Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
May-2024 Volume 27 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2024 Volume 27 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Recent development of oral vaccines (Review)

  • Authors:
    • Ying Liu
    • Dominic Man-Kit Lam
    • Mei Luan
    • Wenfu Zheng
    • Hao Ai
  • View Affiliations / Copyright

    Affiliations: Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China, DrD Novel Vaccines Limited, Hong Kong, SAR, P.R. China, Department of Geriatric Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China, Chinese Academy of Sciences Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, P.R. China, Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
    Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 223
    |
    Published online on: March 22, 2024
       https://doi.org/10.3892/etm.2024.12511
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Oral immunization can elicit an effective immune response and immune tolerance to specific antigens. When compared with the traditional injection route, delivering antigens via the gastrointestinal mucosa offers superior immune effects and compliance, as well as simplicity and convenience, making it a more optimal route for immunization. At present, various oral vaccine delivery systems exist. Certain modified bacteria, such as Salmonella, Escherichia coli and particularly Lactobacillus, are considered promising carriers for oral vaccines. These carriers can significantly enhance immunization efficiency by actively replicating in the intestinal tract following oral administration. The present review provided a discussion of the main mechanisms of oral immunity and the research progress made in the field of oral vaccines. Additionally, it introduced the advantages and disadvantages of the currently more commonly administered injectable COVID‑19 vaccines, alongside the latest advancements in this area. Furthermore, recent developments in oral vaccines are summarized, and their potential benefits and side effects are discussed.
View Figures

Figure 1

Figure 2

View References

1 

Plotkin S: History of vaccination. Proc Natl Acad Sci USA. 111:12283–12287. 2014.PubMed/NCBI View Article : Google Scholar

2 

Vela Ramirez JE, Sharpe LA and Peppas NA: Current state and challenges in developing oral vaccines. Adv Drug Deliv Rev. 114:116–131. 2017.PubMed/NCBI View Article : Google Scholar

3 

Pasetti MF, Simon JK, Sztein MB and Levine MM: Immunology of gut mucosal vaccines. Immunol Rev. 239:125–148. 2011.PubMed/NCBI View Article : Google Scholar

4 

Brisse M, Vrba SM, Kirk N, Liang Y and Ly H: Emerging concepts and technologies in vaccine development. Front Immunol. 11(583077)2020.PubMed/NCBI View Article : Google Scholar

5 

Coffey JW, Gaiha GD and Traverso G: Oral biologic delivery: advances toward oral subunit, DNA, and mRNA vaccines and the potential for mass vaccination during pandemics. Annu Rev Pharmacol Toxicol. 61:517–540. 2021.PubMed/NCBI View Article : Google Scholar

6 

Wang EY, Sarmadi M, Ying B, Jaklenec A and Langer R: Recent advances in nano- and micro-scale carrier systems for controlled delivery of vaccines. Biomaterials. 303(122345)2023.PubMed/NCBI View Article : Google Scholar

7 

Serradell MC, Rupil LL, Martino RA, Prucca CG, Carranza PG, Saura A, Fernández EA, Gargantini PR, Tenaglia AH, Petiti JP, et al: Efficient oral vaccination by bioengineering virus-like particles with protozoan surface proteins. Nat Commun. 10(361)2019.PubMed/NCBI View Article : Google Scholar

8 

Mann ER and Li X: Intestinal antigen-presenting cells in mucosal immune homeostasis: Crosstalk between dendritic cells, macrophages and B-cells. World J Gastroenterol. 20:9653–9664. 2014.PubMed/NCBI View Article : Google Scholar

9 

Seo H, Duan Q and Zhang W: Vaccines against gastroenteritis, current progress and challenges. Gut Microbes. 11:1486–1517. 2020.PubMed/NCBI View Article : Google Scholar

10 

Zimmermann P and Curtis N: Factors that influence the immune response to vaccination. Clin Microbiol Rev. 32(e00084)2019.PubMed/NCBI View Article : Google Scholar

11 

Díaz-Dinamarca DA, Salazar ML, Castillo BN, Manubens A, Vasquez AE, Salazar F and Becker MI: Protein-Based adjuvants for vaccines as immunomodulators of the innate and adaptive immune response: Current knowledge, challenges, and future opportunities. Pharmaceutics. 14(1671)2022.PubMed/NCBI View Article : Google Scholar

12 

Zhao T, Cai Y, Jiang Y, He X, Wei Y, Yu Y and Tian X: Vaccine adjuvants: Mechanisms and platforms. Signal Transduct Target Ther. 8(283)2023.PubMed/NCBI View Article : Google Scholar

13 

Ryan EJ, Daly LM and Mills KH: Immunomodulators and delivery systems for vaccination by mucosal routes. Trends Biotechnol. 19:293–304. 2001.PubMed/NCBI View Article : Google Scholar

14 

Mayer L and Shao L: Therapeutic potential of oral tolerance. Nat Rev Immunol. 4:407–419. 2004.PubMed/NCBI View Article : Google Scholar

15 

Pishesha N, Harmand TJ and Ploegh HL: A guide to antigen processing and presentation. Nat Rev Immunol. 22:751–764. 2022.PubMed/NCBI View Article : Google Scholar

16 

Zhu J: T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production. Cytokine. 75:14–24. 2015.PubMed/NCBI View Article : Google Scholar

17 

Mukherjee A, Bisht B, Dutta S and Paul MK: Current advances in the use of exosomes, liposomes, and bioengineered hybrid nanovesicles in cancer detection and therapy. Acta Pharmacol Sin. 43:2759–2776. 2022.PubMed/NCBI View Article : Google Scholar

18 

Li Y, Jin L and Chen T: The effects of secretory IgA in the mucosal immune system. Biomed Res Int. 2020(2032057)2020.PubMed/NCBI View Article : Google Scholar

19 

Hilligan KL and Ronchese F: Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cell Mol Immunol. 17:587–599. 2020.PubMed/NCBI View Article : Google Scholar

20 

Chen K and Cerutti A: Vaccination strategies to promote mucosal antibody responses. Immunity. 33:479–491. 2010.PubMed/NCBI View Article : Google Scholar

21 

Liew FY: TH1 and TH2 cells: A historical perspective. Nat Rev Immunol. 2:55–60. 2002.PubMed/NCBI View Article : Google Scholar

