Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
October-2017 Volume 40 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2017 Volume 40 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Histone lysine methylation and congenital heart disease: From bench to bedside (Review)

  • Authors:
    • Xin Yi
    • Xuejun Jiang
    • Xiaoyan Li
    • Ding-Sheng Jiang
  • View Affiliations / Copyright

    Affiliations: Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China, Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
  • Pages: 953-964
    |
    Published online on: August 30, 2017
       https://doi.org/10.3892/ijmm.2017.3115
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Histone post-translational modifications (PTM) as one of the key epigenetic regulatory mechanisms that plays critical role in various biological processes, including regulating chromatin structure dynamics and gene expression. Histone lysine methyltransferase contributes to the establishment and maintenance of differential histone methylation status, which can recognize histone methylated sites and build an association between these modifications and their downstream processes. Recently, it was found that abnormalities in the histone lysine methylation level or pattern may lead to the occurrence of many types of cardiovascular diseases, such as congenital heart disease (CHD). In order to provide new theoretical basis and targets for the treatment of CHD from the view of developmental biology and genetics, this review discusses and elaborates on the association between histone lysine methylation modifications and CHD.
View Figures

Figure 1

View References

1 

Campos CM, Zanardo EA, Dutra RL, Kulikowski LD and Kim CA: Investigation of copy number variation in children with conotruncal heart defects. Arq Bras Cardiol. 104:24–31. 2015.

2 

Barros TL, Dias MdeJ and Nina RV: Congenital cardiac disease in childhood x socioeconomic conditions: A relationship to be considered in public health? Rev Bras Cir Cardiovasc. 29:448–454. 2014.PubMed/NCBI

3 

Steffensen TS and Spicer DE: Congenital coronary artery anomalies for the pathologist. Fetal Pediatr Pathol. 33:268–288. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Sanchez-Castro M, Pichon O, Briand A, Poulain D, Gournay V, David A and Le Caignec C: Disruption of the SEMA3D gene in a patient with congenital heart defects. Hum Mutat. 36:30–33. 2015. View Article : Google Scholar

5 

Vecoli C, Pulignani S, Foffa I and Andreassi MG: Congenital heart disease: The crossroads of genetics, epigenetics and environment. Curr Genomics. 15:390–399. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Gittenberger-de Groot AC, Calkoen EE, Poelmann RE, Bartelings MM and Jongbloed MR: Morphogenesis and molecular considerations on congenital cardiac septal defects. Ann Med. 46:640–652. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Wang X, Li P, Chen S, Xi L, Guo Y, Guo A and Sun K: Influence of genes and the environment in familial congenital heart defects. Mol Med Rep. 9:695–700. 2014. View Article : Google Scholar

8 

Lalani SR and Belmont JW: Genetic basis of congenital cardiovascular malformations. Eur J Med Genet. 57:402–413. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Kathiriya IS, Nora EP and Bruneau BG: Investigating the transcriptional control of cardiovascular development. Circ Res. 116:700–714. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Meganathan K, Sotiriadou I, Natarajan K, Hescheler J and Sachinidis A: Signaling molecules, transcription growth factors and other regulators revealed from in-vivo and in-vitro models for the regulation of cardiac development. Int J Cardiol. 183:117–128. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Li Y, Klena NT, Gabriel GC, Liu X, Kim AJ, Lemke K, Chen Y, Chatterjee B, Devine W, Damerla RR, et al: Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature. 521:520–524. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Andersen TA, Troelsen KL and Larsen LA: Of mice and men: Molecular genetics of congenital heart disease. Cell Mol Life Sci. 71:1327–1352. 2014. View Article : Google Scholar :

13 

Yuan S, Zaidi S and Brueckner M: Congenital heart disease: Emerging themes linking genetics and development. Curr Opin Genet Dev. 23:352–359. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Serra-Juhé C, Cuscó I, Homs A, Flores R, Torán N and Pérez-Jurado LA: DNA methylation abnormalities in congenital heart disease. Epigenetics. 10:167–177. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Zhang QJ and Liu ZP: Histone methylations in heart development, congenital and adult heart diseases. Epigenomics. 7:321–330. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Chang CP and Bruneau BG: Epigenetics and cardiovascular development. Annu Rev Physiol. 74:41–68. 2012. View Article : Google Scholar

17 

D'Urso A and Brickner JH: Mechanisms of epigenetic memory. Trends Genet. 30:230–236. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Becker PB and Workman JL: Nucleosome remodeling and epigenetics. Cold Spring Harb Perspect Biol. 5:a0179052013. View Article : Google Scholar : PubMed/NCBI

19 

Krishnakumar R and Blelloch RH: Epigenetics of cellular reprogramming. Curr Opin Genet Dev. 23:548–555. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Singmann P, Shem-Tov D, Wahl S, Grallert H, Fiorito G, Shin SY, Schramm K, Wolf P, Kunze S, Baran Y, et al: Characterization of whole-genome autosomal differences of DNA methylation between men and women. Epigenetics Chromatin. 8:432015. View Article : Google Scholar : PubMed/NCBI

21 

Ziegler-Birling C, Daujat S, Schneider R and Torres-Padilla ME: Dynamics of histone H3 acetylation in the nucleosome core during mouse pre-implantation development. Epigenetics. 11:553–562. 2016. View Article : Google Scholar :

22 

Dudakovic A, Camilleri ET, Xu F, Riester SM, McGee-Lawrence ME, Bradley EW, Paradise CR, Lewallen EA, Thaler R, Deyle DR, et al: Epigenetic control of skeletal development by the histone methyltransferase Ezh2. J Biol Chem. 290:27604–27617. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Huang F, Ramakrishnan S, Pokhrel S, Pflueger C, Parnell TJ, Kasten MM, Currie SL, Bhachech N, Horikoshi M, Graves BJ, et al: Interaction of the Jhd2 H3K4 demethylase with chromatin is controlled by histone H2A surfaces and restricted by H2B ubiquitination. J Biol Chem. 290:28760–28777. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Wang Z, Casas-Mollano JA, Xu J, Riethoven JJ, Zhang C and Cerutti H: Osmotic stress induces phosphorylation of histone H3 at threonine 3 in pericentromeric regions of Arabidopsis thaliana. Proc Natl Acad Sci USA. 112:8487–8492. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Yao Y, Des Marais TL and Costa M: Chromatin memory in the development of human cancers. Gene Technol. 3:1142014.

