Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
January-2018 Volume 41 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2018 Volume 41 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

MicroRNA-142-3p relieves neuropathic pain by targeting high mobility group box 1

  • Authors:
    • Yang Zhang
    • Junying Mou
    • Li Cao
    • Su Zhen
    • Hongjuan Huang
    • Hongguang Bao
  • View Affiliations / Copyright

    Affiliations: Department of Anesthesiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China, Department of Anesthesiology, The Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei 445000, P.R. China, Department of Internal Medicine, Suizhou Zengdu Hospital, Suizhou, Hubei 441300, P.R. China, Department of Neurology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China, Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
  • Pages: 501-510
    |
    Published online on: October 27, 2017
       https://doi.org/10.3892/ijmm.2017.3222
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

MicroRNA (miRNA) are emerging as critical regulators of neuropathic pain development. Neuroinflammation contributes to the development of neuropathic pain. miR‑142‑3p has been characterized as an inflammation‑related miRNA in various pathological processes. However, little is known about the role of miR‑142‑3p in neuroinflammation and neuropathic pain. The present study aimed to investigate the function of miR‑142‑3p in neuropathic pain by creating a murine model using spinal nerve ligation (SNL). A significant reduction in miR‑142‑3p expression was observed in the dorsal root ganglion of mice with SNL (P<0.05) compared with control mice. Overexpression of miR‑142‑3p significantly inhibited neuropathic pain and neuroinflammation in mice with SNL (P<0.05). High mobility group box 1 (HMGB1) was identified as a direct target gene of miR‑142‑3p by bioinformatic analysis and dual‑luciferase reporter assays. Overexpression of miR‑142‑3p significantly reduced the mRNA and protein expression levels of HMGB1 in vitro and in vivo (P<0.05). In addition, HMGB1 mRNA expression and miR‑142‑3p expression were inversely correlated in mice with SNL. Furthermore, overexpression of HMGB1 significantly reversed the inhibitory effect of miR‑142‑3p on neuroinflammation and neuropathic pain development (P<0.05). Overall, these results suggest that miR‑142‑3p functions as a negative regulator of neuropathic pain development through the downregulation of HMGB1, indicating that miR‑142‑3p may serve as a potential therapeutic target for neuropathic pain.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

View References

1 

Baron R: Peripheral neuropathic pain: From mechanisms to symptoms. Clin J Pain. 16(Suppl 2): S12–S20. 2000. View Article : Google Scholar : PubMed/NCBI

2 

Sorge RE, Trang T, Dorfman R, Smith SB, Beggs S, Ritchie J, Austin JS, Zaykin DV, Vander Meulen H, Costigan M, et al: Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity. Nat Med. 18:595–599. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Neville A, Peleg R, Singer Y, Sherf M and Shvartzman P: Chronic pain: A population-based study. Isr Med Assoc J. 10:676–680. 2008.PubMed/NCBI

4 

O'Connor AB and Dworkin RH: Treatment of neuropathic pain: An overview of recent guidelines. Am J Med. 122(Suppl 10): S22–S32. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Winter J, Jung S, Keller S, Gregory RI and Diederichs S: Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 11:228–234. 2009. View Article : Google Scholar : PubMed/NCBI

6 

von Schack D, Agostino MJ, Murray BS, Li Y, Reddy PS, Chen J, Choe SE, Strassle BW, Li C, Bates B, et al: Dynamic changes in the microRNA expression profile reveal multiple regulatory mechanisms in the spinal nerve ligation model of neuropathic pain. PLoS One. 6:e176702011. View Article : Google Scholar : PubMed/NCBI

7 

Aldrich BT, Frakes EP, Kasuya J, Hammond DL and Kitamoto T: Changes in expression of sensory organ-specific microRNAs in rat dorsal root ganglia in association with mechanical hypersensitivity induced by spinal nerve ligation. Neuroscience. 164:711–723. 2009. View Article : Google Scholar : PubMed/NCBI

8 

Sakai A and Suzuki H: Emerging roles of microRNAs in chronic pain. Neurochem Int. 77:58–67. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Chang HL, Wang HC, Chunag YT, Chou CW, Lin IL, Lai CS, Chang LL and Cheng KI: miRNA expression change in dorsal root ganglia after peripheral nerve injury. J Mol Neurosci. 61:169–177. 2017. View Article : Google Scholar

10 

Li H, Huang Y, Ma C, Yu X, Zhang Z and Shen L: MiR-203 involves in neuropathic pain development and represses Rap1a expression in nerve growth factor differentiated neuronal PC12 cells. Clin J Pain. 31:36–43. 2015. View Article : Google Scholar