22 

Spender LC, O'Brien DI, Simpson D, Dutt D, Gregory CD, Allday MJ, Clark LJ and Inman GJ: TGF-beta induces apoptosis in human B cells by transcriptional regulation of BIK and BCL-XL. Cell Death Differ. 16:593–602. 2009.PubMed/NCBI View Article : Google Scholar

23 

Zhang X, Izikson L, Liu L and Weiner HL: Activation of CD25(+)CD4(+) regulatory T cells by oral antigen administration. J Immunol. 167:4245–4253. 2001.PubMed/NCBI View Article : Google Scholar

24 

Pelaez-Prestel HF, Sanchez-Trincado JL, Lafuente EM and Reche PA: Immune tolerance in the oral mucosa. Int J Mol Sci. 22(12149)2021.PubMed/NCBI View Article : Google Scholar

25 

Painter MM, Mathew D, Goel RR, Apostolidis SA, Pattekar A, Kuthuru O, Baxter AE, Herati RS, Oldridge DA, Gouma S, et al: Rapid induction of antigen-specific CD4(+) T cells is associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA vaccination. Immunity. 54:2133–2142.e3. 2021.PubMed/NCBI View Article : Google Scholar

26 

Weiner HL: Oral tolerance: Immune mechanisms and the generation of Th3-type TGF-beta-secreting regulatory cells. Microbes Infect. 3:947–954. 2001.PubMed/NCBI View Article : Google Scholar

27 

Huai G, Markmann JF, Deng S and Rickert CG: TGF-β-secreting regulatory B cells: Unsung players in immune regulation. Clin Transl Immunology. 10(e1270)2021.PubMed/NCBI View Article : Google Scholar

28 

Wang M, Zhai X, Li J, Guan J, Xu S, Li Y and Zhu H: The role of cytokines in predicting the response and adverse events related to immune checkpoint inhibitors. Front Immunol. 12(670391)2021.PubMed/NCBI View Article : Google Scholar

29 

Noh J, Noh G, Lee SJ, Lee JH, Kim A, Kim HS and Choi WS: Tolerogenic effects of interferon-gamma with induction of allergen-specific interleukin-10-producing regulatory B cell (Br1) changes in non-IgE-mediated food allergy. Cell Immunol. 273:140–149. 2012.PubMed/NCBI View Article : Google Scholar

30 

MacDonald TT and Monteleone G: IL-12 and Th1 immune responses in human Peyer's patches. Trends Immunol. 22:244–247. 2001.PubMed/NCBI View Article : Google Scholar

31 

Yoo JY, Groer M, Dutra SVO, Sarkar A and McSkimming DI: Gut microbiota and immune system interactions. Microorganisms. 8(1587)2020.PubMed/NCBI View Article : Google Scholar

32 

Ngo MC, Ando J, Leen AM, Ennamuri S, Lapteva N, Vera JF, Min-Venditti A, Mims MP, Heslop HE, Bollard CM, et al: Complementation of antigen-presenting cells to generate T lymphocytes with broad target specificity. J Immunother. 37:193–203. 2014.PubMed/NCBI View Article : Google Scholar

33 

Chen L and Flies DB: Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 13:227–242. 2013.PubMed/NCBI View Article : Google Scholar

34 

Saraiva M and O'Garra A: The regulation of IL-10 production by immune cells. Nat Rev Immunol. 10:170–181. 2010.PubMed/NCBI View Article : Google Scholar

35 

Kenison JE, Stevens NA and Quintana FJ: Therapeutic induction of antigen-specific immune tolerance. Nat Rev Immunol: Dec 12, 2023 (Epub ahead of print).

36 

Park JH and Lee HK: Function of γδ T cells in tumor immunology and their application to cancer therapy. Exp Mol Med. 53:318–327. 2021.PubMed/NCBI View Article : Google Scholar

37 

Odenwald MA and Turner JR: The intestinal epithelial barrier: A therapeutic target? Nat Rev Gastroenterol Hepatol. 14:9–21. 2017.PubMed/NCBI View Article : Google Scholar

38 

Maeda Y, Noda S, Tanaka K, Sawamura S, Aiba Y, Ishikawa H, Hasegawa H, Kawabe N, Miyasaka M and Koga Y: The failure of oral tolerance induction is functionally coupled to the absence of T cells in Peyer's patches under germfree conditions. Immunobiology. 204:442–457. 2001.PubMed/NCBI View Article : Google Scholar

39 

Deng S, Liang H, Chen P, Li Y, Li Z, Fan S, Wu K, Li X, Chen W, Qin Y, et al: Viral vector vaccine development and application during the COVID-19 Pandemic. Microorganisms. 10(1450)2022.PubMed/NCBI View Article : Google Scholar

40 

Jeyanathan M, Afkhami S, Smaill F, Miller MS, Lichty BD and Xing Z: Immunological considerations for COVID-19 vaccine strategies. Nat Rev Immunol. 20:615–632. 2020.PubMed/NCBI View Article : Google Scholar

41 

Alexandersen S, Chamings A and Bhatta TR: SARS-CoV-2 genomic and subgenomic RNAs in diagnostic samples are not an indicator of active replication. Nat Commun. 11(6059)2020.PubMed/NCBI View Article : Google Scholar

42 

Sewell HF, Agius RM, Kendrick D and Stewart M: Covid-19 vaccines: Delivering protective immunity. BMJ. 371(m4838)2020.PubMed/NCBI View Article : Google Scholar

43 

Wu SC: Progress and Concept for COVID-19 vaccine development. Biotechnol J. 15(e2000147)2020.PubMed/NCBI View Article : Google Scholar

44 

Kudlay D and Svistunov A: COVID-19 vaccines: An overview of different platforms. Bioengineering (Basel). 9(72)2022.PubMed/NCBI View Article : Google Scholar

45 

Al-Jighefee HT, Najjar H, Ahmed MN, Qush A, Awwad S and Kamareddine L: COVID-19 vaccine platforms: Challenges and safety contemplations. Vaccines (Basel). 9(1196)2021.PubMed/NCBI View Article : Google Scholar

46 

Su S, Du L and Jiang S: Learning from the past: Development of safe and effective COVID-19 vaccines. Nat Rev Microbiol. 19:211–219. 2021.PubMed/NCBI View Article : Google Scholar

