev Immunol. 32:659–702. 2014.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Singh S, Sadanandam A and Singh RK:
Chemokines in tumor angiogenesis and metastasis. Cancer Metastasis
Rev. 26:453–467. 2007.PubMed/NCBI View Article : Google Scholar
|
|
9
|
He M, He Q, Cai X, Chen Z, Lao S, Deng H,
Liu X, Zheng Y, Liu X, Liu J, et al: Role of lymphatic endothelial
cells in the tumor microenvironment-a narrative review of recent
advances. Transl Lung Cancer Res. 10:2252–2277. 2021.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Schito L: Hypoxia-dependent angiogenesis
and lymphangiogenesis in cancer. Adv Exp Med Biol. 1136:71–85.
2019.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Ji RC: Hypoxia and lymphangiogenesis in
tumor microenvironment and metastasis. Cancer Lett. 346:6–16.
2014.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Dieterich LC, Tacconi C, Ducoli L and
Detmar M: Lymphatic vessels in cancer. Physiol Rev. 102:1837–1879.
2022.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Chen JM, Luo B, Ma R, Luo XX, Chen YS and
Li Y: Lymphatic endothelial markers and tumor lymphangiogenesis
assessment in human breast cancer. Diagnostics (Basel).
12(4)2021.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Lambert AW and Weinberg RA: Linking EMT
programmes to normal and neoplastic epithelial stem cells. Nat Rev
Cancer. 21:325–338. 2021.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Bakir B, Chiarella AM, Pitarresi JR and
Rustgi AK: EMT, MET, plasticity, and tumor metastasis. Trends Cell
Biol. 30:764–776. 2020.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Sinha D, Saha P, Samanta A and Bishayee A:
Emerging concepts of hybrid epithelial-to-mesenchymal transition in
cancer progression. Biomolecules. 10(1561)2020.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Kumagai Y, Tachikawa T, Higashi M,
Sobajima J, Takahashi A, Amano K, Fukuchi M, Ishibashi K, Mochiki
E, Yakabi K, et al: Vascular endothelial growth factors C and D and
lymphangiogenesis at the early stage of esophageal squamous cell
carcinoma progression. Dis Esophagus. 31:2018.PubMed/NCBI View Article : Google Scholar
|
|
18
|
García-Silva S, Benito-Martín A, Nogués L,
Hernández-Barranco A, Mazariegos MS, Santos V, Hergueta-Redondo M,
Ximénez-Embún P, Kataru RP, Lopez AA, et al: Melanoma-derived small
extracellular vesicles induce lymphangiogenesis and metastasis
through an NGFR-dependent mechanism. Nat Cancer. 2:1387–1405.
2021.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Dadras SS, Lange-Asschenfeldt B, Velasco
P, Nguyen L, Vora A, Muzikansky A, Jahnke K, Hauschild A, Hirakawa
S, Mihm MC and Detmar M: Tumor lymphangiogenesis predicts melanoma
metastasis to sentinel lymph nodes. Mod Pathol. 18:1232–1242.
2005.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Roy S, Kumaravel S, Banerjee P, White TK,
O'Brien A, Seelig C, Chauhan R, Ekser B, Bayless KJ, Alpini G, et
al: Tumor lymphatic interactions induce CXCR2-CXCL5 axis and alter
cellular metabolism and lymphangiogenic pathways to promote
cholangiocarcinoma. Cells. 10(3093)2021.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Gogineni A, Maresa C, Ailey C, Lee CR, Fuh
G, van Bruggen N, Ye W and Weimer RM: Inhibition of VEGF-C
modulates distal lymphatic remodeling and secondary metastasis.
PLoS One. 8(e68755)2013.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Aebischer D, Iolyeva M and Halin C: The
inflammatory response of lymphatic endothelium. Angiogenesis.
17:383–393. 2014.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Miteva DO, Rutkowski JM, Dixon JB,
Kilarski W, Shields JD and Swartz MA: Transmural flow modulates
cell and fluid transport functions of lymphatic endothelium. Circ
Res. 106:920–931. 2010.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Wiley HE, Gonzalez EB, Maki W, Wu MT and
Wang ST: Expression of CC chemokine receptor-7 and regional lymph
node metastasis of B16 murine melanoma. J Nat Cancer Inst.
93:1638–1643. 2001.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Mezzapelle R, Leo M, Caprioglio F, Colley
LS, Lamarca A, Sabatino L, Colantuoni V, Crippa MP and Bianchi ME:
CXCR4/CXCL12 activities in the tumor microenvironment and
implications for tumor immunotherapy. Cancers (Basel).
