1
|
Baskin B, Gibson WT and Ray PN: Duchenne
muscular dystrophy caused by a complex rearrangement between intron
43 of the DMD gene and chromosome 4. Neuromuscul Disord.
21:178–182. 2011. View Article : Google Scholar
|
2
|
Winder SJ, Gibson TJ and Kendrick-Jones J:
Dystrophin and utrophin: the missing links! FEBS Lett. 369:27–33.
1995. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hoffman EP, Brown RH Jr and Kunkel LM:
Dystrophin: the protein product of the Duchenne muscular dystrophy
locus. Cell. 51:919–928. 1987. View Article : Google Scholar : PubMed/NCBI
|
4
|
Koenig M, Monaco AP and Kunkel LM: The
complete sequence of dystrophin predicts a rod-shaped cytoskeletal
protein. Cell. 53:219–228. 1988. View Article : Google Scholar : PubMed/NCBI
|
5
|
Takeshima Y, Yagi M, Okizuka Y, et al:
Mutation spectrum of the dystrophin gene in 442 Duchenne/Becker
muscular dystrophy cases from one Japanese referral center. J Hum
Genet. 55:379–388. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Monaco AP, Bertelson CJ, Liechti-Gallati
S, Moser H and Kunkel LM: An explanation for the phenotypic
differences between patients bearing partial deletions of the DMD
locus. Genomics. 2:90–95. 1988. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hoffman EP, Fischbeck KH, Brown RH, et al:
Characterization of dystrophin in muscle-biopsy specimens from
patients with Duchenne’s or Becker’s muscular dystrophy. N Engl J
Med. 318:1363–1368. 1988. View Article : Google Scholar : PubMed/NCBI
|
8
|
Finanger EL, Russman B, Forbes SC, Rooney
WD, Walter GA and Vandenborne K: Use of skeletal muscle MRI in
diagnosis and monitoring disease progression in Duchenne muscular
dystrophy. Phys Med Rehabil Clin N Am. 23:1–10. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sutherland DH, Olshen R, Cooper L, et al:
The pathomechanics of gait in Duchenne muscular dystrophy. Dev Med
Child Neurol. 23:3–22. 1981. View Article : Google Scholar : PubMed/NCBI
|
10
|
Rodino-Klapac LR, Mendell JR and Sahenk Z:
Update on the treatment of Duchenne muscular dystrophy. Curr Neurol
Neurosci Rep. 13:3322013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Moxley RT III and Pandya S: Weekend
high-dosage prednisone: a new option for treatment of Duchenne
muscular dystrophy. Neurology. 77:416–417. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
King WM, Ruttencutter R, Nagaraja HN, et
al: Orthopedic outcomes of long-term daily corticosteroid treatment
in Duchenne muscular dystrophy. Neurology. 68:1607–1613. 2007.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Biggar WD, Harris VA, Eliasoph L and Alman
B: Long-term benefits of deflazacort treatment for boys with
Duchenne muscular dystrophy in their second decade. Neuromuscul
Disord. 16:249–255. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Schram G, Fournier A, Leduc H, et al:
All-cause mortality and cardiovascular outcomes with prophylactic
steroid therapy in Duchenne muscular dystrophy. J Am Coll Cardiol.
61:948–954. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Bushby K, Finkel R, Birnkrant DJ, et al:
Diagnosis and management of Duchenne muscular dystrophy, part 1:
diagnosis, and pharmacological and psychosocial management. Lancet
Neurol. 9:77–93. 2010. View Article : Google Scholar
|
16
|
Baltgalvis KA, Call JA, Nikas JB and Lowe
DA: Effects of prednisolone on skeletal muscle contractility in mdx
mice. Muscle Nerve. 40:443–454. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Malik V, Rodino-Klapac LR and Mendell JR:
Emerging drugs for Duchenne muscular dystrophy. Expert Opin Emerg
Drugs. 17:261–277. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
McElreavey KD, Irvine AI, Ennis KT and
McLean WH: Isolation, culture and characterisation of
fibroblast-like cells derived from the Wharton’s jelly portion of
human umbilical cord. Biochem Soc Trans. 19:29S1991.
|
19
|
Wang HS, Hung SC, Pong ST, et al:
Mesenchymal stem cells in the Wharton’s jelly of the human
umbilical cord. Stem Cells. 22:1330–1337. 2004. View Article : Google Scholar
|
20
|
Fu YS, Shih YT, Cheng YC and Min MY:
Transformation of human umbilical mesenchymal cells into neurons in
vitro. J Biomed Sci. 11:652–660. 2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lund RD, Wang S, Lu B, et al: Cells
isolated from umbilical cord tissue rescue photoreceptors and
visual functions in a rodent model of retinal disease. Stem Cells.