47 

Zhou F, Zhou J, Ma L, Song S, Zhang X, Li W, Jiang S, Wang Y and Liao G: High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1. Biochem Biophys Res Commun. 421:850–854. 2012.PubMed/NCBI View Article : Google Scholar

48 

Kamboj M and Sepkowitz KA: Risk of transmission associated with live attenuated vaccines given to healthy persons caring for or residing with an immunocompromised patient. Infect Control Hosp Epidemiol. 28:702–707. 2007.PubMed/NCBI View Article : Google Scholar

49 

Smahel M, Síma P, Ludvíková V and Vonka V: Modified HPV16 E7 Genes as DNA Vaccine against E7-Containing oncogenic cells. Virology. 281:231–238. 2001.PubMed/NCBI View Article : Google Scholar

50 

Williams JA: Vector design for improved DNA vaccine efficacy, safety and production. Vaccines (Basel). 1:225–249. 2013.PubMed/NCBI View Article : Google Scholar

51 

Pardi N, Hogan MJ, Porter FW and Weissman D: mRNA vaccines-a new era in vaccinology. Nat Rev Drug Discov. 17:261–279. 2018.PubMed/NCBI View Article : Google Scholar

52 

Hodgson SH, Mansatta K, Mallett G, Harris V, Emary KRW and Pollard AJ: What defines an efficacious COVID-19 vaccine? A review of the challenges assessing the clinical efficacy of vaccines against SARS-CoV-2. Lancet Infect Dis. 21:e26–e35. 2021.PubMed/NCBI View Article : Google Scholar

53 

He Q, Mao Q, Zhang J, Bian L, Gao F, Wang J, Xu M and Liang Z: COVID-19 Vaccines: Current understanding on immunogenicity, safety, and further considerations. Front Immunol. 12(669339)2021.PubMed/NCBI View Article : Google Scholar

54 

Hwang JK, Zhang T, Wang AZ and Li Z: COVID-19 vaccines for patients with cancer: Benefits likely outweigh risks. J Hematol Oncol. 14(38)2021.PubMed/NCBI View Article : Google Scholar

55 

Bernal JL, Andrews N, Gower C, Stowe J, Robertson C, Tessier E, Simmons R, Cottrel S, Robertson R, O'Doherty M, et al: Early effectiveness of COVID-19 vaccination with BNT162b2 mRNA vaccine and ChAdOx1 adenovirus vector vaccine on symptomatic disease, hospitalisations and mortality in older adults in England. medRxiv: 2021.2003.2001.21252652, 2021.

56 

Patterson EI, Prince T, Anderson ER, Casas-Sanchez A, Smith SL, Cansado-Utrilla C, Solomon T, Griffiths MJ, Acosta-Serrano Á, Turtle L and Hughes GL: Methods of inactivation of SARS-CoV-2 for downstream biological assays. J Infect Dis. 222:1462–1467. 2020.PubMed/NCBI View Article : Google Scholar

57 

Burrell CJ: Pathogenesis of Virus Infections. Fenner and White's Medical Virology. 2017:77-104, 2017. doi: 10.1016/B978-0-12-375156-0.00007-2. (Epub 2016 Nov 11).

58 

Pavel STI, Yetiskin H, Uygut MA, Aslan AF, Aydın G, İnan Ö, Kaplan B and Ozdarendeli A: Development of an inactivated vaccine against SARS CoV-2. Vaccines (Basel). 9(1266)2021.PubMed/NCBI View Article : Google Scholar

59 

Kouhpayeh H and Ansari H: Adverse events following COVID-19 vaccination: A systematic review and meta-analysis. Int Immunopharmacol. 109(108906)2022.PubMed/NCBI View Article : Google Scholar

60 

Wright PF, Gruber WC, Peters M, Reed G, Zhu Y, Robinson F, Coleman-Dockery S and Graham BS: Illness severity, viral shedding, and antibody responses in infants hospitalized with bronchiolitis caused by respiratory syncytial virus. J Infect Dis. 185:1011–1018. 2002.PubMed/NCBI View Article : Google Scholar

61 

Minor PD: Live attenuated vaccines: Historical successes and current challenges. Virology. 479-480:379–392. 2015.PubMed/NCBI View Article : Google Scholar

62 

Bournazos S and Ravetch JV: Attenuated vaccines for augmented immunity. Cell Host Microbe. 21:314–315. 2017.PubMed/NCBI View Article : Google Scholar

63 

Lauring AS, Jones JO and Andino R: Rationalizing the development of live attenuated virus vaccines. Nat Biotechnol. 28:573–579. 2010.PubMed/NCBI View Article : Google Scholar

64 

De Berardinis P and Haigwood NL: New recombinant vaccines based on the use of prokaryotic antigen-display systems. Expert Rev Vaccines. 3:673–679. 2004.PubMed/NCBI View Article : Google Scholar

65 

Pollet J, Chen WH and Strych U: Recombinant protein vaccines, a proven approach against coronavirus pandemics. Adv Drug Deliv Rev. 170:71–82. 2021.PubMed/NCBI View Article : Google Scholar

66 

Clark JR, Bartley K, Jepson CD, Craik V and March JB: Comparison of a bacteriophage-delivered DNA vaccine and a commercially available recombinant protein vaccine against hepatitis B. FEMS Immunol Med Microbiol. 61:197–204. 2011.PubMed/NCBI View Article : Google Scholar

67 

Mosaddeghi P, Shahabinezhad F, Dorvash M, Goodarzi M and Negahdaripour M: Harnessing the non-specific immunogenic effects of available vaccines to combat COVID-19. Hum Vaccin Immunother. 17:1650–1661. 2021.PubMed/NCBI View Article : Google Scholar

68 

Schlake T, Thess A, Fotin-Mleczek M and Kallen KJ: Developing mRNA-vaccine technologies. RNA Biol. 9:1319–1330. 2012.PubMed/NCBI View Article : Google Scholar

69 

Nanomedicine and the COVID-19 vaccines. Nat Nanotechnol. 15(963)2020.PubMed/NCBI View Article : Google Scholar