14(2314)2022.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Hirakawa S, Detmar M, Kerjaschki D,
Nagamatsu S, Matsuo K, Tanemura A, Kamata N, Higashikawa K, Okazaki
H, Kameda K, et al: Nodal lymphangiogenesis and metastasis: Role of
tumor-induced lymphatic vessel activation in extramammary Paget's
disease. Am J Pathol. 175:2235–2248. 2009.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Kawada K, Hosogi H, Sonoshita M, Sakashita
H, Manabe T, Shimahara Y, Sakai Y, Takabayashi A, Oshima M and
Taketo MM: Chemokine receptor CXCR3 promotes colon cancer
metastasis to lymph nodes. Oncogene. 26:4679–4688. 2007.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Das S, Sarrou E, Podgrabinska S, Cassella
M, Mungamuri SK, Feirt N, Gordon R, Nagi CS, Wang Y, Entenberg D,
et al: Tumor cell entry into the lymph node is controlled by CCL1
chemokine expressed by lymph node lymphatic sinuses. J Exp Med.
210:1509–1528. 2013.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Fujimoto N and Dieterich LC: Mechanisms
and clinical significance of tumor lymphatic invasion. Cells.
10(2585)2021.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Issa A, Le TX, Shoushtari AN, Shields JD
and Swartz MA: Vascular endothelial growth factor-C and C-C
chemokine receptor 7 in tumor cell-lymphatic cross-talk promote
invasive phenotype. Cancer Res. 69:349–357. 2009.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Meier F, Will S, Ellwanger U,
Schlagenhauff B, Schittek B, Rassner G and Garbe C: Metastatic
pathways and time courses in the orderly progression of cutaneous
melanoma. Br J Dermatol. 147:62–70. 2002.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Kim M, Koh YJ, Kim KE, Koh BI, Nam DH,
Alitalo K, Kim I and Koh GY: CXCR4 signaling regulates metastasis
of chemoresistant melanoma cells by a lymphatic metastatic niche.
Cancer Res. 70:10411–10421. 2010.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Farnsworth RH, Karnezis T, Maciburko SJ,
Mueller SN and Stacker SA: The interplay between lymphatic vessels
and chemokines. Front Immunol. 10(518)2019.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Shields JD, Kourtis IC, Tomei AA, Roberts
JM and Swartz MA: Induction of lymphoidlike stroma and immune
escape by tumors that express the chemokine CCL21. Science.
328:749–752. 2010.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Lund AW, Duraes FV, Hirosue S, Raghavan
VR, Nembrini C, Thomas S, Issa A, Hugues S and Swartz MA: VEGF-C
promotes immune tolerance in B16 melanomas and cross-presentation
of tumor antigen by lymph node lymphatics. Cell Rep. 1:191–199.
2012.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Tewalt EF, Cohen JN, Rouhani SJ, Guidi CJ,
Qiao H, Fahl SP, Conaway MR, Bender TP, Tung KS, Vella AT, et al:
Lymphatic endothelial cells induce tolerance via PD-L1 and lack of
costimulation leading to high-level PD-1 expression on CD8 T cells.
Blood. 120:4772–4782. 2012.PubMed/NCBI View Article : Google Scholar
|
|
37
|
De Nola R, Loizzi V, Cicinelli E and
Cormio G: Dynamic crosstalk within the tumor microenvironment of
uterine cervical carcinoma: Baseline network, iatrogenic
alterations, and translational implications. Crit Rev Oncol
Hematol. 162(103343)2021.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Datta A, West C, O'Connor JPB, Choudhury A
and Hoskin P: Impact of hypoxia on cervical cancer outcomes. Int J
Gynecol Cancer. 31:1459–1470. 2021.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Rojo-León V, García C, Valencia C, Méndez
MA, Wood C and Covarrubias L: The E6/E7 oncogenes of human
papilloma virus and estradiol regulate hedgehog signaling activity
in a murine model of cervical cancer. Exp Cell Res. 381:311–322.
2019.PubMed/NCBI View Article : Google Scholar
|
|
40
|
De Nola R, Menga A, Castegna A, Loizzi V,
Ranieri G, Cicinelli E and Cormio G: The crowded crosstalk between
cancer cells and stromal microenvironment in gynecological
malignancies: Biological pathways and therapeutic implication. Int
J Mol Sci. 20(2401)2019.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Lea JS and Lin KY: Cervical cancer. Obstet
Gynecol Clin North Am. 39:233–253. 2012.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Baluk P, Fuxe J, Hashizume H, Romano T,
Lashnits E, Butz S, Vestweber D, Corada M, Molendini C, Dejana E
and McDonald DM: Functionally specialized junctions between
endothelial cells of lymphatic vessels. J Exp Med. 204:2349–2362.
