1
|
Kim BY, Yoon HY, Yun SI, Woo ER, Song NK,
Kim HG, Jeong SY and Chung YS: In vitro and in vivo inhibition of
glucocorticoid-induced osteoporosis by the hexane extract of
Poncirus trifoliata. Phytother Res. 25:1000–1010. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Weinstein RS: Glucocorticoid-induced
osteonecrosis. Endocrine. 41:183–190. 2012. View Article : Google Scholar
|
3
|
Koromila T, Baniwal SK, Song YS, Martin A,
Xiong J and Frenkel B: Glucocorticoids antagonize RUNX2 during
osteoblast differentiation in cultures of ST2 pluripotent
mesenchymal cells. J Cell Biochem. 115:27–33. 2014. View Article : Google Scholar
|
4
|
Kerachian MA, Séguin C and Harvey EJ:
Glucocorticoids in osteonecrosis of the femoral head: a new
understanding of the mechanisms of action. J Steroid Biochem Mol
Biol. 114:121–128. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Tan G, Kang PD and Pei FX: Glucocorticoids
affect the metabolism of bone marrow stromal cells and lead to
osteonecrosis of the femoral head: a review. Chin Med J (Engl).
125:134–139. 2012. View Article : Google Scholar
|
6
|
Kim J, Lee H, Kang KS, Chun KH and Hwang
GS: Protective effect of Korean Red Ginseng against
glucocorticoid-induced osteoporosis in vitro and in vivo. J Ginseng
Res. 39:46–53. 2015. View Article : Google Scholar
|
7
|
O'Brien CA, Jia D, Plotkin LI, Bellido T,
Powers CC, Stewart SA, Manolagas SC and Weinstein RS:
Glucocorticoids act directly on osteoblasts and osteocytes to
induce their apoptosis and reduce bone formation and strength.
Endocrinology. 145:1835–1841. 2004. View Article : Google Scholar
|
8
|
Weinstein RS, Jilka RL, Parfitt AM and
Manolagas SC: Inhibition of osteoblastogenesis and promotion of
apoptosis of osteoblasts and osteocytes by glucocorticoids.
Potential mechanisms of their deleterious effects on bone. J Clin
Invest. 102:274–282. 1998. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yun SI, Yoon HY, Jeong SY and Chung YS:
Glucocorticoid induces apoptosis of osteoblast cells through the
activation of glycogen synthase kinase 3beta. J Bone Miner Metab.
27:140–148. 2009. View Article : Google Scholar
|
10
|
Weinstein RS, Chen JR, Powers CC, Stewart
SA, Landes RD, Bellido T, Jilka RL, Parfitt AM and Manolagas SC:
Promotion of osteoclast survival and antagonism of
bisphosphonate-induced osteoclast apoptosis by glucocorticoids. J
Clin Invest. 109:1041–1048. 2002. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hamidi MS, Gajic-Veljanoski O and Cheung
AM: Vitamin K and bone health. J Clin Densitom. 16:409–413. 2013.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Azuma K, Ouchi Y and Inoue S: Vitamin K:
novel molecular mechanisms of action and its roles in osteoporosis.
Geriatr Gerontol Int. 14:1–7. 2014. View Article : Google Scholar
|
13
|
Yamaguchi M, Sugimoto E and Hachiya S:
Stimulatory effect of menaquinone-7 (vitamin K2) on
osteoblastic bone formation in vitro. Mol Cell Biochem.
223:131–137. 2001. View Article : Google Scholar : PubMed/NCBI
|
14
|
Shearer MJ and Newman P: Recent trends in
the metabolism and cell biology of vitamin K with special reference
to vitamin K cycling and MK-4 biosynthesis. J Lipid Res.
55:345–362. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Igarashi M, Yogiashi Y, Mihara M, Takada
I, Kitagawa H and Kato S: Vitamin K induces osteoblast
differentiation through pregnane X receptor-mediated
transcriptional control of the Msx2 gene. Mol Cell Biol.