70 

Travieso T, Li J, Mahesh S, Mello JDFRE and Blasi M: The use of viral vectors in vaccine development. NPJ Vaccines. 7(75)2022.PubMed/NCBI View Article : Google Scholar

71 

Becker PD, Noerder M and Guzmán CA: Genetic immunization: Bacteria as DNA vaccine delivery vehicles. Hum Vaccin. 4:189–202. 2008.PubMed/NCBI View Article : Google Scholar

72 

Trougakos IP, Terpos E, Alexopoulos H, Politou M, Paraskevis D, Scorilas A, Kastritis E, Andreakos E and Dimopoulos MA: Adverse effects of COVID-19 mRNA vaccines: The spike hypothesis. Trends Mol Med. 28:542–554. 2022.PubMed/NCBI View Article : Google Scholar

73 

Uddin MN and Roni MA: Challenges of storage and stability of mRNA-Based COVID-19 Vaccines. Vaccines (Basel). 9(1033)2021.PubMed/NCBI View Article : Google Scholar

74 

Mason HS, Lam DM and Arntzen CJ: Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci USA. 89:11745–11749. 1992.PubMed/NCBI View Article : Google Scholar

75 

Lou XM, Yao QH, Zhang Z, Peng RH, Xiong AS and Wang HK: Expression of the human hepatitis B virus large surface antigen gene in transgenic tomato plants. Clin Vaccine Immunol. 14:464–469. 2007.PubMed/NCBI View Article : Google Scholar

76 

Lei H, Xu Y, Chen J, Wei X and Lam DM-K: Immunoprotection against influenza H5N1 virus by oral administration of enteric-coated recombinant Lactococcus lactis mini-capsules. Virology. 407:319–324. 2010.PubMed/NCBI View Article : Google Scholar

77 

Monreal-Escalante E, Ramos-Vega A, Angulo C and Bañuelos-Hernández B: Plant-Based vaccines: Antigen design, diversity, and strategies for high level production. Vaccines (Basel). 10(100)2022.PubMed/NCBI View Article : Google Scholar

78 

Kurup VM and Thomas J: Edible vaccines: Promises and challenges. Mol Biotechnol. 62:79–90. 2020.PubMed/NCBI View Article : Google Scholar

79 

Lam J, Lam FW, Lam YO and Lam DM: Oral immunization and edible vaccines: a viable option or mirage? Biotechnology in Hong Kong. II:201–213. 2015.

80 

De Smet R, Allais L and Cuvelier CA: Recent advances in oral vaccine development: Yeast-derived β-glucan particles. Hum Vaccin Immunother. 10:1309–1318. 2014.PubMed/NCBI View Article : Google Scholar

81 

Sung JC, Liu Y, Wu KC, Choi MC, Ma CH, Lin J, He EIC, Leung DY, Sze ET, Hamied YK, et al: Expression of SARS-CoV-2 spike protein receptor binding domain on recombinant B. subtilis on spore surface: A potential COVID-19 oral vaccine candidate. Vaccines (Basel). 10(2)2021.PubMed/NCBI View Article : Google Scholar

82 

Kunisawa J, Kurashima Y and Kiyono H: Gut-associated lymphoid tissues for the development of oral vaccines. Adv Drug Deliv Rev. 64:523–530. 2012.PubMed/NCBI View Article : Google Scholar

83 

Mörbe UM, Jørgensen PB, Fenton TM, von Burg N, Riis LB, Spencer J and Agace WW: Human gut-associated lymphoid tissues (GALT); diversity, structure, and function. Mucosal Immunol. 14:793–802. 2021.PubMed/NCBI View Article : Google Scholar

84 

Van der Weken H, Cox E and Devriendt B: Advances in oral subunit vaccine design. Vaccines (Basel). 9(1)2020.PubMed/NCBI View Article : Google Scholar

85 

Kim Y, Kang J, Lee SG and Kim GT: COVID-19 vaccination-related small vessel vasculitis with multiorgan involvement. Z Rheumatol. 81:509–512. 2022.PubMed/NCBI View Article : Google Scholar

86 

Huang M, Zhang M, Zhu H, Du X and Wang J: Mucosal vaccine delivery: A focus on the breakthrough of specific barriers. Acta Pharm Sin B. 12:3456–3474. 2022.PubMed/NCBI View Article : Google Scholar

87 

Wen H, Jung H and Li X: Drug delivery approaches in addressing clinical pharmacology-related issues: Opportunities and challenges. AAPS J. 17:1327–1340. 2015.PubMed/NCBI View Article : Google Scholar

88 

Bachmann MF and Jennings GT: Vaccine delivery: A matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol. 10:787–796. 2010.PubMed/NCBI View Article : Google Scholar

89 

Nascimento IP and Leite LC: Recombinant vaccines and the development of new vaccine strategies. Braz J Med Biol Res. 45:1102–1111. 2012.PubMed/NCBI View Article : Google Scholar

90 

de Oliveira NR, Santos FDS, Dos Santos VAC, Maia MAC, Oliveira TL and Dellagostin OA: Challenges and strategies for developing recombinant vaccines against leptospirosis: Role of expression platforms and adjuvants in achieving protective efficacy. Pathogens. 12(787)2023.PubMed/NCBI View Article : Google Scholar

91 

Gong X, Gao Y, Shu J, Zhang C and Zhao K: Chitosan-Based nanomaterial as immune adjuvant and delivery carrier for vaccines. Vaccines (Basel). 10(1906)2022.PubMed/NCBI View Article : Google Scholar

92 

Zhao H, Zhou X and Zhou YH: Hepatitis B vaccine development and implementation. Hum Vaccin Immunother. 16:1533–1544. 2020.PubMed/NCBI View Article : Google Scholar

93 

Möller J, Kraner ME and Burkovski A: More than a Toxin: Protein inventory of clostridium tetani toxoid vaccines. Proteomes. 7(15)2019.PubMed/NCBI View Article : Google Scholar

94 

Abulmagd S, Khattab AEA and Zedan H: Expression of full and fragment-B of diphtheria toxin genes in Escherichia coli for generating of recombinant diphtheria vaccines. Clin Exp Vaccine Res. 11:12–29. 2022.PubMed/NCBI View Article : Google Scholar