11 

Tan Y, Yang J, Xiang K, Tan Q and Guo Q: Suppression of microRNA-155 attenuates neuropathic pain by regulating SOCS1 signalling pathway. Neurochem Res. 40:550–560. 2015. View Article : Google Scholar

12 

Moss A, Beggs S, Vega-Avelaira D, Costigan M, Hathway GJ, Salter MW and Fitzgerald M: Spinal microglia and neuropathic pain in young rats. Pain. 128:215–224. 2007. View Article : Google Scholar

13 

Miljanich G, Rauck R and Saulino M: Spinal mechanisms of pain and analgesia. Pain Pract. 13:114–130. 2013. View Article : Google Scholar

14 

Scholz J and Woolf CJ: The neuropathic pain triad: Neurons, immune cells and glia. Nat Neurosci. 10:1361–1368. 2007. View Article : Google Scholar : PubMed/NCBI

15 

Moalem G and Tracey DJ: Immune and inflammatory mechanisms in neuropathic pain. Brain Res Brain Res Rev. 51:240–264. 2006. View Article : Google Scholar

16 

Shen W, Hu XM, Liu YN, Han Y, Chen LP, Wang CC and Song C: CXCL12 in astrocytes contributes to bone cancer pain through CXCR4-mediated neuronal sensitization and glial activation in rat spinal cord. J Neuroinflammation. 11:752014. View Article : Google Scholar : PubMed/NCBI

17 

Lu B, Wang C, Wang M, Li W, Chen F, Tracey KJ and Wang H: Molecular mechanism and therapeutic modulation of high mobility group box 1 release and action: An updated review. Expert Rev Clin Immunol. 10:713–727. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Andersson U and Tracey KJ: HMGB1 in sepsis. Scand J Infect Dis. 35:577–584. 2003. View Article : Google Scholar : PubMed/NCBI

19 

Li ZC, Cheng GQ, Hu KZ, Li MQ, Zang WP, Dong YQ, Wang WL and Liu ZD: Correlation of synovial fluid HMGB-1 levels with radiographic severity of knee osteoarthritis. Clin Invest Med. 34:E2982011. View Article : Google Scholar : PubMed/NCBI

20 

Mantell LL, Parrish WR and Ulloa L: Hmgb-1 as a therapeutic target for infectious and inflammatory disorders. Shock. 25:4–11. 2006. View Article : Google Scholar

21 

Basta G: Receptor for advanced glycation endproducts and atherosclerosis: From basic mechanisms to clinical implications. Atherosclerosis. 196:9–21. 2008. View Article : Google Scholar

22 

den Dekker WK, Cheng C, Pasterkamp G and Duckers HJ: Toll-like receptor 4 in atherosclerosis and plaque destabilization. Atherosclerosis. 209:314–320. 2010. View Article : Google Scholar

23 

Friggeri A, Yang Y, Banerjee S, Park YJ, Liu G and Abraham E: HMGB1 inhibits macrophage activity in efferocytosis through binding to the alphavbeta3-integrin. Am J Physiol Cell Physiol. 299:C1267–C1276. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Andersson U, Erlandsson-Harris H, Yang H and Tracey KJ: HMGB1 as a DNA-binding cytokine. J Leukoc Biol. 72:1084–1091. 2002.PubMed/NCBI

25 

Chacur M, Milligan ED, Gazda LS, Armstrong C, Wang H, Tracey KJ, Maier SF and Watkins LR: A new model of sciatic inflammatory neuritis (SIN): Induction of unilateral and bilateral mechanical allodynia following acute unilateral peri-sciatic immune activation in rats. Pain. 94:231–244. 2001. View Article : Google Scholar : PubMed/NCBI

26 

Shibasaki M, Sasaki M, Miura M, Mizukoshi K, Ueno H, Hashimoto S, Tanaka Y and Amaya F: Induction of high mobility group box-1 in dorsal root ganglion contributes to pain hypersensitivity after peripheral nerve injury. Pain. 149:514–521. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Otoshi K, Kikuchi S, Kato K, Sekiguchi M and Konno S: Anti-HMGB1 neutralization antibody improves pain-related behavior induced by application of autologous nucleus pulposus onto nerve roots in rats. Spine. 36:E692–E698. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Maeda T, Ozaki M, Kobayashi Y, Kiguchi N and Kishioka S: HMGB1 as a potential therapeutic target for neuropathic pain. J Pharmacol Sci. 123:301–305. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Wan W, Cao L, Khanabdali R, Kalionis B, Tai X and Xia S: The emerging role of HMGB1 in neuropathic pain: A potential therapeutic target for neuroinflammation. J Immunol Res. 2016:64304232016. View Article : Google Scholar : PubMed/NCBI