2007.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Tacconi C, Correale C, Gandelli A,
Spinelli A, Dejana E, D'Alessio S and Danese S: Vascular
endothelial growth factor C disrupts the endothelial lymphatic
barrier to promote colorectal cancer invasion. Gastroenterology.
148:1438–1451.e8. 2015.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Chen C, Shen N, Chen Y, Jiang P, Sun W,
Wang Q, Wang Z, Wang Y, Cheng W, Fu S and Wang S: LncCCLM inhibits
lymphatic metastasis of cervical cancer by promoting STAU1-mediated
IGF-1 mRNA degradation. Cancer Lett. 518:169–179. 2021.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Alavi A, Carlin SD, Werner TJ and Zaghal
AA: Suboptimal sensitivity and specificity of PET and other gross
imaging techniques in assessing lymph node metastasis. Mol Imaging
Biol. 21:808–811. 2019.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Phan TG and Croucher PI: The dormant
cancer cell life cycle. Nat Rev Cancer. 20:398–411. 2020.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Ju S, Wang F, Wang Y and Ju S: CSN8 is a
key regulator in hypoxia-induced epithelial-mesenchymal transition
and dormancy of colorectal cancer cells. Mol Cancer.
19(168)2020.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Hsin MC, Hsieh YH, Hsiao YH, Chen PN, Wang
PH and Yang SF: Carbonic anhydrase IX promotes human cervical
cancer cell motility by regulating PFKFB4 expression. Cancers
(Basel). 13(1174)2021.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Sugiura K, Nakajima S, Kato I, Okubo-Sato
M, Nakazawa Y, Mitsudo K and Kioi M: Hypoxia and CD11b+ cell influx
are strongly associated with lymph node metastasis of oral cancer.
Anticancer Res. 40:6845–6852. 2020.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Cairns RA and Hill RP: Acute hypoxia
enhances spontaneous lymph node metastasis in an orthotopic murine
model of human cervical carcinoma. Cancer Res. 64:2054–2061.
2004.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Chaudary N, Milosevic M and Hill RP:
Suppression of vascular endothelial growth factor receptor 3
(VEGFR3) and vascular endothelial growth factor C (VEGFC) inhibits
hypoxia-induced lymph node metastases in cervix cancer. Gynecol
Oncol. 123:393–400. 2011.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Lee S, Shin HJ, Han IO, Hong EK, Park SY,
Roh JW, Shin KH, Kim TH and Kim JY: Tumor carbonic anhydrase 9
expression is associated with the presence of lymph node metastases
in uterine cervical cancer. Cancer Sci. 98:329–333. 2007.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Li Z, Jiang L, Chew SH, Hirayama T, Sekido
Y and Toyokuni S: Carbonic anhydrase 9 confers resistance to
ferroptosis/apoptosis in malignant mesothelioma under hypoxia.
Redox Biol. 26(101297)2019.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Hu HM, Mao MH, Hu YH, Zhou XC, Li S, Chen
CF, Li CN, Yuan QL and Li W: Artemisinin protects DPSC from hypoxia
and TNF-α mediated osteogenesis impairments through CA9 and Wnt
signaling pathway. Life Sci. 277(119471)2021.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Kim JH, Kim JY, Yoon MS, Kim YS, Lee JH,
Kim HJ, Kim H, Kim YJ, Yoo CW, Nam BH, et al: Prophylactic
irradiation of para-aortic lymph nodes for patients with locally
advanced cervical cancers with and without high CA9 expression
(KROG 07-01): A randomized, open-label, multicenter, phase 2 trial.
Radiother Oncol. 120:383–389. 2016.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Chen XJ, Deng YR, Wang ZC, Wei WF, Zhou
CF, Zhang YM, Yan RM, Liang LJ, Zhong M, Liang L, et al:
Hypoxia-induced ZEB1 promotes cervical cancer progression via
CCL8-dependent tumour-associated macrophage recruitment. Cell Death
Dis. 10(508)2019.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Chen XJ, Wei WF, Wang ZC, Wang N, Guo CH,
Zhou CF, Liang LJ, Wu S, Liang L and Wang W: A novel lymphatic
pattern promotes metastasis of cervical cancer in a hypoxic
tumour-associated macrophage-dependent manner. Angiogenesis.