95 

Chokephaibulkit K, Puthanakit T, Bhat N, Mansouri S, Tang Y, Lapphra K, Rungmaitree S, Anugulruengkitt S, Jantarabenjakul W, Andi-Lolo I, et al: A phase 2 randomized controlled dose-ranging trial of recombinant pertussis booster vaccines containing genetically inactivated pertussis toxin in women of childbearing age. Vaccine. 40:2352–2361. 2022.PubMed/NCBI View Article : Google Scholar

96 

Pulendran B, S Arunachalam P and O'Hagan DT: Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov. 20:454–475. 2021.PubMed/NCBI View Article : Google Scholar

97 

Head JR, Vos A, Blanton J, Müller T, Chipman R, Pieracci EG, Cleaton J and Wallace R: Environmental distribution of certain modified live-virus vaccines with a high safety profile presents a low-risk, high-reward to control zoonotic diseases. Sci Rep. 9(6783)2019.PubMed/NCBI View Article : Google Scholar

98 

Radhakrishnan A, Vaseeharan B, Ramasamy P and Jeyachandran S: Oral vaccination for sustainable disease prevention in aquaculture-an encapsulation approach. Aquac Int. 31:867–891. 2023.PubMed/NCBI View Article : Google Scholar

99 

Karem KL, Bowen J, Kuklin N and Rouse BT: Protective immunity against herpes simplex virus (HSV) type 1 following oral administration of recombinant Salmonella typhimurium vaccine strains expressing HSV antigens. J Gen Virol. 78:427–434. 1997.PubMed/NCBI View Article : Google Scholar

100 

Mouro V and Fischer A: Dealing with a mucosal viral pandemic: Lessons from COVID-19 vaccines. Mucosal Immunol. 15:584–594. 2022.PubMed/NCBI View Article : Google Scholar

101 

Freytag LC and Clements JD: Mucosal adjuvants. Vaccine. 23:1804–1813. 2005.PubMed/NCBI View Article : Google Scholar

102 

Verma SK, Mahajan P, Singh NK, Gupta A, Aggarwal R, Rappuoli R and Johri AK: New-age vaccine adjuvants, their development, and future perspective. Front Immunol. 14(1043109)2023.PubMed/NCBI View Article : Google Scholar

103 

Clements JD and Norton EB: The Mucosal Vaccine Adjuvant LT(R192G/L211A) or dmLT. mSphere. 3:e00215–18. 2018.PubMed/NCBI View Article : Google Scholar

104 

Kawamura YI, Kawashima R, Shirai Y, Kato R, Hamabata T, Yamamoto M, Furukawa K, Fujihashi K, McGhee JR, Hayashi H and Dohi T: Cholera toxin activates dendritic cells through dependence on GM1-ganglioside which is mediated by NF-kappaB translocation. Eur J Immunol. 33:3205–3212. 2003.PubMed/NCBI View Article : Google Scholar

105 

Heim JB, Hodnik V, Heggelund JE, Anderluh G and Krengel U: Crystal structures of cholera toxin in complex with fucosylated receptors point to importance of secondary binding site. Sci Rep. 9(12243)2019.PubMed/NCBI View Article : Google Scholar

106 

Delafresnaye L, Feist F, Hooker JP and Barner-Kowollik C: Microspheres from light-a sustainable materials platform. Nat Commun. 13(5132)2022.PubMed/NCBI View Article : Google Scholar

107 

Welling MM, Duszenko N, van Meerbeek MP, Molenaar TJM, Buckle T, van Leeuwen FWB and Rietbergen DDD: Microspheres as a carrier system for therapeutic embolization procedures: Achievements and advances. J Clin Med. 12(918)2023.PubMed/NCBI View Article : Google Scholar

108 

Hanes J, Cleland JL and Langer R: New advances in microsphere-based single-dose vaccines. Adv Drug Deliv Rev. 28:97–119. 1997.PubMed/NCBI View Article : Google Scholar

109 

Matsunaga Y, Wakatsuki Y, Tabata Y, Kawasaki H, Usui T, Yoshida M, Itoh T, Habu S and Kita T: Oral immunization with size-purified microsphere beads as a vehicle selectively induces systemic tolerance and sensitization. Vaccine. 19:579–588. 2000.PubMed/NCBI View Article : Google Scholar

110 

Saleh S, Van Puyvelde S, Staes A, Timmerman E, Barbé B, Jacobs J, Gevaert K and Deborggraeve S: Salmonella Typhi, Paratyphi A, Enteritidis and Typhimurium core proteomes reveal differentially expressed proteins linked to the cell surface and pathogenicity. PLoS Negl Trop Dis. 13(e0007416)2019.PubMed/NCBI View Article : Google Scholar

111 

Galen JE, Pasetti MF, Tennant S, Ruiz-Olvera P, Sztein MB and Levine MM: Salmonella enterica serovar Typhi live vector vaccines finally come of age. Immunol Cell Biol. 87:400–412. 2009.PubMed/NCBI View Article : Google Scholar

112 

Rogers AWL, Tsolis RM and Bäumler AJ: Salmonella versus the Microbiome. Microbiol Mol Biol Rev. 85(e00027)2021.PubMed/NCBI View Article : Google Scholar

113 

Sirard JC, Niedergang F and Kraehenbuhl JP: Live attenuated Salmonella: A paradigm of mucosal vaccines. Immunol Rev. 171:5–26. 1999.PubMed/NCBI View Article : Google Scholar

114 

Howlader DR, Koley H, Sinha R, Maiti S, Bhaumik U, Mukherjee P and Dutta S: Development of a novel S. Typhi and Paratyphi A outer membrane vesicles based bivalent vaccine against enteric fever. PLoS One. 13(e0203631)2018.PubMed/NCBI View Article : Google Scholar

115 

Dempsey E and Corr SC: Lactobacillus spp. for gastrointestinal health: Current and future perspectives. Front Immunol. 13(840245)2022.PubMed/NCBI View Article : Google Scholar

116 

Li F, Wang X, Ma R, Wu W, Teng F, Cheng X, Jiang Y, Zhou H, Wang L, Tang L, et al: Oral immunization with lactobacillus casei expressing the porcine circovirus type 2 Cap and LTB induces mucosal and systemic antibody responses in mice. Viruses. 13(1302)2021.PubMed/NCBI View Article : Google Scholar