30 

Xu G, Zhang Z, Wei J, Zhang Y, Zhang Y, Guo L and Liu X: microR-142-3p down-regulates IRAK-1 in response to Mycobacterium bovis BCG infection in macrophages. Tuberculosis (Edinb). 93:606–611. 2013. View Article : Google Scholar

31 

Naqvi AR, Fordham JB and Nares S: miR-24, miR-30b, and miR-142-3p regulate phagocytosis in myeloid inflammatory cells. J Immunol. 194:1916–1927. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Wang X, Guo Y, Wang C and Yu H, Yu X and Yu H: MicroRNA-142-3p Inhibits chondrocyte apoptosis and inflammation in osteoarthritis by targeting HMGB1. Inflammation. 39:1718–1728. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Huang ZJ, Li HC, Cowan AA, Liu S, Zhang YK and Song XJ: Chronic compression or acute dissociation of dorsal root ganglion induces cAMP-dependent neuronal hyperexcitability through activation of PAR2. Pain. 153:1426–1437. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar

35 

Norcini M, Sideris A, Martin Hernandez LA, Zhang J, Blanck TJ and Recio-Pinto E: An approach to identify microRNAs involved in neuropathic pain following a peripheral nerve injury. Front Neurosci. 8:2662014. View Article : Google Scholar : PubMed/NCBI

36 

Jiangpan P, Qingsheng M, Zhiwen Y and Tao Z: Emerging role of microRNA in neuropathic pain. Curr Drug Metab. 17:336–344. 2016. View Article : Google Scholar

37 

Tan PH, Pao YY, Cheng JK, Hung KC and Liu CC: MicroRNA-based therapy in pain medicine: Current progress and future prospects. Acta Anaesthesiol Taiwan. 51:171–176. 2013. View Article : Google Scholar

38 

Kusuda R, Cadetti F, Ravanelli MI, Sousa TA, Zanon S, De Lucca FL and Lucas G: Differential expression of microRNAs in mouse pain models. Mol Pain. 7:172011. View Article : Google Scholar : PubMed/NCBI

39 

Shi G, Shi J, Liu K, Liu N, Wang Y, Fu Z, Ding J, Jia L and Yuan W: Increased miR-195 aggravates neuropathic pain by inhibiting autophagy following peripheral nerve injury. Glia. 61:504–512. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Wang C, Jiang Q, Wang M and Li D: MiR-19a targets suppressor of cytokine signaling 1 to modulate the progression of neuropathic pain. Int J Clin Exp Pathol. 8:10901–10907. 2015.PubMed/NCBI

41 

Xia L, Zhang Y and Dong T: Inhibition of microRNA-221 alleviates neuropathic pain through targeting suppressor of cytokine signaling 1. J Mol Neurosci. 59:411–420. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Chen HP, Zhou W, Kang LM, Yan H, Zhang L, Xu BH and Cai WH: Intrathecal miR-96 inhibits Nav1.3 expression and alleviates neuropathic pain in rat following chronic construction injury. Neurochem Res. 39:76–83. 2014. View Article : Google Scholar

43 

Lin CR, Chen KH, Yang CH, Huang HW and Sheen-Chen SM: Intrathecal miR-183 delivery suppresses mechanical allodynia in mononeuropathic rats. Eur J Neurosci. 39:1682–1689. 2014. View Article : Google Scholar : PubMed/NCBI

44 

Shao J, Cao J, Wang J, Ren X, Su S, Li M, Li Z, Zhao Q and Zang W: MicroRNA-30b regulates expression of the sodium channel Nav1.7 in nerve injury-induced neuropathic pain in the rat. Mol Pain. Oct 19–2016.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

45 

Lu Y, Cao DL, Jiang BC, Yang T and Gao YJ: MicroRNA-146a-5p attenuates neuropathic pain via suppressing TRAF6 signaling in the spinal cord. Brain Behav Immun. 49:119–129. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Zhang J, Zhang H and Zi T: Overexpression of microRNA-141 relieves chronic constriction injury-induced neuropathic pain via targeting high-mobility group box 1. Int J Mol Med. 36:1433–1439. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Leinders M, Üçeyler N, Pritchard RA, Sommer C and Sorkin LS: Increased miR-132-3p expression is associated with chronic neuropathic pain. Exp Neurol. 283:276–286. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Heyn J, Luchting B, Hinske LC, Hübner M, Azad SC and Kreth S: miR-124a and miR-155 enhance differentiation of regulatory T cells in patients with neuropathic pain. J Neuroinflammation. 13:2482016. View Article : Google Scholar : PubMed/NCBI