24:549–565. 2021.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Chen XJ, Wu S, Yan RM, Fan LS, Yu L, Zhang
YM, Wei WF, Zhou CF, Wu XG, Zhong M, et al: The role of the
hypoxia-Nrp-1 axis in the activation of M2-like tumor-associated
macrophages in the tumor microenvironment of cervical cancer. Mol
Carcinog. 58:388–397. 2019.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Mao X, Xu J, Wang W, Liang C, Hua J, Liu
J, Zhang B, Meng Q, Yu X and Shi S: Crosstalk between
cancer-associated fibroblasts and immune cells in the tumor
microenvironment: New findings and future perspectives. Mol Cance.
20(131)2021.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Huang M, Fu M, Wang J, Xia C, Zhang H,
Xiong Y, He J, Liu J, Liu B, Pan S and Liu F: TGF-β1-activated
cancer-associated fibroblasts promote breast cancer invasion,
metastasis and epithelial-mesenchymal transition by autophagy or
overexpression of FAP-α. Biochem Pharmacol.
188(114527)2021.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Wang Y, Jing Y, Ding L, Zhang X, Song Y,
Chen S, Zhao X, Huang X, Pu Y, Wang Z, et al: Epiregulin reprograms
cancer-associated fibroblasts and facilitates oral squamous cell
carcinoma invasion via JAK2-STAT3 pathway. J Exp Clin Cancer Res.
38(274)2019.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Zhou B, Chen WL, Wang YY, Lin ZY, Zhang
DM, Fan S and Li JS: A role for cancer-associated fibroblasts in
inducing the epithelial-to-mesenchymal transition in human tongue
squamous cell carcinoma. J Oral Pathol Med. 43:585–592.
2014.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Murata T, Mekada E and Hoffman RM:
Reconstitution of a metastatic-resistant tumor microenvironment
with cancer-associated fibroblasts enables metastasis. Cell Cycle.
16:533–535. 2017.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Murata T, Mizushima H, Chinen I, Moribe H,
Yagi S, Hoffman RM, Kimura T, Yoshino K, Ueda Y, Enomoto T and
Mekada E: HB-EGF and PDGF mediate reciprocal interactions of
carcinoma cells with cancer-associated fibroblasts to support
progression of uterine cervical cancers. Cancer Res. 71:6633–6642.
2011.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Xiao L, Zhu H, Shu J, Gong D, Zheng D and
Gao J: Overexpression of TGF-β1 and SDF-1 in cervical
cancer-associated fibroblasts promotes cell growth, invasion and
migration. Arch Gynecol Obstet. 305:179–192. 2022.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Wei WF, Chen XJ, Liang LJ, Yu L, Wu XG,
Zhou CF, Wang ZC, Fan LS, Hu Z, Liang L and Wang W:
Periostin+ cancer-associated fibroblasts promote lymph
node metastasis by impairing the lymphatic endothelial barriers in
cervical squamous cell carcinoma. Mol Oncol. 15:210–227.
2021.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Nielsen SR and Schmid MC: Macrophages as
key drivers of cancer progression and metastasis. Mediators
Inflamm. 2017(9624760)2017.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Mazzieri R, Pucci F, Moi D, Zonari E,
Ranghetti A, Berti A, Politi LS, Gentner B, Brown JL, Naldini L and
De Palma M: Targeting the ANG2/TIE2 axis inhibits tumor growth and
metastasis by impairing angiogenesis and disabling rebounds of
proangiogenic myeloid cells. Cancer Cell. 19:512–526.
2011.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Yeo EJ, Cassetta L, Qian BZ, Lewkowich I,
Li JF, Stefater JA III, Smith AN, Wiechmann LS, Wang Y, Pollard JW
and Lang RA: Myeloid WNT7b mediates the angiogenic switch and
metastasis in breast cancer. Cancer Res. 74:2962–2973.
2014.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Ji H, Cao R, Yang Y, Zhang Y, Iwamoto H,
Lim S, Nakamura M, Andersson P, Wang J, Sun Y, et al: TNFR1
mediates TNF-α-induced tumour lymphangiogenesis and metastasis by
modulating VEGF-C-VEGFR3 signalling. Nat Commun.
5(4944)2014.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Kimura S, Noguchi H, Nanbu U and Nakayama
T: Macrophage CCL22 expression promotes lymphangiogenesis in
patients with tongue squamous cell carcinoma via IL-4/STAT6 in the
tumor microenvironment. Oncol Lett. 21(383)2021.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Hosono M, Koma YI, Takase N, Urakawa N,
Higashino N, Suemune K, Kodaira H, Nishio M, Shigeoka M, Kakeji Y
and Yokozaki H: CXCL8 derived from tumor-associated macrophages and
esophageal squamous cell carcinomas contributes to tumor
progression by promoting migration and invasion of cancer cells.