117 

Shaw DM, Gaerthé B, Leer RJ, Van Der Stap JG, Smittenaar C, Heijne Den Bak-Glashouwer M, Thole JE, Tielen FJ, Pouwels PH and Havenith CE: Engineering the microflora to vaccinate the mucosa: Serum immunoglobulin G responses and activated draining cervical lymph nodes following mucosal application of tetanus toxin fragment C-expressing lactobacilli. Immunology. 100:510–518. 2000.PubMed/NCBI View Article : Google Scholar

118 

Betancor M, Moreno-Martínez L, López-Pérez Ó, Otero A, Hernaiz A, Barrio T, Badiola JJ, Osta R, Bolea R and Martín-Burriel I: Therapeutic Assay with the Non-toxic C-Terminal fragment of tetanus toxin (TTC) in transgenic murine models of prion disease. Mol Neurobiol. 58:5312–5326. 2021.PubMed/NCBI View Article : Google Scholar

119 

Mathiesen G, Øverland L, Kuczkowska K and Eijsink VGH: Anchoring of heterologous proteins in multiple Lactobacillus species using anchors derived from Lactobacillus plantarum. Sci Rep. 10(9640)2020.PubMed/NCBI View Article : Google Scholar

120 

Ding C, Ma J, Dong Q and Liu Q: Live bacterial vaccine vector and delivery strategies of heterologous antigen: A review. Immunol Lett. 197:70–77. 2018.PubMed/NCBI View Article : Google Scholar

121 

Yun SO, Shin HY, Kang CY and Kang HJ: Generation of antigen-specific cytotoxic T lymphocytes with activated B cells. Cytotherapy. 19:119–127. 2017.PubMed/NCBI View Article : Google Scholar

122 

Porter DC, Ansardi DC and Morrow CD: Encapsidation of poliovirus replicons encoding the complete human immunodeficiency virus type 1 gag gene by using a complementation system which provides the P1 capsid protein in trans. J Virol. 69:1548–1555. 1995.PubMed/NCBI View Article : Google Scholar

123 

Sharpe S, Fooks A, Lee J, Hayes K, Clegg C and Cranage M: Single oral immunization with replication deficient recombinant adenovirus elicits long-lived transgene-specific cellular and humoral immune responses. Virology. 293:210–216. 2002.PubMed/NCBI View Article : Google Scholar

124 

Kwong KW, Xin Y, Lai NC, Sung JC, Wu KC, Hamied YK, Sze ET and Lam DM: Oral vaccines: A better future of immunization. Vaccines. 11(1232)2023.PubMed/NCBI View Article : Google Scholar

125 

Langridge WH: Edible Vaccines. Sci Am. 283:66–71. 2000.PubMed/NCBI View Article : Google Scholar

126 

Zhang Y, Chen S, Li J, Liu Y, Hu Y and Cai H: Oral immunogenicity of potato-derived antigens to Mycobacterium tuberculosis in mice. Acta Biochim Biophys Sin (Shanghai). 44:823–830. 2012.PubMed/NCBI View Article : Google Scholar

127 

Wen SX, Teel LD, Judge NA and O'Brien AD: A plant-based oral vaccine to protect against systemic intoxication by Shiga toxin type 2. Proc Natl Acad Sci USA. 103:7082–7087. 2006.PubMed/NCBI View Article : Google Scholar

128 

Arakawa T, Chong DK and Langridge WH: Efficacy of a food plant-based oral cholera toxin B subunit vaccine. Nat Biotechnol. 16:292–297. 1998.PubMed/NCBI View Article : Google Scholar

129 

Greco R, Michel M, Guetard D, Cervantes-Gonzalez M, Pelucchi N, Wain-Hobson S, Sala F and Sala M: Production of recombinant HIV-1/HBV virus-like particles in Nicotiana tabacum and Arabidopsis thaliana plants for a bivalent plant-based vaccine. Vaccine. 25:8228–8240. 2007.PubMed/NCBI View Article : Google Scholar

130 

Mehrizadeh V, Dorani E, Mohammadi SA and Ghareyazie B: Expression of recombinant human IFN-γ protein in soybean (Glycine max L.). Plant Cell Tiss Organ Cult. 146:127–136. 2021.

131 

Ren C, Zhang Q, Wang G, Ai C, Hu M, Liu X, Tian F, Zhao J, Chen Y, Wang M, et al: Modulation of peanut-induced allergic immune responses by oral lactic acid bacteria-based vaccines in mice. Appl Microbiol Biotechnol. 98:6353–6364. 2014.PubMed/NCBI View Article : Google Scholar

132 

Joh LD, Wroblewski T, Ewing NN and VanderGheynst JS: High-level transient expression of recombinant protein in lettuce. Biotechnol Bioeng. 91:861–871. 2005.PubMed/NCBI View Article : Google Scholar

133 

Luchakivskaya Y, Kishchenko O, Gerasymenko I, Olevinskaya Z, Simonenko Y, Spivak M and Kuchuk M: High-level expression of human interferon alpha-2b in transgenic carrot (Daucus carota L.) plants. Plant Cell Rep. 30:407–415. 2011.PubMed/NCBI View Article : Google Scholar

134 

Beihaghi M, Marashi H, Bagheri A and Sankian M: Transient expression of CCL21as recombinant protein in tomato. Biotechnol Rep (Amst). 17:10–15. 2018.PubMed/NCBI View Article : Google Scholar

135 

Lee RW, Strommer J, Hodgins D, Shewen PE, Niu Y and Lo RY: Towards development of an edible vaccine against bovine pneumonic pasteurellosis using transgenic white clover expressing a Mannheimia haemolytica A1 leukotoxin 50 fusion protein. Infect Immun. 69:5786–5793. 2001.PubMed/NCBI View Article : Google Scholar

136 

Peréz Aguirreburualde MS, Gómez MC, Ostachuk A, Wolman F, Albanesi G, Pecora A, Odeon A, Ardila F, Escribano JM, Dus Santos MJ and Wigdorovitz A: Efficacy of a BVDV subunit vaccine produced in alfalfa transgenic plants. Vet Immunol Immunopathol. 151:315–324. 2013.PubMed/NCBI View Article : Google Scholar