49 

Ito N, Sakai A, Miyake N, Maruyama M, Iwasaki H, Miyake K, Okada T, Sakamoto A and Suzuki H: miR-15b mediates oxaliplatin-induced chronic neuropathic pain through BACE1 down-regulation. Br J Pharmacol. 174:386–395. 2017. View Article : Google Scholar

50 

Neumann M and Naumann M: Beyond IkappaBs: Alternative regulation of NF-kappaB activity. FASEB J. 21:2642–2654. 2007. View Article : Google Scholar : PubMed/NCBI

51 

Maeda S and Omata M: Inflammation and cancer: Role of nuclear factor-kappaB activation. Cancer Sci. 99:836–842. 2008. View Article : Google Scholar : PubMed/NCBI

52 

Sakaue G, Shimaoka M, Fukuoka T, Hiroi T, Inoue T, Hashimoto N, Sakaguchi T, Sawa Y, Morishita R, Kiyono H, et al: NF-kappa B decoy suppresses cytokine expression and thermal hyperalgesia in a rat neuropathic pain model. Neuroreport. 12:2079–2084. 2001. View Article : Google Scholar : PubMed/NCBI

53 

Sun T, Song WG, Fu ZJ, Liu ZH, Liu YM and Yao SL: Alleviation of neuropathic pain by intrathecal injection of antisense oligonucleotides to p65 subunit of NF-kappaB. Br J Anaesth. 97:553–558. 2006. View Article : Google Scholar : PubMed/NCBI

54 

Niederberger E and Geisslinger G: The IKK-NF-kappaB pathway: A source for novel molecular drug targets in pain therapy? FASEB J. 22:3432–3442. 2008. View Article : Google Scholar : PubMed/NCBI

55 

Schaefer JS, Attumi T, Opekun AR, Abraham B, Hou J, Shelby H, Graham DY, Streckfus C and Klein JR: MicroRNA signatures differentiate Crohn's disease from ulcerative colitis. BMC Immunol. 16:52015. View Article : Google Scholar : PubMed/NCBI

56 

Ralfkiaer U, Lindahl LM, Litman T, Gjerdrum LM, Ahler CB, Gniadecki R, Marstrand T, Fredholm S, Iversen L, Wasik MA, et al: MicroRNA expression in early mycosis fungoides is distinctly different from atopic dermatitis and advanced cutaneous T-cell lymphoma. Anticancer Res. 34:7207–7217. 2014.PubMed/NCBI

57 

Pivarcsi A, Meisgen F, Xu N, Ståhle M and Sonkoly E: Changes in the level of serum microRNAs in patients with psoriasis after antitumour necrosis factor-α therapy. Br J Dermatol. 169:563–570. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Boomiraj H, Mohankumar V, Lalitha P and Devarajan B: Human corneal microRNA expression profile in fungal keratitis. Invest Ophthalmol Vis Sci. 56:7939–7946. 2015. View Article : Google Scholar

59 

Perri R, Nares S, Zhang S, Barros SP and Offenbacher S: MicroRNA modulation in obesity and periodontitis. J Dent Res. 91:33–38. 2012. View Article : Google Scholar :

60 

Yuan Z, Luo G, Li X, Chen J, Wu J and Peng Y: PPARγ inhibits HMGB1 expression through upregulation of miR-142-3p in vitro and in vivo. Cell Signal. 28:158–164. 2016. View Article : Google Scholar : PubMed/NCBI

61 

Wang Y, Ouyang M, Wang Q and Jian Z: MicroRNA-142-3p inhibits hypoxia/reoxygenation induced apoptosis and fibrosis of cardiomyocytes by targeting high mobility group box 1. Int J Mol Med. 38:1377–1386. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Xiao P and Liu WL: MiR-142-3p functions as a potential tumor suppressor directly targeting HMGB1 in non-small-cell lung carcinoma. Int J Clin Exp Pathol. 8:10800–10807. 2015.PubMed/NCBI

63 

Feldman P, Due MR, Ripsch MS, Khanna R and White FA: The persistent release of HMGB1 contributes to tactile hyperalgesia in a rodent model of neuropathic pain. J Neuroinflammation. 9:1802012. View Article : Google Scholar : PubMed/NCBI