26 

Heo JB and Sung S: Encoding memory of winter by noncoding RNAs. Epigenetics. 6:544–547. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Torres IO and Fujimori DG: Functional coupling between writers, erasers and readers of histone and DNA methylation. Curr Opin Struct Biol. 35:68–75. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Jaworska J, Ziemka-Nalecz M and Zalewska T: Histone deacetylases 1 and 2 are required for brain development. Int J Dev Biol. 59:171–177. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Carr SM, Poppy Roworth A, Chan C and La Thangue NB: Post-translational control of transcription factors: Methylation ranks highly. FEBS J. 282:4450–4465. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Gupta N, Madapura MP, Bhat UA and Rao MR: Mapping of post-translational modifications of transition proteins, TP1 and TP2, and identification of protein arginine methyltransferase 4 and lysine methyltransferase 7 as methyltransferase for TP2. J Biol Chem. 290:12101–12122. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Binda O: On your histone mark, SET, methylate! Epigenetics. 8:457–463. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Lesne A, Foray N, Cathala G, Forné T, Wong H and Victor JM: Chromatin fiber allostery and the epigenetic code. J Phys Condens Matter. 27:0641142015. View Article : Google Scholar : PubMed/NCBI

33 

Zuchegna C, Aceto F, Bertoni A, Romano A, Perillo B, Laccetti P, Gottesman ME, Avvedimento EV and Porcellini A: Mechanism of retinoic acid-induced transcription: Histone code, DNA oxidation and formation of chromatin loops. Nucleic Acids Res. 42:11040–11055. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Gayatri S and Bedford MT: Readers of histone methylarginine marks. Biochim Biophys Acta. 1839:702–710. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Casciello F, Windloch K, Gannon F and Lee JS: Functional role of G9a histone methyltransferase in cancer. Front Immunol. 6:4872015. View Article : Google Scholar : PubMed/NCBI

36 

Ortega-Molina A, Boss IW, Canela A, Pan H, Jiang Y, Zhao C, Jiang M, Hu D, Agirre X, Niesvizky I, et al: The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development. Nat Med. 21:1199–1208. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Cho MH, Park JH, Choi HJ, Park MK, Won HY, Park YJ, Lee CH, Oh SH, Song YS, Kim HS, et al: DOT1L cooperates with the c-Myc-p300 complex to epigenetically derepress CDH1 transcription factors in breast cancer progression. Nat Commun. 6:78212015. View Article : Google Scholar : PubMed/NCBI

38 

Liu N, Zhang Z, Wu H, Jiang Y, Meng L, Xiong J, Zhao Z, Zhou X, Li J, Li H, et al: Recognition of H3K9 methylation by GLP is required for efficient establishment of H3K9 methylation, rapid target gene repression, and mouse viability. Genes Dev. 29:379–393. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Nicetto D, Hahn M, Jung J, Schneider TD, Straub T, David R, Schotta G and Rupp RA: Suv4-20h histone methyltransferases promote neuroectodermal differentiation by silencing the pluripotency-associated Oct-25 gene. PLoS Genet. 9:e10031882013. View Article : Google Scholar : PubMed/NCBI

40 

Maes T, Mascaró C, Ortega A, Lunardi S, Ciceri F, Somervaille TC and Buesa C: KDM1 histone lysine demethylases as targets for treatments of oncological and neurodegenerative disease. Epigenomics. 7:609–626. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Belakavadi M, Dell J, Grover GJ and Fondell JD: Thyroid hormone suppression of β-amyloid precursor protein gene expression in the brain involves multiple epigenetic regulatory events. Mol Cell Endocrinol. 339:72–80. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Stein AB, Goonewardena SN, Jones TA, Prusick PJ, Bazzi AA, Belyavskaya JM, McCoskey MM and Dandar RA: The PTIP-associated histone methyltransferase complex prevents stress-induced maladaptive cardiac remodeling. PLoS One. 10:e01278392015. View Article : Google Scholar : PubMed/NCBI

43 

Mathiyalagan P, Keating ST, Du XJ and El-Osta A: Chromatin modifications remodel cardiac gene expression. Cardiovasc Res. 103:7–16. 2014. View Article : Google Scholar : PubMed/NCBI

44 

Hohl M, Wagner M, Reil JC, Müller SA, Tauchnitz M, Zimmer AM, Lehmann LH, Thiel G, Böhm M, Backs J, et al: HDAC4 controls histone methylation in response to elevated cardiac load. J Clin Invest. 123:1359–1370. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Bingham AJ, Ooi L, Kozera L, White E and Wood IC: The repressor element 1-silencing transcription factor regulates heart-specific gene expression using multiple chromatin-modifying complexes. Mol Cell Biol. 27:4082–4092. 2007. View Article : Google Scholar : PubMed/NCBI

46 

Cabrera JR, Olcese U and Horabin JI: A balancing act: Heterochromatin protein 1a and the polycomb group coordinate their levels to silence chromatin in Drosophila. Epigenetics Chromatin. 8:172015. View Article : Google Scholar : PubMed/NCBI

47 

Sautel CF, Cannella D, Bastien O, Kieffer S, Aldebert D, Garin J, Tardieux I, Belrhali H and Hakimi MA: SET8-mediated methylations of histone H4 lysine 20 mark silent heterochromatic domains in apicomplexan genomes. Mol Cell Biol. 27:5711–5724. 2007. View Article : Google Scholar : PubMed/NCBI

48 

Guo X, Wang L, Li J, Ding Z, Xiao J, Yin X, He S, Shi P, Dong L, Li G, et al: Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Nature. 517:640–644. 2015. View Article : Google Scholar

49 

Minkovsky A, Sahakyan A, Rankin-Gee E, Bonora G, Patel S and Plath K: The Mbd1-Atf7ip-Setdb1 pathway contributes to the maintenance of X chromosome inactivation. Epigenetics Chromatin. 7:122014. View Article : Google Scholar : PubMed/NCBI