137 

Streatfield SJ, Lane JR, Brooks CA, Barker DK, Poage ML, Mayor JM, Lamphear BJ, Drees CF, Jilka JM, Hood EE and Howard JA: Corn as a production system for human and animal vaccines. Vaccine. 21:812–815. 2003.PubMed/NCBI View Article : Google Scholar

138 

Wee S and Gombotz WR: Protein release from alginate matrices. Adv Drug Deliv Rev. 31:267–285. 1998.PubMed/NCBI View Article : Google Scholar

139 

Ma Y, Lin SQ, Gao Y, Li M, Luo WX, Zhang J and Xia NS: Expression of ORF2 partial gene of hepatitis E virus in tomatoes and immunoactivity of expression products. World J Gastroenterol. 9:2211–2215. 2003.PubMed/NCBI View Article : Google Scholar

140 

Eidenberger L, Kogelmann B and Steinkellner H: Plant-based biopharmaceutical engineering. Nat Rev Bioeng. 1:426–439. 2023.PubMed/NCBI View Article : Google Scholar

141 

Ortega-Berlanga B and Pniewski T: Plant-Based vaccines in combat against coronavirus diseases. Vaccines (Basel). 10(138)2022.PubMed/NCBI View Article : Google Scholar

142 

Smart V, Foster PS, Rothenberg ME, Higgins TJ and Hogan SP: A plant-based allergy vaccine suppresses experimental asthma via an IFN-gamma and CD4+CD45RBlow T cell-dependent mechanism. Immunol. 171:2116–2126. 2003.PubMed/NCBI View Article : Google Scholar

143 

Guan ZJ, Guo B, Huo YL, Guan ZP and Wei YH: Overview of expression of hepatitis B surface antigen in transgenic plants. Vaccine. 28:7351–7362. 2010.PubMed/NCBI View Article : Google Scholar

144 

Jin S, Wang T, Zhao Y, Liu X, Wang Y, Jiang L and Zhang Q: The heat-labile toxin B subunit of E. coli fused with VP6 from GCRV (Grass carp reovirus) was expressed and folded into an active protein in rice calli. Protein Expr Purif. 197(106099)2022.PubMed/NCBI View Article : Google Scholar

145 

McMillan HM, Zebell SG, Ristaino JB, Dong X and Kuehn MJ: Protective plant immune responses are elicited by bacterial outer membrane vesicles. Cell Rep. 34(108645)2021.PubMed/NCBI View Article : Google Scholar

146 

Lee J, Woodruff MC, Kim EH and Nam JH: Knife's edge: Balancing immunogenicity and reactogenicity in mRNA vaccines. Exp Mol Med. 55:1305–1313. 2023.PubMed/NCBI View Article : Google Scholar

147 

Jan N, Shafi F, Hameed Ob, Muzaffar K, Dar SM, Majid I and Na N: An Overview on Edible Vaccines and Immunization. Austin J Nutri Food Sci. 4(1078)2016.

148 

Zhang X, Buehner NA, Hutson AM, Estes MK and Mason HS: Tomato is a highly effective vehicle for expression and oral immunization with Norwalk virus capsid protein. Plant Biotechnol J. 4:419–432. 2006.PubMed/NCBI View Article : Google Scholar

149 

McGarvey PB, Hammond J, Dienelt MM, Hooper DC, Fu ZF, Dietzschold B, Koprowski H and Michaels FH: Expression of the rabies virus glycoprotein in transgenic tomatoes. Biotechnology (N Y). 13:1484–1487. 1995.PubMed/NCBI View Article : Google Scholar

150 

Jain A, Saini V and Kohli DV: Edible transgenic plant vaccines for different diseases. Curr Pharm Biotechnol. 14:594–614. 2013.PubMed/NCBI View Article : Google Scholar

151 

Chan HT and Daniell H: Plant-made oral vaccines against human infectious diseases-Are we there yet? Plant Biotechnol J. 13:1056–1070. 2015.PubMed/NCBI View Article : Google Scholar

152 

Rao JP, Agrawal P, Mohammad R, Rao SK, Reddy GR, Dechamma HJ and S Suryanarayana VV: Expression of VP1 protein of serotype A and O of foot-and-mouth disease virus in transgenic sunnhemp plants and its immunogenicity for guinea pigs. Acta Virol. 56:91–99. 2012.PubMed/NCBI View Article : Google Scholar

153 

Han L, An C, Liu D, Wang Z, Bian L, He Q, Liu J, Wang Q, Liu M, Mao Q, et al: Development of an ELISA Assay for the Determination of SARS-CoV-2 protein subunit vaccine antigen content. Viruses. 15(62)2022.PubMed/NCBI View Article : Google Scholar

154 

Khalid F, Tahir R, Ellahi M, Amir N, Rizvi SFA and Hasnain A: Emerging trends of edible vaccine therapy for combating human diseases especially COVID-19: Pros, cons, and future challenges. Phytother Res. 36:2746–2766. 2022.PubMed/NCBI View Article : Google Scholar

155 

Sharma M and Sood B: A banana or a syringe: Journey to edible vaccines. World J Microbiol Biotechnol. 27:471–477. 2011.

156 

Surridge C: Oral vaccines: Papaya salad. Nat Plants. 3(17034)2017.PubMed/NCBI View Article : Google Scholar

157 

Azad MA, Rabbani MG, Amin L and Sidik NM: Development of transgenic papaya through agrobacterium-mediated transformation. Int J Genomics. 2013(235487)2013.PubMed/NCBI View Article : Google Scholar

158 

Thach PN and Hoi NT: Result of homogenization of sputum with papaya for faster detection of Mycobacterium tuberculosis. Probl Tuberk. 37(85)1959.PubMed/NCBI(In Russian).