64 

Zhang FF, Morioka N, Harano S, Nakamura Y, Liu K, Nishibori M, Hisaoka-Nakashima K and Nakata Y: Perineural expression of high-mobility group box-1 contributes to long-lasting mechanical hypersensitivity via matrix metalloproteinase-9 upregulation in mice with painful peripheral neuropathy. J Neurochem. Nov 18–2015.Epub ahead of print. View Article : Google Scholar

65 

Nakamura Y, Morioka N, Abe H, Zhang FF, Hisaoka-Nakashima K, Liu K, Nishibori M and Nakata Y: Neuropathic pain in rats with a partial sciatic nerve ligation is alleviated by intravenous injection of monoclonal antibody to high mobility group box-1. PLoS One. 8:e736402013. View Article : Google Scholar : PubMed/NCBI

66 

Lin TB, Hsieh MC, Lai CY, Cheng JK, Wang HH, Chau YP, Chen GD and Peng HY: Melatonin relieves neuropathic allodynia through spinal MT2-enhanced PP2Ac and downstream HDAC4 shuttling-dependent epigenetic modification of hmgb1 transcription. J Pineal Res. 60:263–276. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Wang YS, Li YY, Wang LH, Kang Y, Zhang J, Liu ZQ, Wang K, Kaye AD and Chen L: Tanshinone IIA attenuates chronic pancreatitis-induced pain in rats via downregulation of HMGB1 and TRL4 expression in the spinal cord. Pain Physician. 18:E615–E628. 2015.PubMed/NCBI

68 

Ma YQ, Chen YR, Leng YF and Wu ZW: Tanshinone IIA downregulates HMGB1 and TLR4 expression in a spinal nerve ligation model of neuropathic pain. Evid Based Complement Alternat Med. 2014:6395632014. View Article : Google Scholar : PubMed/NCBI

69 

He Z, Guo Q, Xiao M, He C and Zou W: Intrathecal lentivirus- mediated transfer of interleukin-10 attenuates chronic constriction injury-induced neuropathic pain through modulation of spinal high-mobility group box 1 in rats. Pain Physician. 16:E615–E625. 2013.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang Y, Mou J, Cao L, Zhen S, Huang H and Bao H: MicroRNA-142-3p relieves neuropathic pain by targeting high mobility group box 1. Int J Mol Med 41: 501-510, 2018.
APA
Zhang, Y., Mou, J., Cao, L., Zhen, S., Huang, H., & Bao, H. (2018). MicroRNA-142-3p relieves neuropathic pain by targeting high mobility group box 1. International Journal of Molecular Medicine, 41, 501-510. https://doi.org/10.3892/ijmm.2017.3222
MLA
Zhang, Y., Mou, J., Cao, L., Zhen, S., Huang, H., Bao, H."MicroRNA-142-3p relieves neuropathic pain by targeting high mobility group box 1". International Journal of Molecular Medicine 41.1 (2018): 501-510.
Chicago
Zhang, Y., Mou, J., Cao, L., Zhen, S., Huang, H., Bao, H."MicroRNA-142-3p relieves neuropathic pain by targeting high mobility group box 1". International Journal of Molecular Medicine 41, no. 1 (2018): 501-510. https://doi.org/10.3892/ijmm.2017.3222
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang Y, Mou J, Cao L, Zhen S, Huang H and Bao H: MicroRNA-142-3p relieves neuropathic pain by targeting high mobility group box 1. Int J Mol Med 41: 501-510, 2018.
APA
Zhang, Y., Mou, J., Cao, L., Zhen, S., Huang, H., & Bao, H. (2018). MicroRNA-142-3p relieves neuropathic pain by targeting high mobility group box 1. International Journal of Molecular Medicine, 41, 501-510. https://doi.org/10.3892/ijmm.2017.3222
MLA
Zhang, Y., Mou, J., Cao, L., Zhen, S., Huang, H., Bao, H."MicroRNA-142-3p relieves neuropathic pain by targeting high mobility group box 1". International Journal of Molecular Medicine 41.1 (2018): 501-510.
Chicago
Zhang, Y., Mou, J., Cao, L., Zhen, S., Huang, H., Bao, H."MicroRNA-142-3p relieves neuropathic pain by targeting high mobility group box 1". International Journal of Molecular Medicine 41, no. 1 (2018): 501-510. https://doi.org/10.3892/ijmm.2017.3222
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team