Oncotarget. 8:106071–106088. 2017.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Guo F, Kong W, Zhao G, Cheng Z, Ai L, Lv
J, Feng Y and Ma X: The correlation between tumor-associated
macrophage infiltration and progression in cervical carcinoma.
Biosci Rep. 41(BSR20203145)2021.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Tan J, Yang L, Zhao H, Ai Y, Ren L, Zhang
F, Dong W, Shi R, Sun D and Feng Y: The role of
NFATc1/c-myc/PKM2/IL-10 axis in activating cervical cancer
tumor-associated M2 macrophage polarization to promote cervical
cancer progression. Exp Cell Res. 413(113052)2022.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Jiang S, Yang Y, Fang M, Li X and Yuan XJ:
Co-evolution of tumor-associated macrophages and tumor neo-vessels
during cervical cancer invasion. Oncol Lett. 12:2625–2631.
2016.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Li Y, Huang G and Zhang S: Associations
between intratumoral and peritumoral M2 macrophage counts and
cervical squamous cell carcinoma invasion patterns. Int J Gynaecol
Obstet. 139:346–351. 2017.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Dou A and Fang J: Heterogeneous myeloid
cells in tumors. Cancers (Basel). 13(3772)2021.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Mabuchi S, Matsumoto Y, Kawano M, Minami
K, Seo Y, Sasano T, Takahashi R, Kuroda H, Hisamatsu T, Kakigano A,
et al: Uterine cervical cancer displaying tumor-related
leukocytosis: A distinct clinical entity with radioresistant
feature. J Natl Cancer Inst. 106(dju147)2014.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Marvel D and Gabrilovich DI:
Myeloid-derived suppressor cells in the tumor microenvironment:
Expect the unexpected. J Clin Invest. 125:3356–3364.
2015.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Mabuchi S, Komura N, Sasano T, Shimura K,
Yokoi E, Kozasa K, Kuroda H, Takahashi R, Kawano M, Matsumoto Y, et
al: Pretreatment tumor-related leukocytosis misleads positron
emission tomography-computed tomography during lymph node staging
in gynecological malignancies. Nat Commun. 11(1364)2020.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Lee BR, Kwon BE, Hong EH, Shim A, Song JH,
Kim HM, Chang SY, Kim YJ, Kweon MN, Youn JI and Ko HJ:
Interleukin-10 attenuates tumour growth by inhibiting
interleukin-6/signal transducer and activator of transcription 3
signalling in myeloid-derived suppressor cells. Cancer Lett.
381:156–164. 2016.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Kim KH, Sim NS, Chang JS and Kim YB: Tumor
immune microenvironment in cancer patients with leukocytosis.
Cancer Immunol Immunother. 69:1265–1277. 2020.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Panni RZ, Sanford DE, Belt BA, Mitchem JB,
Worley LA, Goetz BD, Mukherjee P, Wang-Gillam A, Link DC, Denardo
DG, et al: Tumor-induced STAT3 activation in monocytic
myeloid-derived suppressor cells enhances stemness and mesenchymal
properties in human pancreatic cancer. Cancer Immunol Immunother.
63:513–528. 2014.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Peng D, Tanikawa T, Li W, Zhao L, Vatan L,
Szeliga W, Wan S, Wei S, Wang Y, Liu Y, et al: Myeloid-derived
suppressor cells endow stem-like qualities to breast cancer cells
through IL6/STAT3 and NO/NOTCH cross-talk signaling. Cancer Res.
76:3156–3165. 2016.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Kuroda H, Mabuchi S, Yokoi E, Komura N,
Kozasa K, Matsumoto Y, Kawano M, Takahashi R, Sasano T, Shimura K,
et al: Prostaglandin E2 produced by myeloid-derived suppressive
cells induces cancer stem cells in uterine cervical cancer.
Oncotarget. 9:36317–36330. 2018.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Ni HH, Zhang L, Huang H, Dai SQ and Li J:
Connecting METTL3 and intratumoural CD33+ MDSCs in
predicting clinical outcome in cervical cancer. J Transl Med.
18(393)2020.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Heeren AM, Koster BD, Samuels S, Ferns DM,
Chondronasiou D, Kenter GG, Jordanova ES and de Gruijl TD: High and
interrelated rates of PD-L1+CD14+ antigen-presenting cells and
regulatory T cells mark the microenvironment of metastatic lymph
nodes from patients with cervical cancer. Cancer Immunol Res.