50 

Simon MD, Pinter SF, Fang R, Sarma K, Rutenberg-Schoenberg M, Bowman SK, Kesner BA, Maier VK, Kingston RE and Lee JT: High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature. 504:465–469. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Wang J, Telese F, Tan Y, Li W, Jin C, He X, Basnet H, Ma Q, Merkurjev D, Zhu X, et al: LSD1n is an H4K20 demethylase regulating memory formation via transcriptional elongation control. Nat Neurosci. 18:1256–1264. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Sen P, Dang W, Donahue G, Dai J, Dorsey J, Cao X, Liu W, Cao K, Perry R, Lee JY, et al: H3K36 methylation promotes longevity by enhancing transcriptional fidelity. Genes Dev. 29:1362–1376. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Kang SC, Kim SK, Chai JC, Kim SH, Won KJ, Lee YS, Jung KH and Chai YG: Transcriptomic Profiling and H3K27me3 Distribution reveal both demethylase-dependent and independent regulation of developmental gene transcription in cell differentiation. PLoS One. 10:e01352762015. View Article : Google Scholar : PubMed/NCBI

54 

Copur Ö and Müller J: The histone H3-K27 demethylase Utx regulates HOX gene expression in Drosophila in a temporally restricted manner. Development. 140:3478–3485. 2013. View Article : Google Scholar : PubMed/NCBI

55 

You L, Nie J, Sun WJ, Zheng ZQ and Yang XJ: Lysine acetylation: Enzymes, bromodomains and links to different diseases. Essays Biochem. 52:1–12. 2012. View Article : Google Scholar : PubMed/NCBI

56 

Migliori V, Phalke S, Bezzi M and Guccione E: Arginine/lysinemethyl/methyl switches: Biochemical role of histone arginine methylation in transcriptional regulation. Epigenomics. 2:119–137. 2010. View Article : Google Scholar : PubMed/NCBI

57 

Davie JK and Dent SY: Transcriptional control: An activating role for arginine methylation. Curr Biol. 12:R59–R61. 2002. View Article : Google Scholar : PubMed/NCBI

58 

Tessarz P and Kouzarides T: Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol. 15:703–708. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Strahl BD, Briggs SD, Brame CJ, Caldwell JA, Koh SS, Ma H, Cook RG, Shabanowitz J, Hunt DF, Stallcup MR, et al: Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1. Curr Biol. 11:996–1000. 2001. View Article : Google Scholar : PubMed/NCBI

60 

Wang H, Huang ZQ, Xia L, Feng Q, Erdjument-Bromage H, Strahl BD, Briggs SD, Allis CD, Wong J, Tempst P, et al: Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science. 293:853–857. 2001. View Article : Google Scholar : PubMed/NCBI

61 

Schurter BT, Koh SS, Chen D, Bunick GJ, Harp JM, Hanson BL, Henschen-Edman A, Mackay DR, Stallcup MR and Aswad DW: Methylation of histone H3 by coactivator-associated arginine methyltransferase 1. Biochemistry. 40:5747–5756. 2001. View Article : Google Scholar : PubMed/NCBI

62 

Aoshima K, Inoue E, Sawa H and Okada Y: Paternal H3K4 methylation is required for minor zygotic gene activation and early mouse embryonic development. EMBO Rep. 16:803–812. 2015. View Article : Google Scholar : PubMed/NCBI

63 

Shinsky SA, Monteith KE, Viggiano S and Cosgrove MS: Biochemical reconstitution and phylogenetic comparison of human SET1 family core complexes involved in histone methylation. J Biol Chem. 290:6361–6375. 2015. View Article : Google Scholar : PubMed/NCBI

64 

Chen CW, Koche RP, Sinha AU, Deshpande AJ, Zhu N, Eng R, Doench JG, Xu H, Chu SH, Qi J, et al: DOT1L inhibits SIRT1-mediated epigenetic silencing to maintain leukemic gene expression in MLL-rearranged leukemia. Nat Med. 21:335–343. 2015. View Article : Google Scholar : PubMed/NCBI

65 

Jiao L and Liu X: Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2. Science. 350:aac43832015. View Article : Google Scholar : PubMed/NCBI

66 

Foda BM and Singh U: Dimethylated H3K27 is a repressive epigenetic histone mark in the protist Entamoeba histolytica and is significantly enriched in genes silenced via the RNAi pathway. J Biol Chem. 290:21114–21130. 2015. View Article : Google Scholar : PubMed/NCBI

67 

Vieira FQ, Costa-Pinheiro P, Almeida-Rios D, Graça I, Monteiro-Reis S, Simões-Sousa S, Carneiro I, Sousa EJ, Godinho MI, Baltazar F, et al: SMYD3 contributes to a more aggressive phenotype of prostate cancer and targets Cyclin D2 through H4K20me3. Oncotarget. 6:13644–13657. 2015. View Article : Google Scholar : PubMed/NCBI

68 

Bierhoff H, Dammert MA, Brocks D, Dambacher S, Schotta G and Grummt I: Quiescence-induced LncRNAs trigger H4K20 trimethylation and transcriptional silencing. Mol Cell. 54:675–682. 2014. View Article : Google Scholar : PubMed/NCBI

69 

Zhang X, Tanaka K, Yan J, Li J, Peng D, Jiang Y, Yang Z, Barton MC, Wen H and Shi X: Regulation of estrogen receptor α by histone methyltransferase SMYD2-mediated protein methylation. Proc Natl Acad Sci USA. 110:17284–17289. 2013. View Article : Google Scholar

70 

Hossain MA, Chung C, Pradhan SK and Johnson TL: The yeast cap binding complex modulates transcription factor recruitment and establishes proper histone H3K36 trimethylation during active transcription. Mol Cell Biol. 33:785–799. 2013. View Article : Google Scholar :

71 

Ontoso D, Acosta I, van Leeuwen F, Freire R and San-Segundo PA: Dot1-dependent histone H3K79 methylation promotes activation of the Mek1 meiotic checkpoint effector kinase by regulating the Hop1 adaptor. PLoS Genet. 9:e10032622013. View Article : Google Scholar : PubMed/NCBI