27:7947–7954. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kim M, Na W and Sohn C: Vitamin
K1 (phylloquinone) and K2 (menaquinone-4)
supplementation improves bone formation in a high-fat diet-induced
obese mice. J Clin Biochem Nutr. 53:108–113. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Koshihara Y, Hoshi K, Okawara R, Ishibashi
H and Yamamoto S: Vitamin K stimulates osteoblastogenesis and
inhibits osteoclastogenesis in human bone marrow cell culture. J
Endocrinol. 176:339–348. 2003. View Article : Google Scholar : PubMed/NCBI
|
18
|
Atkins GJ, Welldon KJ, Wijenayaka AR,
Bonewald LF and Findlay DM: Vitamin K promotes mineralization,
osteoblast-to-osteocyte transition, and an anticatabolic phenotype
by {gamma}-carboxylation-dependent and -independent mechanisms. Am
J Physiol Cell Physiol. 297:C1358–C1367. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Koshihara Y and Hoshi K: Vitamin
K2 enhances osteocalcin accumulation in the
extracellular matrix of human osteoblasts in vitro. J Bone Miner
Res. 12:431–438. 1997. View Article : Google Scholar : PubMed/NCBI
|
20
|
Akiyama Y, Hara K, Ohkawa I and Tajima T:
Effects of menatetrenone on bone loss induced by ovariectomy in
rats. Jpn J Pharmacol. 62:145–153. 1993. View Article : Google Scholar : PubMed/NCBI
|
21
|
Iwamoto J, Matsumoto H, Takeda T, Sato Y
and Yeh JK: Effects of vitamin K2 on cortical and
cancellous bone mass, cortical osteocyte and lacunar system, and
porosity in sciatic neurectomized rats. Calcif Tissue Int.
87:254–262. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Iwamoto J, Seki A, Sato Y, Matsumoto H,
Tadeda T and Yeh JK: Vitamin K2 promotes bone healing in
a rat femoral osteotomy model with or without glucocorticoid
treatment. Calcif Tissue Int. 86:234–241. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Koitaya N, Sekiguchi M, Tousen Y, Nishide
Y, Morita A, Yamauchi J, Gando Y, Miyachi M, Aoki M, Komatsu M, et
al: Low-dose vitamin K2 (MK-4) supplementation for 12
months improves bone metabolism and prevents forearm bone loss in
postmenopausal Japanese women. J Bone Miner Metab. 32:142–150.
2014. View Article : Google Scholar
|
24
|
Koitaya N, Ezaki J, Nishimuta M, Yamauchi
J, Hashizume E, Morishita K, Miyachi M, Sasaki S and Ishimi Y:
Effect of low dose vitamin K2 (MK-4) supplementation on
bio-indices in postmenopausal Japanese women. J Nutr Sci Vitaminol
(Tokyo). 55:15–21. 2009. View Article : Google Scholar
|
25
|
Hara K, Akiyama Y, Ohkawa I and Tajima T:
Effects of menatetrenone on prednisolone-induced bone loss in rats.
Bone. 14:813–818. 1993. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sasaki N, Kusano E, Takahashi H, Ando Y,
Yano K, Tsuda E and Asano Y: Vitamin K2 inhibits
glucocorticoid-induced bone loss partly by preventing the reduction
of osteoprotegerin (OPG). J Bone Miner Metab. 23:41–47. 2005.
View Article : Google Scholar
|
27
|
van Staa TP, Leufkens HG and Cooper C: The
epidemiology of corticosteroid-induced osteoporosis: a
meta-analysis. Osteoporos Int. 13:777–787. 2002. View Article : Google Scholar : PubMed/NCBI
|
28
|
Tanana I and Oshima H: Vitamin
K2 as a potential therapeutic agent for
glucocorticoid-induced osteoporosis. Clin Calcium. 16:1851–1857.
2006.In Japanese. PubMed/NCBI
|
29
|
Iwamoto J, Matsumoto H, Takeda T, Sato Y,
Liu X and Yeh JK: Effects of vitamin K(2) and risedronate on bone
formation and resorption, osteocyte lacunar system, and porosity in
the cortical bone of glucocorticoid-treated rats. Calcif Tissue
Int. 83:121–128. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Inoue T, Sugiyama T, Matsubara T, Kawai S
and Furukawa S: Inverse correlation between the changes of lumbar
bone mineral density and serum undercarboxylated osteocalcin after
vitamin K2 (menatetrenone) treatment in children treated
with glucocorticoid and alfacalcidol. Endocr J. 48:11–18. 2001.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Sanderson M, Sadie-Van Gijsen H, Hough S
and Ferris WF: The role of MKP-1 in the anti-proliferative effects
of glucocorticoids in primary rat pre-osteoblasts. PLoS One.