3:48–58. 2015.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Rodríguez PC and Ochoa AC: Arginine
regulation by myeloid derived suppressor cells and tolerance in
cancer: Mechanisms and therapeutic perspectives. Immunol Rev.
222:180–191. 2008.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Galliverti G, Wullschleger S, Tichet M,
Murugan D, Zangger N, Horton W, Korman AJ, Coussens LM, Swartz MA
and Hanahan D: Myeloid cells orchestrate systemic
immunosuppression, impairing the efficacy of immunotherapy against
HPV+ cancers. Cancer Immunol Res. 8:131–145.
2020.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Jianyi D, Haili G, Bo Y, Meiqin Y, Baoyou
H, Haoran H, Fang L, Qingliang Z and Lingfei H: Myeloid-derived
suppressor cells cross-talk with B10 cells by BAFF/BAFF-R pathway
to promote immunosuppression in cervical cancer. Cancer Immunol
Immunother. 72:87–89. 2023.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Kawano M, Mabuchi S, Matsumoto Y, Sasano
T, Takahashi R, Kuroda H, Kozasa K, Hashimoto K, Isobe A, Sawada K,
et al: The significance of G-CSF expression and myeloid-derived
suppressor cells in the chemoresistance of uterine cervical cancer.
Sci Rep. 5(18217)2015.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Sawant DV, Yano H, Chikina M, Zhang Q,
Liao M, Liu C, Callahan DJ, Sun Z, Sun T, Tabib T, et al: Adaptive
plasticity of IL-10+ and IL-35+
Treg cells cooperatively promotes tumor T cell
exhaustion. Nat Immunol. 20:724–735. 2019.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Wu MY, Kuo TY and Ho HN:
Tumor-infiltrating lymphocytes contain a higher proportion of
FOXP3(+) T lymphocytes in cervical cancer. J Formos Med Assoc.
110:580–586. 2011.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Nakamura T, Shima T, Saeki A, Hidaka T,
Nakashima A, Takikawa O and Saito S: Expression of indoleamine 2,
3-dioxygenase and the recruitment of Foxp3-expressing regulatory T
cells in the development and progression of uterine cervical
cancer. Cancer Sci. 98:874–881. 2007.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Heeren AM, de Boer E, Bleeker MC, Musters
RJ, Buist MR, Kenter GG, de Gruijl TD and Jordanova ES: Nodal
metastasis in cervical cancer occurs in clearly delineated fields
of immune suppression in the pelvic lymph catchment area.
Oncotarget. 6:32484–32493. 2015.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Wang S, Li J, Xie J, Liu F, Duan Y, Wu Y,
Huang S, He X, Wang Z and Wu X: Programmed death ligand 1 promotes
lymph node metastasis and glucose metabolism in cervical cancer by
activating integrin β4/SNAI1/SIRT3 signaling pathway. Oncogene.
37:4164–4180. 2018.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Stein M and Eckert KA: Impact of
G-quadruplexes and chronic inflammation on genome instability:
Additive effects during carcinogenesis. Genes (Basel).
12(1779)2021.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Zhang LX, Wei ZJ, Xu M and Zang JH: Can
the neutrophil-lymphocyte ratio and platelet-lymphocyte ratio be
beneficial in predicting lymph node metastasis and promising
prognostic markers of gastric cancer patients? Tumor maker
retrospective study. Int J Surg. 56:320–327. 2018.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Ayhan S, Akar S, Kar İ, Turan AT, Türkmen
O, Kiliç F, Aytekin O, Ersak B, Ceylan Ö, Moraloğlu Tekin Ö and
Kimyon Comert G: Prognostic value of systemic inflammatory response
markers in cervical cancer. J Obstet Gynaecol.
42(2411)2022.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Lee WH, Kim GE and Kim YB: Prognostic
factors of dose-response relationship for nodal control in
metastatic lymph nodes of cervical cancer patients undergoing
definitive radiotherapy with concurrent chemotherapy. J Gynecol
Oncol. 33(e59)2022.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Polgár C, Major T and Varga S:
Radiotherapy and radio-chemotherapy of cervical cancer. Magy Onkol.
66:307–314. 2022.PubMed/NCBI(In Hungarian).
|
|
102
|
Vinay DS, Ryan EP, Pawelec G, Talib WH,
Stagg J, Elkord E, Lichtor T, Decker WK, Whelan RL, Kumara HMCS, et
al: Immune evasion in cancer: Mechanistic basis and therapeutic
strategies. Semin Cancer Biol. 35 (Suppl):S185–S198.