72 

Kim SK, Jung I, Lee H, Kang K, Kim M, Jeong K, Kwon CS, Han YM, Kim YS, Kim D, et al: Human histone H3K79 methyltransferase DOT1L protein [corrected] binds actively transcribing RNA polymerase II to regulate gene expression. J Biol Chem. 287:39698–39709. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Zhao XX, Zhang YB, Ni PL, Wu ZL, Yan YC and Li YP: Protein arginine methyltransferase 6 (Prmt6) is essential for early zebrafish development through the direct suppression of Gadd45alphaa stress sensor gene. J Biol Chem. 291:402–412. 2016. View Article : Google Scholar

74 

Feng Y, Hadjikyriacou A and Clarke SG: Substrate specificity of human protein arginine methyltransferase 7 (PRMT7): The importance of acidic residues in the double E loop. J Biol Chem. 289:32604–32616. 2014. View Article : Google Scholar : PubMed/NCBI

75 

Su X, Zhu G, Ding X, Lee SY, Dou Y, Zhu B, Wu W and Li H: Molecular basis underlying histone H3 lysine-arginine methylation pattern readout by Spin/Ssty repeats of Spindlin1. Genes Dev. 28:622–636. 2014. View Article : Google Scholar : PubMed/NCBI

76 

Nguyen HC, Wang M, Salsburg A and Knuckley B: Development of a plate-based screening assay to investigate the dubstrate dpecificity of the PRMT gamily of rnzymes. ACS Comb Sci. 17:500–505. 2015. View Article : Google Scholar : PubMed/NCBI

77 

Tini M, Naeem H and Torchia J: Biochemical analysis of arginine methylation in transcription. Methods Mol Biol. 523:235–247. 2009. View Article : Google Scholar : PubMed/NCBI

78 

Del Rizzo PA and Trievel RC: Substrate and product specificities of SET domain methyltransferases. Epigenetics. 6:1059–1067. 2011. View Article : Google Scholar : PubMed/NCBI

79 

Couture JF and Trievel RC: Histone-modifying enzymes: Encrypting an enigmatic epigenetic code. Curr Opin Struct Biol. 16:753–760. 2006. View Article : Google Scholar : PubMed/NCBI

80 

Spellmon N, Holcomb J, Trescott L, Sirinupong N and Yang Z: Structure and function of SET and MYND domain-containing proteins. Int J Mol Sci. 16:1406–1428. 2015. View Article : Google Scholar : PubMed/NCBI

81 

Anand R and Marmorstein R: Structure and mechanism of lysine-specific demethylase enzymes. J Biol Chem. 282:35425–35429. 2007. View Article : Google Scholar : PubMed/NCBI

82 

Tsukada Y and Zhang Y: Purification of histone demethylases from HeLa cells. Methods. 40:318–326. 2006. View Article : Google Scholar : PubMed/NCBI

83 

Liu L, Jin G and Zhou X: Modeling the relationship of epigenetic modifications to transcription factor binding. Nucleic Acids Res. 43:3873–3885. 2015. View Article : Google Scholar : PubMed/NCBI

84 

Bai H, Li Y, Gao H, Dong Y, Han P and Yu H: Histone methyltransferase SMYD3 regulates the expression of transcriptional factors during bovine oocyte maturation and early embryonic development. Cytotechnology. 68:849–859. 2016. View Article : Google Scholar :

85 

Kim JD, Kim E, Koun S, Ham HJ, Rhee M, Kim MJ and Huh TL: Proper activity of histone H3 lysine 4 (H3K4) methyltransferase is required for morphogenesis during zebrafish cardiogenesis. Mol Cells. 38:580–586. 2015. View Article : Google Scholar : PubMed/NCBI

86 

Martinez SR, Gay MS and Zhang L: Epigenetic mechanisms in heart development and disease. Drug Discov Today. 20:799–811. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Dorn GW II and Matkovich SJ: Epitranscriptional regulation of cardiovascular development and disease. J Physiol. 593:1799–1808. 2015. View Article : Google Scholar :

88 

Zhao W, Liu L, Pan B, Xu Y, Zhu J, Nan C, Huang X and Tian J: Epigenetic regulation of cardiac myofibril gene expression during heart development. Cardiovasc Toxicol. 15:203–209. 2015. View Article : Google Scholar

89 

Park CY, Pierce SA, von Drehle M, Ivey KN, Morgan JA, Blau HM and Srivastava D: skNAC, a Smyd1-interacting transcription factor, is involved in cardiac development and skeletal muscle growth and regeneration. Proc Natl Acad Sci USA. 107:20750–20755. 2010. View Article : Google Scholar : PubMed/NCBI

90 

Drake KM, Comhair SA, Erzurum SC, Tuder RM and Aldred MA: Endothelial chromosome 13 deletion in congenital heart disease-associated pulmonary arterial hypertension dysregulates SMAD9 signaling. Am J Respir Crit Care Med. 191:850–854. 2015. View Article : Google Scholar : PubMed/NCBI

91 

Geng J, Picker J, Zheng Z, Zhang X, Wang J, Hisama F, Brown DW, Mullen MP, Harris D, Stoler J, et al: Chromosome microarray testing for patients with congenital heart defects reveals novel disease causing loci and high diagnostic yield. BMC Genomics. 15:11272014. View Article : Google Scholar : PubMed/NCBI

92 

Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD, Romano-Adesman A, Bjornson RD, Breitbart RE, Brown KK, et al: De novo mutations in histone-modifying genes in congenital heart disease. Nature. 498:220–223. 2013. View Article : Google Scholar : PubMed/NCBI

93 

Ozanne SE and Constância M: Mechanisms of disease: The developmental origins of disease and the role of the epigenotype. Nat Clin Pract Endocrinol Metab. 3:539–546. 2007. View Article : Google Scholar : PubMed/NCBI

94 

Wang QT: Epigenetic regulation of cardiac development and function by polycomb group and trithorax group proteins. Dev Dyn. 241:1021–1033. 2012. View Article : Google Scholar : PubMed/NCBI