10:e01353582015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Shi C, Huang P, Kang H, Hu B, Qi J, Jiang
M, Zhou H, Guo L and Deng L: Glucocorticoid inhibits cell
proliferation in differentiating osteoblasts by microRNA-199a
targeting of WNT signaling. J Mol Endocrinol. 54:325–337. 2015.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Stenhoff J, Dahlbäck B and Hafizi S:
Vitamin K-dependent Gas6 activates ERK kinase and stimulates growth
of cardiac fibroblasts. Biochem Biophys Res Commun. 319:871–878.
2004. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kirane A, Ludwig KF, Sorrelle N, Haaland
G, Sandal T, Ranaweera R, Toombs JE, Wang M, Dineen SP, Micklem D,
et al: Warfarin blocks Gas6-mediated Axl activation required for
pancreatic cancer epithelial plasticity and metastasis. Cancer Res.
75:3699–3705. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Calder JD, Buttery L, Revell PA, Pearse M
and Polak JM: Apoptosis - a significant cause of bone cell death in
osteonecrosis of the femoral head. J Bone Joint Surg Br.
86:1209–1213. 2004. View Article : Google Scholar : PubMed/NCBI
|
36
|
Sada E, Abe Y, Ohba R, Tachikawa Y,
Nagasawa E, Shiratsuchi M and Takayanagi R: Vitamin K2
modulates differentiation and apoptosis of both myeloid and
erythroid lineages. Eur J Haematol. 85:538–548. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hegarty JM, Yang H and Chi NC:
UBIAD1-mediated vitamin K2 synthesis is required for
vascular endothelial cell survival and development. Development.
140:1713–1719. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Sakaue M, Mori N, Okazaki M, Kadowaki E,
Kaneko T, Hemmi N, Sekiguchi H, Maki T, Ozawa A, Hara S, et al:
Vitamin K has the potential to protect neurons from
methylmercury-induced cell death in vitro. J Neurosci Res.
89:1052–1058. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Vos M, Esposito G, Edirisinghe JN, Vilain
S, Haddad DM, Slabbaert JR, Van Meensel S, Schaap O, De Strooper B,
Meganathan R, et al: Vitamin K2 is a mitochondrial
electron carrier that rescues pink1 deficiency. Science.
336:1306–1310. 2012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Banerjee C, McCabe LR, Choi JY, Hiebert
SW, Stein JL, Stein GS and Lian JB: Runt homology domain proteins
in osteoblast differentiation: AML3/CBFA1 is a major component of a
bone-specific complex. J Cell Biochem. 66:1–8. 1997. View Article : Google Scholar : PubMed/NCBI
|
41
|
Komori T, Yagi H, Nomura S, Yamaguchi A,
Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, et al:
Targeted disruption of Cbfa1 results in a complete lack of bone
formation owing to maturational arrest of osteoblasts. Cell.
89:755–764. 1997. View Article : Google Scholar : PubMed/NCBI
|
42
|
Shimizu T, Takahata M, Kameda Y, Hamano H,
Ito T, Kimura-Suda H, Todoh M, Tadano S and Iwasaki N: Vitamin
K-dependent carboxylation of osteocalcin affects the efficacy of
teriparatide (PTH(1–34)) for skeletal repair. Bone. 64:95–101.
2014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Neve A, Corrado A and Cantatore FP:
Osteocalcin: skeletal and extra-skeletal effects. J Cell Physiol.
228:1149–1153. 2013. View Article : Google Scholar
|
44
|
Horie-Inoue K and Inoue S: Steroid and
xenobiotic receptor mediates a novel vitamin K2
signaling pathway in osteoblastic cells. J Bone Miner Metab.
26:9–12. 2008. View Article : Google Scholar
|
45
|
Ichikawa T, Horie-Inoue K, Ikeda K,
Blumberg B and Inoue S: Steroid and xenobiotic receptor SXR
mediates vitamin K2-activated transcription of
extracellular matrix-related genes and collagen accumulation in
osteoblastic cells. J Biol Chem. 281:16927–16934. 2006. View Article : Google Scholar : PubMed/NCBI
|
46
|
Manolagas SC: Steroids and osteoporosis:
the quest for mechanisms. J Clin Invest. 123:1919–1921. 2013.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Yoshiji H, Kuriyama S, Noguchi R, Yoshii
J, Ikenaka Y, Yanase K, Namisaki T, Kitade M, Yamazaki M, Masaki T
and Fukui H: Combination of vitamin K2 and the
angiotensin-converting enzyme inhibitor, perindopril, attenuates
the liver enzyme-altered preneoplastic lesions in rats via
angiogenesis suppression. J Hepatol. 42:687–693. 2005. View Article : Google Scholar : PubMed/NCBI
|