2015.PubMed/NCBI View Article : Google Scholar
|
|
103
|
van Weelden WJ, Sekarutami SM, Bekkers RL,
Kaanders JH, Bussink J, Gondhowiardjo S, Leer JW and Span PN: The
effect of carbogen breathing and nicotinamide added to standard
(chemo) radiation treatment of advanced cervical cancer in
Indonesia. Int J Gynecol Cancer. 24:1628–1635. 2014.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Samsuri NAB, Leech M and Marignol L:
Metformin and improved treatment outcomes in radiation therapy-A
review. Cancer Treat Rev. 55:150–162. 2017.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Lin A and Maity A: Molecular pathways: A
novel approach to targeting hypoxia and improving radiotherapy
efficacy via reduction in oxygen demand. Clin Cancer Res.
21:1995–2000. 2015.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Sharma A, Arambula JF, Koo S, Kumar R,
Singh H, Sessler JL and Kim JS: Hypoxia-targeted drug delivery.
Chem Soc Rev. 48:771–813. 2019.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Zeman EM, Brown JM, Lemmon MJ, Hirst VK
and Lee WW: SR-4233: A new bioreductive agent with high selective
toxicity for hypoxic mammalian cells. Int J Radiat Oncol Biol Phys.
12:1239–1242. 1986.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Brown JM: SR 4233 (tirapazamine): A new
anticancer drug exploiting hypoxia in solid tumours. Br J Cancer.
67:1163–1170. 1993.PubMed/NCBI View Article : Google Scholar
|
|
109
|
DiSilvestro PA, Ali S, Craighead PS, Lucci
JA, Lee YC, Cohn DE, Spirtos NM, Tewari KS, Muller C, Gajewski WH,
et al: Phase III randomized trial of weekly cisplatin and
irradiation versus cisplatin and tirapazamine and irradiation in
stages IB2, IIA, IIB, IIIB, and IVA cervical carcinoma limited to
the pelvis: A gynecologic oncology group study. J Clin Oncol.
32:458–464. 2014.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Seidel JA, Otsuka A and Kabashima K:
Anti-PD-1 and anti-CTLA-4 therapies in cancer: Mechanisms of
action, efficacy, and limitations. Front Oncol.
8(86)2018.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Chen DS and Mellman I: Oncology meets
immunology: The cancer-immunity cycle. Immunity. 39:1–10.
2013.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Yao S, Zhu Y and Chen L: Advances in
targeting cell surface signalling molecules for immune modulation.
Nat Rev Drug Discov. 12:130–146. 2013.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Naumann RW, Hollebecque A, Meyer T, Devlin
MJ, Oaknin A, Kerger J, López-Picazo JM, Machiels JP, Delord JP,
Evans TRJ, et al: Safety and efficacy of Nivolumab Monotherapy in
recurrent or metastatic cervical, vaginal, or vulvar carcinoma:
Results from the phase I/II CheckMate 358 trial. J Clin Oncol.
37:2825–2834. 2019.PubMed/NCBI View Article : Google Scholar
|
|
114
|
O'Malley DM, Neffa M, Monk BJ, Melkadze T,
Huang M, Kryzhanivska A, Bulat I, Meniawy TM, Bagameri A, Wang EW,
et al: Dual PD-1 and CTLA-4 checkpoint blockade using Balstilimab
and Zalifrelimab combination as second-line treatment for advanced
cervical cancer: An open-label phase II study. J Clin Oncol.
40:762–771. 2022.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Santin AD, Deng W, Frumovitz M, Buza N,
Bellone S, Huh W, Khleif S, Lankes HA, Ratner ES, O'Cearbhaill RE,
et al: Phase II evaluation of nivolumab in the treatment of
persistent or recurrent cervical cancer (NCT02257528/NRG-GY002).
Gynecol Oncol. 157:161–166. 2020.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Frenel JS, Le Tourneau C, O'Neil B, Ott
PA, Piha-Paul SA, Gomez-Roca C, van Brummelen EMJ, Rugo HS, Thomas
S, Saraf S, et al: Safety and efficacy of Pembrolizumab in
advanced, programmed death ligand 1-positive cervical cancer:
Results from the phase Ib KEYNOTE-028 trial. J Clin Oncol.