95 

Geisler SJ and Paro R: Trithorax and Polycomb group-dependent regulation: A tale of opposing activities. Development. 142:2876–2887. 2015. View Article : Google Scholar : PubMed/NCBI

96 

Wan X, Liu L, Ding X, Zhou P, Yuan X, Zhou Z, Hu P, Zhou H, Li Q, Zhang S, et al: Mll2 controls cardiac lineage differentiation of mouse embryonic stem cells by promoting H3K4me3 deposition at cardiac-specific genes. Stem Cell Rev. 10:643–652. 2014. View Article : Google Scholar : PubMed/NCBI

97 

Tan X, Rotllant J, Li H, De Deyne P and Du SJ: SmyD1, a histone methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos. Proc Natl Acad Sci USA. 103:2713–2718. 2006. View Article : Google Scholar : PubMed/NCBI

98 

Du SJ, Tan X and Zhang J: SMYD proteins: Key regulators in skeletal and cardiac muscle development and function. Anat Rec (Hoboken). 297:1650–1662. 2014. View Article : Google Scholar

99 

Rasmussen TL, Ma Y, Park CY, Harriss J, Pierce SA, Dekker JD, Valenzuela N, Srivastava D, Schwartz RJ, Stewart MD, et al: Smyd1 facilitates heart development by antagonizing oxidative and ER stress responses. PLoS One. 10:e01217652015. View Article : Google Scholar : PubMed/NCBI

100 

Diehl F, Brown MA, van Amerongen MJ, Novoyatleva T, Wietelmann A, Harriss J, Ferrazzi F, Böttger T, Harvey RP, Tucker PW, et al: Cardiac deletion of Smyd2 is dispensable for mouse heart development. PLoS One. 5:e97482010. View Article : Google Scholar : PubMed/NCBI

101 

Fujii T, Tsunesumi S, Yamaguchi K, Watanabe S and Furukawa Y: Smyd3 is required for the development of cardiac and skeletal muscle in zebrafish. PLoS One. 6:e234912011. View Article : Google Scholar : PubMed/NCBI

102 

Papaioannou VE: The T-box gene family: Emerging roles in development, stem cells and cancer. Development. 141:3819–3833. 2014. View Article : Google Scholar : PubMed/NCBI

103 

Greulich F, Rudat C and Kispert A: Mechanisms of T-box gene function in the developing heart. Cardiovasc Res. 91:212–222. 2011. View Article : Google Scholar : PubMed/NCBI

104 

Chen L, Fulcoli FG, Ferrentino R, Martucciello S, Illingworth EA and Baldini A: Transcriptional control in cardiac progenitors: Tbx1 interacts with the BAF chromatin remodeling complex and regulates Wnt5a. PLoS Genet. 8:e10025712012. View Article : Google Scholar : PubMed/NCBI

105 

Caprio C and Baldini A: p53 Suppression partially rescues the mutant phenotype in mouse models of DiGeorge syndrome. Proc Natl Acad Sci USA. 111:13385–13390. 2014. View Article : Google Scholar : PubMed/NCBI

106 

Pan Y, Wang ZG, Liu XY, Zhao H, Zhou N, Zheng GF, Qiu XB, Li RG, Yuan F, Shi HY, et al: A novel TBX1 loss-of-function mutation associated with congenital heart disease. Pediatr Cardiol. 36:1400–1410. 2015. View Article : Google Scholar : PubMed/NCBI

107 

Sedletcaia A and Evans T: Heart chamber size in zebrafish is regulated redundantly by duplicated tbx2 genes. Dev Dyn. 240:1548–1557. 2011. View Article : Google Scholar : PubMed/NCBI

108 

Pang S, Liu Y, Zhao Z, Huang W, Chen D and Yan B: Novel and functional sequence variants within the TBX2 gene promoter in ventricular septal defects. Biochimie. 95:1807–1809. 2013. View Article : Google Scholar : PubMed/NCBI

109 

van Weerd JH, Badi I, van den Boogaard M, Stefanovic S, van de Werken HJ, Gomez-Velazquez M, Badia-Careaga C, Manzanares M, de Laat W, Barnett P, et al: A large permissive regulatory domain exclusively controls Tbx3 expression in the cardiac conduction system. Circ Res. 115:432–441. 2014. View Article : Google Scholar : PubMed/NCBI

110 

Hatcher CJ, Diman NY, Kim MS, Pennisi D, Song Y, Goldstein MM, Mikawa T and Basson CT: A role for Tbx5 in proepicardial cell migration during cardiogenesis. Physiol Genomics. 18:129–140. 2004. View Article : Google Scholar : PubMed/NCBI

111 

Diman NY, Brooks G, Kruithof BP, Elemento O, Seidman JG, Seidman CE, Basson CT and Hatcher CJ: Tbx5 is required for avian and Mammalian epicardial formation and coronary vasculogenesis. Circ Res. 115:834–844. 2014. View Article : Google Scholar : PubMed/NCBI

112 

Zhou L, Liu J, Olson P, Zhang K, Wynne J and Xie L: Tbx5 and Osr1 interact to regulate posterior second heart field cell cycle progression for cardiac septation. J Mol Cell Cardiol. 85:1–12. 2015. View Article : Google Scholar : PubMed/NCBI

113 

Al-Qattan MM and Abou Al-Shaar H: Molecular basis of the clinical features of Holt-Oram syndrome resulting from missense and extended protein mutations of the TBX5 gene as well as TBX5 intragenic duplications. Gene. 560:129–136. 2015. View Article : Google Scholar : PubMed/NCBI

114 

Kimura M, Kikuchi A, Ichinoi N and Kure S: Novel TBX5 duplication in a Japanese family with Holt-Oram syndrome. Pediatr Cardiol. 36:244–247. 2015. View Article : Google Scholar

115 

Wu SP, Dong XR, Regan JN, Su C and Majesky MW: Tbx18 regulates development of the epicardium and coronary vessels. Dev Biol. 383:307–320. 2013. View Article : Google Scholar : PubMed/NCBI