159 

Stöger E, Vaquero C, Torres E, Sack M, Nicholson L, Drossard J, Williams S, Keen D, Perrin Y, Christou P and Fischer R: Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol Biol. 42:583–590. 2000.PubMed/NCBI View Article : Google Scholar

160 

Rosales-Mendoza S, Sández-Robledo C, Bañuelos-Hernández B and Angulo C: Corn-based vaccines: Current status and prospects. Planta. 245:875–888. 2017.PubMed/NCBI View Article : Google Scholar

161 

Nochi T, Takagi H, Yuki Y, Yang L, Masumura T, Mejima M, Nakanishi U, Matsumura A, Uozumi A, Hiroi T, et al: Rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination. Proc Natl Acad Sci USA. 104:10986–10991. 2007.PubMed/NCBI View Article : Google Scholar

162 

Specht EA and Mayfield SP: Algae-based oral recombinant vaccines. Front Microbiol. 5(60)2014.PubMed/NCBI View Article : Google Scholar

163 

Sami N, Ahmad R and Fatma T: Exploring algae and cyanobacteria as a promising natural source of antiviral drug against SARS-CoV-2. Biomed J. 44:54–62. 2021.PubMed/NCBI View Article : Google Scholar

164 

Satyaraj E, Reynolds A, Engler R, Labuda J and Sun P: Supplementation of diets with spirulina influences immune and gut function in dogs. Front Nutr. 8(667072)2021.PubMed/NCBI View Article : Google Scholar

165 

Genetically Engineered Plants as a Source of Vaccines Against Wide Spread Diseases: An Integrated View. Springer, New York, NY, 2014.

166 

Gebre MS, Brito LA, Tostanoski LH, Edwards DK, Carfi A and Barouch DH: Novel approaches for vaccine development. Cell. 184:1589–1603. 2021.PubMed/NCBI View Article : Google Scholar

167 

Chan BC, Li P, Tsang MS, Sung JC, Kwong KW, Zheng T, Hon SS, Lau CP, Cheng W, Chen F, et al: Creating a vaccine-like supplement against respiratory infection using recombinant bacillus subtilis spores expressing SARS-CoV-2 spike protein with natural products. Molecules. 28(4996)2023.PubMed/NCBI View Article : Google Scholar

168 

Soutter F, Werling D, Nolan M, Küster T, Attree E, Marugán-Hernández V, Kim S, Tomley FM and Blake DP: A novel whole yeast-based subunit oral vaccine against eimeria tenella in chickens. Front Immunol. 13(809711)2022.PubMed/NCBI View Article : Google Scholar

169 

Li M, Wang Y, Sun Y, Cui H, Zhu SJ and Qiu HJ: Mucosal vaccines: Strategies and challenges. Immunol Lett. 217:116–125. 2020.PubMed/NCBI View Article : Google Scholar

170 

Jazayeri SD, Lim HX, Shameli K, Yeap SK and Poh CL: Nano and microparticles as potential oral vaccine carriers and adjuvants against infectious diseases. Front Pharmacol. 12(682286)2021.PubMed/NCBI View Article : Google Scholar

171 

Kong Q, Richter L, Yang YF, Arntzen CJ, Mason HS and Thanavala Y: Oral immunization with hepatitis B surface antigen expressed in transgenic plants. Proc Natl Acad Sci USA. 98:11539–11544. 2001.PubMed/NCBI View Article : Google Scholar

172 

Figueiredo D, Turcotte C, Frankel G, Li Y, Dolly O, Wilkin G, Marriott D, Fairweather N and Dougan G: Characterization of recombinant tetanus toxin derivatives suitable for vaccine development. Infect Immun. 63:3218–3221. 1995.PubMed/NCBI View Article : Google Scholar

173 

Lee CW, Lee SF and Halperin SA: Expression and immunogenicity of a recombinant diphtheria toxin fragment A in Streptococcus gordonii. Appl Environ Microbiol. 70:4569–4574. 2004.PubMed/NCBI View Article : Google Scholar

174 

Barry EM, Gomez-Duarte O, Chatfield S, Rappuoli R, Pizza M, Losonsky G, Galen J and Levine MM: Expression and immunogenicity of pertussis toxin S1 subunit-tetanus toxin fragment C fusions in Salmonella typhi vaccine strain CVD 908. Infect Immun. 64:4172–4181. 1996.PubMed/NCBI View Article : Google Scholar

175 

Kenner JR, Coster TS, Taylor DN, Trofa AF, Barrera-Oro M, Hyman T, Adams JM, Beattie DT, Killeen KP, Spriggs DR, et al: Peru-15, an improved live attenuated oral vaccine candidate for Vibrio cholerae O1. J Infect Dis. 172:1126–1129. 1995.PubMed/NCBI View Article : Google Scholar

176 

Banda R, Yambayamba V, Lalusha BD, Sinkala E, Kapulu MC and Kelly P: Safety of live, attenuated oral vaccines in HIV-infected Zambian adults: Oral vaccines in HIV. Vaccine. 30:5656–5660. 2012.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu Y, Lam D, Luan M, Zheng W and Ai H: Recent development of oral vaccines (Review). Exp Ther Med 27: 223, 2024.
APA
Liu, Y., Lam, D., Luan, M., Zheng, W., & Ai, H. (2024). Recent development of oral vaccines (Review). Experimental and Therapeutic Medicine, 27, 223. https://doi.org/10.3892/etm.2024.12511
MLA
Liu, Y., Lam, D., Luan, M., Zheng, W., Ai, H."Recent development of oral vaccines (Review)". Experimental and Therapeutic Medicine 27.5 (2024): 223.
Chicago
Liu, Y., Lam, D., Luan, M., Zheng, W., Ai, H."Recent development of oral vaccines (Review)". Experimental and Therapeutic Medicine 27, no. 5 (2024): 223. https://doi.org/10.3892/etm.2024.12511
Copy and paste a formatted citation
x
Spandidos Publications style
Liu Y, Lam D, Luan M, Zheng W and Ai H: Recent development of oral vaccines (Review). Exp Ther Med 27: 223, 2024.
APA
Liu, Y., Lam, D., Luan, M., Zheng, W., & Ai, H. (2024). Recent development of oral vaccines (Review). Experimental and Therapeutic Medicine, 27, 223. https://doi.org/10.3892/etm.2024.12511
MLA
Liu, Y., Lam, D., Luan, M., Zheng, W., Ai, H."Recent development of oral vaccines (Review)". Experimental and Therapeutic Medicine 27.5 (2024): 223.
Chicago
Liu, Y., Lam, D., Luan, M., Zheng, W., Ai, H."Recent development of oral vaccines (Review)". Experimental and Therapeutic Medicine 27, no. 5 (2024): 223. https://doi.org/10.3892/etm.2024.12511
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team