35:4035–4041. 2017.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Chung HC, Ros W, Delord JP, Perets R,
Italiano A, Shapira-Frommer R, Manzuk L, Piha-Paul SA, Xu L,
Zeigenfuss S, et al: Efficacy and safety of pembrolizumab in
previously treated advanced cervical cancer: results from the phase
II KEYNOTE-158 study. J Clin Oncol. 37:1470–1478. 2019.PubMed/NCBI View Article : Google Scholar
|
|
118
|
De Jaeghere EA, Tuyaerts S, Van Nuffel
AMT, Belmans A, Bogaerts K, Baiden-Amissah R, Lippens L, Vuylsteke
P, Henry S, Trinh XB, et al: Pembrolizumab, radiotherapy, and an
immunomodulatory five-drug cocktail in pretreated patients with
persistent, recurrent, or metastatic cervical or endometrial
carcinoma: Results of the phase II PRIMMO study. Cancer Immunol
Immunother. 72:475–491. 2023.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Lee Y, Auh SL, Wang Y, Burnette B, Wang Y,
Meng Y, Beckett M, Sharma R, Chin R, Tu T, et al: Therapeutic
effects of ablative radiation on local tumor require CD8+ T cells:
Changing strategies for cancer treatment. Blood. 114:589–595.
2009.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Sharabi AB, Lim M, DeWeese TL and Drake
CG: Radiation and checkpoint blockade immunotherapy:
Radiosensitisation and potential mechanisms of synergy. Lancet
Oncol. 16:e498–e509. 2015.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Twyman-Saint Victor C, Rech AJ, Maity A,
Rengan R, Pauken KE, Stelekati E, Benci JL, Xu B, Dada H, Odorizzi
PM, et al: Radiation and dual checkpoint blockade activate
non-redundant immune mechanisms in cancer. Nature. 520:373–377.
2015.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Young KH, Baird JR, Savage T, Cottam B,
Friedman D, Bambina S, Messenheimer DJ, Fox B, Newell P, Bahjat KS,
et al: Optimizing timing of immunotherapy improves control of
tumors by hypofractionated radiation therapy. PLoS One.
11(e0157164)2016.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Dovedi SJ, Adlard AL, Lipowska-Bhalla G,
McKenna C, Jones S, Cheadle EJ, Stratford IJ, Poon E, Morrow M,
Stewart R, et al: Acquired resistance to fractionated radiotherapy
can be overcome by concurrent PD-L1 blockade. Cancer Res.
74:5458–5468. 2014.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Sun J and Yuan J: Chemokine (C-X-C motif)
ligand 1/chemokine (C-X-C motif) receptor 2 autocrine loop
contributes to cellular proliferation, migration and apoptosis in
cervical cancer. Bioengineered. 13:7579–7591. 2022.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Strachan DC, Ruffell B, Oei Y, Bissell MJ,
Coussens LM, Pryer N and Daniel D: CSF1R inhibition delays cervical
and mammary tumor growth in murine models by attenuating the
turnover of tumor-associated macrophages and enhancing infiltration
by CD8+ T cells. Oncoimmunology.
2(e26968)2013.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Steele CW, Karim SA, Leach JDG, Bailey P,
Upstill-Goddard R, Rishi L, Foth M, Bryson S, McDaid K, Wilson Z,
et al: CXCR2 inhibition profoundly suppresses metastases and
augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer
Cell. 29:832–845. 2016.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Pagni RL, Souza PDC, Pegoraro R, Porchia
BFMM, da Silva JR, Aps LRMM, Silva MO, Rodrigues KB, Sales NS,
Ferreira LCS and Moreno ACR: Interleukin-6 and
indoleamine-2,3-dioxygenase as potential adjuvant targets for
papillomavirus-related tumors immunotherapy. Front Immunol.
13(1005937)2022.PubMed/NCBI View Article : Google Scholar
|
|
128
|
He Y, Kozaki K, Karpanen T, Koshikawa K,
Yla-Herttuala S, Takahashi T and Alitalo K: Suppression of tumor
lymphangiogenesis and lymph node metastasis by blocking vascular
endothelial growth factor receptor 3 signaling. J Natl Cancer Inst.
94:819–825. 2002.PubMed/NCBI View Article : Google Scholar
|
|
129
|
García-Quiroz J, Vázquez-Almazán B,
García-Becerra R, Díaz L and Avila E: The interaction of human
papillomavirus infection and prostaglandin E2 signaling
in carcinogenesis: A focus on cervical cancer therapeutics. Cells.
11(2528)2022.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Peng H, He X and Wang Q: Immune checkpoint
blockades in gynecological cancers: A review of clinical trials.
Acta Obstet Gynecol Scand. 101:941–951. 2022.PubMed/NCBI View Article : Google Scholar
|