116 

Cai X, Zhang W, Hu J, Zhang L, Sultana N, Wu B, Cai W, Zhou B and Cai CL: Tbx20 acts upstream of Wnt signaling to regulate endocardial cushion formation and valve remodeling during mouse cardiogenesis. Development. 140:3176–3187. 2013. View Article : Google Scholar : PubMed/NCBI

117 

Shen T, Aneas I, Sakabe N, Dirschinger RJ, Wang G, Smemo S, Westlund JM, Cheng H, Dalton N, Gu Y, et al: Tbx20 regulates a genetic program essential to adult mouse cardiomyocyte function. J Clin Invest. 121:4640–4654. 2011. View Article : Google Scholar : PubMed/NCBI

118 

Zhang W, Chen H, Wang Y, Yong W, Zhu W, Liu Y, Wagner GR, Payne RM, Field LJ, Xin H, et al: Tbx20 transcription factor is a downstream mediator for bone morphogenetic protein-10 in regulating cardiac ventricular wall development and function. J Biol Chem. 286:36820–36829. 2011. View Article : Google Scholar : PubMed/NCBI

119 

Kirk EP, Sunde M, Costa MW, Rankin SA, Wolstein O, Castro ML, Butler TL, Hyun C, Guo G, Otway R, et al: Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am J Hum Genet. 81:280–291. 2007. View Article : Google Scholar : PubMed/NCBI

120 

Ishizaka A, Mizutani T, Kobayashi K, Tando T, Sakurai K, Fujiwara T and Iba H: Double plant homeodomain (PHD) finger proteins DPF3a and -3b are required as transcriptional co-activators in SWI/SNF complex-dependent activation of NF-κB RelA/p50 heterodimer. J Biol Chem. 287:11924–11933. 2012. View Article : Google Scholar : PubMed/NCBI

121 

Lange M, Kaynak B, Forster UB, Tönjes M, Fischer JJ, Grimm C, Schlesinger J, Just S, Dunkel I, Krueger T, et al: Regulation of muscle development by DPF3, a novel histone acetylation and methylation reader of the BAF chromatin remodeling complex. Genes Dev. 22:2370–2384. 2008. View Article : Google Scholar : PubMed/NCBI

122 

Liu Y, Huang Y, Fan J and Zhu GZ: PITX2 associates with PTIP-containing histone H3 lysine 4 methyltransferase complex. Biochem Biophys Res Commun. 444:634–637. 2014. View Article : Google Scholar : PubMed/NCBI

123 

Kim D, Patel SR, Xiao H and Dressler GR: The role of PTIP in maintaining embryonic stem cell pluripotency. Stem Cells. 27:1516–1523. 2009. View Article : Google Scholar : PubMed/NCBI

124 

Fang M, Ren H, Liu J, Cadigan KM, Patel SR and Dressler GR: Drosophila ptip is essential for anterior/posterior patterning in development and interacts with the PcG and trxG pathways. Development. 136:1929–1938. 2009. View Article : Google Scholar : PubMed/NCBI

125 

Callen E, Faryabi RB, Luckey M, Hao B, Daniel JA, Yang W, Sun HW, Dressler G, Peng W, Chi H, et al: The DNA damage- and transcription-associated protein paxip1 controls thymocyte development and emigration. Immunity. 37:971–985. 2012. View Article : Google Scholar : PubMed/NCBI

126 

Daniel JA, Santos MA, Wang Z, Zang C, Schwab KR, Jankovic M, Filsuf D, Chen HT, Gazumyan A, Yamane A, et al: PTIP promotes chromatin changes critical for immunoglobulin class switch recombination. Science. 329:917–923. 2010. View Article : Google Scholar : PubMed/NCBI

127 

Stein AB, Jones TA, Herron TJ, Patel SR, Day SM, Noujaim SF, Milstein ML, Klos M, Furspan PB, Jalife J, et al: Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes. J Clin Invest. 121:2641–2650. 2011. View Article : Google Scholar : PubMed/NCBI

128 

Tao Y, Neppl RL, Huang ZP, Chen J, Tang RH, Cao R, Zhang Y, Jin SW and Wang DZ: The histone methyltransferase Set7/9 promotes myoblast differentiation and myofibril assembly. J Cell Biol. 194:551–565. 2011. View Article : Google Scholar : PubMed/NCBI

129 

Nicholson TB and Chen T: LSD1 demethylates histone and non-histone proteins. Epigenetics. 4:129–132. 2009. View Article : Google Scholar : PubMed/NCBI

130 

He Y, Tang D, Cai C, Chai R and Li H: LSD1 is required for hair cell regeneration in zebrafish. Mol Neurobiol. 53:2421–2434. 2016. View Article : Google Scholar

131 

van Riel B, Pakozdi T, Brouwer R, Monteiro R, Tuladhar K, Franke V, Bryne JC, Jorna R, Rijkers EJ, van Ijcken W, et al: A novel complex, RUNX1-MYEF2, represses hematopoietic genes in erythroid cells. Mol Cell Biol. 32:3814–3822. 2012. View Article : Google Scholar : PubMed/NCBI

132 

Nicholson TB, Singh AK, Su H, Hevi S, Wang J, Bajko J, Li M, Valdez R, Goetschkes M, Capodieci P, et al: A hypomorphic lsd1 allele results in heart development defects in mice. PLoS One. 8:e609132013. View Article : Google Scholar : PubMed/NCBI

133 

Fan Z, Yamaza T, Lee JS, Yu J, Wang S, Fan G, Shi S and Wang CY: BCOR regulates mesenchymal stem cell function by epigenetic mechanisms. Nat Cell Biol. 11:1002–1009. 2009. View Article : Google Scholar : PubMed/NCBI

134 

Hilton E, Johnston J, Whalen S, Okamoto N, Hatsukawa Y, Nishio J, Kohara H, Hirano Y, Mizuno S, Torii C, et al: BCOR analysis in patients with OFCD and Lenz microphthalmia syndromes, mental retardation with ocular anomalies, and cardiac laterality defects. Eur J Hum Genet. 17:1325–1335. 2009. View Article : Google Scholar : PubMed/NCBI