25:602–611. 2007. View Article : Google Scholar
|
22
|
Huang P, Lin LM, Wu XY, et al:
Differentiation of human umbilical cord Wharton’s jelly-derived
mesenchymal stem cells into germ-like cells in vitro. J Cell
Biochem. 109:747–754. 2010.PubMed/NCBI
|
23
|
Kadner A, Zund G, Maurus C, et al: Human
umbilical cord cells for cardiovascular tissue engineering: a
comparative study. Eur J Cardiothorac Surg. 25:635–641. 2004.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Li F, Li Y, Cui K, et al: Detection of
pathogenic mutations and the mechanism of a rare chromosomal
rearrangement in a Chinese family with Becker muscular dystrophy.
Clin Chim Acta. 414:20–25. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhang Y, Huang JJ, Wang ZQ, Wang N and Wu
ZY: Value of muscle enzyme measurement in evaluating different
neuromuscular diseases. Clin Chim Acta. 413:520–524. 2012.
View Article : Google Scholar
|
26
|
Vieira NM, Zucconi E, Bueno CR Jr, et al:
Human multipotent mesenchymal stromal cells from distinct sources
show different in vivo potential to differentiate into muscle cells
when injected in dystrophic mice. Stem Cell Rev. 6:560–566. 2010.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Grabowska I, Brzoska E, Gawrysiak A, et
al: Restricted myogenic potential of mesenchymal stromal cells
isolated from umbilical cord. Cell Transplant. 21:1711–1726. 2012.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Ten Broek RW, Grefte S and Von den Hoff
JW: Regulatory factors and cell populations involved in skeletal
muscle regeneration. J Cell Physiol. 224:7–16. 2010.PubMed/NCBI
|
29
|
Kasemkijwattana C, Menetrey J, Somogyl G,
et al: Development of approaches to improve the healing following
muscle contusion. Cell Transplant. 7:585–598. 1998. View Article : Google Scholar : PubMed/NCBI
|
30
|
Menetrey J, Kasemkijwattana C, Day CS, et
al: Growth factors improve muscle healing in vivo. J Bone Joint
Surg Br. 82:131–137. 2000. View Article : Google Scholar : PubMed/NCBI
|
31
|
Deasy BM, Feduska JM, Payne TR, Li Y,
Ambrosio F and Huard J: Effect of VEGF on the regenerative capacity
of muscle stem cells in dystrophic skeletal muscle. Mol Ther.
17:1788–1798. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Izadpanah R, Trygg C, Patel B, et al:
Biologic properties of mesenchymal stem cells derived from bone
marrow and adipose tissue. J Cell Biochem. 99:1285–1297. 2006.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Prasanna SJ, Gopalakrishnan D, Shankar SR
and Vasandan AB: Pro-inflammatory cytokines, IFNgamma and TNFalpha,
influence immune properties of human bone marrow and Wharton jelly
mesenchymal stem cells differentially. PLoS One. 5:e90162010.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Fong CY, Richards M, Manasi N, Biswas A
and Bongso A: Comparative growth behaviour and characterization of
stem cells from human Wharton’s jelly. Reprod Biomed Online.
15:708–718. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Capelli C, Gotti E, Morigi M, et al:
Minimally manipulated whole human umbilical cord is a rich source
of clinical-grade human mesenchymal stromal cells expanded in human
platelet lysate. Cytotherapy. 13:786–801. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Romano G: Stem cell transplantation
therapy: controversy over ethical issues and clinical relevance.
Drug News Perspect. 17:637–645. 2004. View Article : Google Scholar
|
37
|
Lu LL, Liu YJ, Yang SG, et al: Isolation
and characterization of human umbilical cord mesenchymal stem cells
with hematopoiesis-supportive function and other potentials.
Haematologica. 91:1017–1026. 2006.PubMed/NCBI
|
38
|
Fong CY, Subramanian A, Biswas A, et al:
Derivation efficiency, cell proliferation, freeze-thaw survival,
stem-cell properties and differentiation of human Wharton’s jelly
stem cells. Reprod Biomed Online. 21:391–401. 2010. View Article : Google Scholar : PubMed/NCBI
|