135 

Di Stefano C, Lombardo B, Fabbricatore C, Munno C, Caliendo I, Gallo F and Pastore L: Oculo-facio-cardio-dental (OFCD) syndrome: The first Italian case of BCOR and co-occurring OTC gene deletion. Gene. 559:203–206. 2015. View Article : Google Scholar : PubMed/NCBI

136 

Huang XJ, Ma X, Wang X, Zhou X, Li J, Sun SC and Liu H: Involvement of G9A-like protein (GLP) in the development of mouse preimplantation embryos in vitro. Reprod Fertil Dev. May 18–2015.Epub ahead of print. View Article : Google Scholar

137 

Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H, Sakihama T, Kodama T, Hamakubo T and Shinkai Y: Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev. 19:815–826. 2005. View Article : Google Scholar : PubMed/NCBI

138 

Inagawa M, Nakajima K, Makino T, Ogawa S, Kojima M, Ito S, Ikenishi A, Hayashi T, Schwartz RJ, Nakamura K, et al: Histone H3 lysine 9 methyltransferases, G9a and GLP are essential for cardiac morphogenesis. Mech Dev. 130:519–531. 2013. View Article : Google Scholar : PubMed/NCBI

139 

Kleefstra T, van Zelst-Stams WA, Nillesen WM, Cormier-Daire V, Houge G, Foulds N, van Dooren M, Willemsen MH, Pfundt R, Turner A, et al: Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype. J Med Genet. 46:598–606. 2009. View Article : Google Scholar : PubMed/NCBI

140 

Stewart DR and Kleefstra T: The chromosome 9q subtelomere deletion syndrome. Am J Med Genet C Semin Med Genet. 145C:383–392. 2007. View Article : Google Scholar : PubMed/NCBI

141 

Bikoff EK, Morgan MA and Robertson EJ: An expanding job description for Blimp-1/PRDM1. Curr Opin Genet Dev. 19:379–385. 2009. View Article : Google Scholar : PubMed/NCBI

142 

Morgan MA, Mould AW, Li L, Robertson EJ and Bikoff EK: Alternative splicing regulates Prdm1/Blimp-1 DNA binding activities and corepressor interactions. Mol Cell Biol. 32:3403–3413. 2012. View Article : Google Scholar : PubMed/NCBI

143 

Lee Y, Song AJ, Baker R, Micales B, Conway SJ and Lyons GE: Jumonji, a nuclear protein that is necessary for normal heart development. Circ Res. 86:932–938. 2000. View Article : Google Scholar : PubMed/NCBI

144 

Kim TG, Chen J, Sadoshima J and Lee Y: Jumonji represses atrial natriuretic factor gene expression by inhibiting transcriptional activities of cardiac transcription factors. Mol Cell Biol. 24:10151–10160. 2004. View Article : Google Scholar : PubMed/NCBI

145 

Mysliwiec MR, Carlson CD, Tietjen J, Hung H, Ansari AZ and Lee Y: Jarid2 (Jumonji, AT rich interactive domain 2) regulates NOTCH1 expression via histone modification in the developing heart. J Biol Chem. 287:1235–1241. 2012. View Article : Google Scholar :

146 

Mysliwiec MR, Bresnick EH and Lee Y: Endothelial Jarid2/Jumonji is required for normal cardiac development and proper Notch1 expression. J Biol Chem. 286:17193–17204. 2011. View Article : Google Scholar : PubMed/NCBI

147 

Dobreva G and Braun T: When silence is broken: Polycomb group proteins in heart development. Circ Res. 110:372–374. 2012. View Article : Google Scholar : PubMed/NCBI

148 

Weston AD, Ozolins TR and Brown NA: Thoracic skeletal defects and cardiac malformations: A common epigenetic link? Birth Defects Res C Embryo Today. 78:354–370. 2006. View Article : Google Scholar

149 

Sanulli S, Justin N, Teissandier A, Ancelin K, Portoso M, Caron M, Michaud A, Lombard B, da Rocha ST, Offer J, et al: Jarid2 methylation via the PRC2 complex regulates H3K27me3 deposition during cell differentiation. Mol Cell. 57:769–783. 2015. View Article : Google Scholar : PubMed/NCBI

150 

Delgado-Olguín P, Huang Y, Li X, Christodoulou D, Seidman CE, Seidman JG, Tarakhovsky A and Bruneau BG: Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis. Nat Genet. 44:343–347. 2012. View Article : Google Scholar : PubMed/NCBI

151 

Chen L, Ma Y, Kim EY, Yu W, Schwartz RJ, Qian L and Wang J: Conditional ablation of Ezh2 in murine hearts reveals its essential roles in endocardial cushion formation, cardiomyocyte proliferation and survival. PLoS One. 7:e310052012. View Article : Google Scholar : PubMed/NCBI

152 

Welstead GG, Creyghton MP, Bilodeau S, Cheng AW, Markoulaki S, Young RA and Jaenisch R: X-linked H3K27me3 demethylase Utx is required for embryonic development in a sex-specific manner. Proc Natl Acad Sci USA. 109:13004–13009. 2012. View Article : Google Scholar : PubMed/NCBI

153 

Morales Torres C, Laugesen A and Helin K: Utx is required for proper induction of ectoderm and mesoderm during differentiation of embryonic stem cells. PLoS One. 8:e600202013. View Article : Google Scholar : PubMed/NCBI

154 

Lee S, Lee JW and Lee SK: UTX, a histone H3-lysine 27 demethylase, acts as a critical switch to activate the cardiac developmental program. Dev Cell. 22:25–37. 2012. View Article : Google Scholar

155 

Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J, Issaeva I, Canaani E, Salcini AE and Helin K: UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature. 449:731–734. 2007. View Article : Google Scholar : PubMed/NCBI

156 

Li Q, Wang HY, Chepelev I, Zhu Q, Wei G, Zhao K and Wang RF: Stage-dependent and locus-specific role of histone demethylase Jumonji D3 (JMJD3) in the embryonic stages of lung development. PLoS Genet. 10:e10045242014. View Article : Google Scholar : PubMed/NCBI

157 

Burgold T, Voituron N, Caganova M, Tripathi PP, Menuet C, Tusi BK, Spreafico F, Bévengut M, Gestreau C, Buontempo S, et al: The H3K27 demethylase JMJD3 is required for maintenance of the embryonic respiratory neuronal network, neonatal breathing, and survival. Cell Rep. 2:1244–1258. 2012. View Article : Google Scholar : PubMed/NCBI

158 

Ohtani K, Zhao C, Dobreva G, Manavski Y, Kluge B, Braun T, Rieger MA, Zeiher AM and Dimmeler S: Jmjd3 controls mesodermal and cardiovascular differentiation of embryonic stem cells. Circ Res. 113:856–862. 2013. View Article : Google Scholar : PubMed/NCBI

159 

Chen CP, Lin CJ, Chern SR, Liu YP, Kuo YL, Chen YN, Wu PS, Town DD, Chen LF, Yang CW, et al: Prenatal diagnosis and molecular cytogenetic characterization of a 1.07-Mb microdeletion at 5q35.2-q35.3 associated with NSD1 haploinsufficiency and Sotos syndrome. Taiwan J Obstet Gynecol. 53:583–587. 2014. View Article : Google Scholar : PubMed/NCBI

160 

Park SH, Lee JE, Sohn YB and Ko JM: First identified Korean family with Sotos syndrome caused by a novel intragenic mutation in NSD1. Ann Clin Lab Sci. 44:228–231. 2014.PubMed/NCBI

161 

Sheth K, Moss J, Hyland S, Stinton C, Cole T and Oliver C: The behavioral characteristics of Sotos syndrome. Am J Med Genet A. 167A:2945–2956. 2015. View Article : Google Scholar : PubMed/NCBI

162 

Vallaster M, Vallaster CD and Wu SM: Epigenetic mechanisms in cardiac development and disease. Acta Biochim Biophys Sin (Shanghai). 44:92–102. 2012. View Article : Google Scholar

163 

Nimura K, Ura K, Shiratori H, Ikawa M, Okabe M, Schwartz RJ and Kaneda Y: A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome. Nature. 460:287–291. 2009. View Article : Google Scholar : PubMed/NCBI

164 

Oh S and Janknecht R: Histone demethylase JMJD5 is essential for embryonic development. Biochem Biophys Res Commun. 420:61–65. 2012. View Article : Google Scholar : PubMed/NCBI

165 

Kawakami E, Tokunaga A, Ozawa M, Sakamoto R and Yoshida N: The histone demethylase Fbxl11/Kdm2a plays an essential role in embryonic development by repressing cell-cycle regulators. Mech Dev. 135:31–42. 2015. View Article : Google Scholar

166 

Mohan M, Herz HM, Takahashi YH, Lin C, Lai KC, Zhang Y, Washburn MP, Florens L and Shilatifard A: Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex (DotCom). Genes Dev. 24:574–589. 2010. View Article : Google Scholar : PubMed/NCBI

167 

Jones B, Su H, Bhat A, Lei H, Bajko J, Hevi S, Baltus GA, Kadam S, Zhai H, Valdez R, et al: The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet. 4:e10001902008. View Article : Google Scholar : PubMed/NCBI

168 

Nguyen AT, Xiao B, Neppl RL, Kallin EM, Li J, Chen T, Wang DZ, Xiao X and Zhang Y: DOT1L regulates dystrophin expression and is critical for cardiac function. Genes Dev. 25:263–274. 2011. View Article : Google Scholar : PubMed/NCBI

169 

Beck DB, Burton A, Oda H, Ziegler-Birling C, Torres-Padilla ME and Reinberg D: The role of PR-Set7 in replication licensing depends on Suv4-20h. Genes Dev. 26:2580–2589. 2012. View Article : Google Scholar : PubMed/NCBI

170 

Lennartsson A and Ekwall K: Histone modification patterns and epigenetic codes. Biochim Biophys Acta. 1790:863–868. 2009. View Article : Google Scholar : PubMed/NCBI

171 

Tatton-Brown K and Rahman N: Clinical features of NSD1-positive Sotos syndrome. Clin Dysmorphol. 13:199–204. 2004. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yi X, Jiang X, Li X and Jiang D: Histone lysine methylation and congenital heart disease: From bench to bedside (Review). Int J Mol Med 40: 953-964, 2017.
APA
Yi, X., Jiang, X., Li, X., & Jiang, D. (2017). Histone lysine methylation and congenital heart disease: From bench to bedside (Review). International Journal of Molecular Medicine, 40, 953-964. https://doi.org/10.3892/ijmm.2017.3115
MLA
Yi, X., Jiang, X., Li, X., Jiang, D."Histone lysine methylation and congenital heart disease: From bench to bedside (Review)". International Journal of Molecular Medicine 40.4 (2017): 953-964.
Chicago
Yi, X., Jiang, X., Li, X., Jiang, D."Histone lysine methylation and congenital heart disease: From bench to bedside (Review)". International Journal of Molecular Medicine 40, no. 4 (2017): 953-964. https://doi.org/10.3892/ijmm.2017.3115
Copy and paste a formatted citation
x
Spandidos Publications style
Yi X, Jiang X, Li X and Jiang D: Histone lysine methylation and congenital heart disease: From bench to bedside (Review). Int J Mol Med 40: 953-964, 2017.
APA
Yi, X., Jiang, X., Li, X., & Jiang, D. (2017). Histone lysine methylation and congenital heart disease: From bench to bedside (Review). International Journal of Molecular Medicine, 40, 953-964. https://doi.org/10.3892/ijmm.2017.3115
MLA
Yi, X., Jiang, X., Li, X., Jiang, D."Histone lysine methylation and congenital heart disease: From bench to bedside (Review)". International Journal of Molecular Medicine 40.4 (2017): 953-964.
Chicago
Yi, X., Jiang, X., Li, X., Jiang, D."Histone lysine methylation and congenital heart disease: From bench to bedside (Review)". International Journal of Molecular Medicine 40, no. 4 (2017): 953-964. https://doi.org/10.3892/ijmm.2017.3115
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team