Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
March-2018 Volume 41 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2018 Volume 41 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Sphingosine-1-phosphate ameliorates the cardiac hypertrophic response through inhibiting the activity of histone deacetylase-2

  • Authors:
    • Hui Yan
    • Shaowei Yi
    • Hang Zhuang
    • Lujin Wu
    • Dao Wen Wang
    • Jiangang Jiang
  • View Affiliations / Copyright

    Affiliations: Department of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
  • Pages: 1704-1714
    |
    Published online on: December 15, 2017
       https://doi.org/10.3892/ijmm.2017.3325
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Inhibition of histone deacetylase-2 (HDAC2), which is a prohypertrophic factor in the heart, can functionally attenuate cardiac hypertrophy. The present study aimed to investigate whether sphingosine‑1‑phosphate (S1P), which has recently been reported to suppress HDAC2 activity, could ameliorate the cardiac hypertrophic response and improve cardiac function in mice with transverse aortic constriction (TAC), as well as to determine the underlying mechanisms. Briefly, 8‑week‑old male C57BL/6 mice were randomly divided into sham, TAC and TAC + S1P groups; the results indicated that S1P treatment attenuated TAC‑induced cardiac dysfunction. In addition, heart size and the expression levels of fetal cardiac genes were reduced in the TAC + S1P group compared with in the TAC group. Furthermore, in cultured H9c2 cells exposed to phenylephrine, S1P was revealed to decrease cardiomyocyte size and the exaggerated expression of fetal cardiac genes. The present study also demonstrated that S1P had no effect on HDAC2 expression, but it did suppress its activity and increase acetylation of histone H3 in vivo and in vitro. Krüppel‑like factor 4 (KLF4) is an antihypertrophic transcriptional regulator, which mediates HDAC inhibitor‑induced prevention of cardiac hypertrophy; in the present study, KLF4 was upregulated by S1P. Finally, the results indicated that S1P receptor 2 (S1PR2) may be involved in the antihypertrophic effects, whereas the suppressive effects of S1P on HDAC2 activity were independent of S1PR2. In conclusion, the present study demonstrated that S1P treatment may ameliorate the cardiac hypertrophic response, which may be partly mediated by the suppression of HDAC2 activity and the upregulation of KLF4; it was suggested that S1PR2 may also be involved. Therefore, S1P may be considered a potential therapy for the treatment of heart diseases caused by cardiac hypertrophy.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Eom GH and Kook H: Posttranslational modifications of histone deacetylases: Implications for cardiovascular diseases. Pharmacol Ther. 143:168–180. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Frey N and Olson EN: Cardiac hypertrophy: The good, the bad, and the ugly. Annu Rev Physiol. 65:45–79. 2003. View Article : Google Scholar : PubMed/NCBI

3 

Chang L, Kiriazis H, Gao XM, Du XJ and El-Osta A: Cardiac genes show contextual SWI/SNF interactions with distinguishable gene activities. Epigenetics. 6:760–768. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Eom GH and Kook H: Role of histone deacetylase 2 and its post-translational modifications in cardiac hypertrophy. BMB Rep. 48:131–138. 2015. View Article : Google Scholar :

5 

Trivedi CM, Luo Y, Yin Z, Zhang M, Zhu W, Wang T, Floss T, Goettlicher M, Noppinger PR, Wurst W, et al: Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med. 13:324–331. 2007. View Article : Google Scholar : PubMed/NCBI

6 

Kee HJ and Kook H: Roles and targets of class I and IIa histone deacetylases in cardiac hypertrophy. J Biomed Biotechnol. 2011:9283262011. View Article : Google Scholar

7 

Kee HJ, Sohn IS, Nam KI, Park JE, Qian YR, Yin Z, Ahn Y, Jeong MH, Bang YJ, Kim N, et al: Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation. 113:51–59. 2006. View Article : Google Scholar

8 

Kong Y, Tannous P, Lu G, Berenji K, Rothermel BA, Olson EN and Hill JA: Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy. Circulation. 113:2579–2588. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Kee HJ and Kook H: Krüppel-like factor 4 mediates histone deacetylase inhibitor-induced prevention of cardiac hypertrophy. J Mol Cell Cardiol. 47:770–780. 2009. View Article : Google Scholar : PubMed/NCBI

10 

Takuwa Y, Okamoto Y, Yoshioka K and Takuwa N: Sphingosine-1-phosphate signaling and biological activities in the cardiovascular system. Biochim Biophys Acta. 1781:483–488. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Hait NC, Allegood J, Maceyka M, Strub GM, Harikumar KB, Singh SK, Luo C, Marmorstein R, Kordula T, Milstien S, et al: Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science. 325:1254–1257. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Means CK and Brown JH: Sphingosine-1-phosphate receptor signalling in the heart. Cardiovasc Res. 82:193–200. 2009. View Article : Google Scholar : PubMed/NCBI

13 

National Research Council (US) Committee for the Update of the Guide for the Care and use of Laboratory Animals. Washington (DC): National Academies Press (US); 2011

14 

Takimoto E, Champion HC, Li M, Belardi D, Ren S, Rodriguez ER, Bedja D, Gabrielson KL, Wang Y and Kass DA: Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med. 11:214–222. 2005. View Article : Google Scholar : PubMed/NCBI

15 

Liu W, Zi M, Tsui H, Chowdhury SK, Zeef L, Meng QJ, Travis M, Prehar S, Berry A, Hanley NA, et al: A novel immunomodulator, FTY-720 reverses existing cardiac hypertrophy and fibrosis from pressure overload by targeting NFAt (nuclear factor of activated T-cells) signaling and periostin. Circ Heart Fail. 6:833–844. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Cingolani OH, Yang XP, Cavasin MA and Carretero OA: Increased systolic performance with diastolic dysfunction in adult spontaneously hypertensive rats. Hypertension. 41:249–254. 2003. View Article : Google Scholar : PubMed/NCBI

17 

Ma H, Gong H, Chen Z, Liang Y, Yuan J, Zhang G, Wu J, Ye Y, Yang C, Nakai A, et al: Association of Stat3 with HSF1 plays a critical role in G-CSF-induced cardio-protection against ischemia/reperfusion injury. J Mol Cell Cardiol. 52:1282–1290. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Dolber PC, Bauman RP, Rembert JC and Greenfield JC Jr: Regional changes in myocyte structure in model of canine right atrial hypertrophy. Am J Physiol. 267:H1279–H1287. 1994.PubMed/NCBI

19 

Sag CM, Santos CX and Shah AM: Redox regulation of cardiac hypertrophy. J Mol Cell Cardiol. 73:103–111. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Knapp M: Cardioprotective role of sphingosine-1-phosphate. J Physiol Pharmacol. 62:601–607. 2011.

21 

Karliner JS, Honbo N, Summers K, Gray MO and Goetzl EJ: The lysophospholipids sphingosine-1-phosphate and lysophosphatidic acid enhance survival during hypoxia in neonatal rat cardiac myocytes. J Mol Cell Cardiol. 33:1713–1717. 2001. View Article : Google Scholar : PubMed/NCBI

22 

Lecour S, Smith RM, Woodward B, Opie LH, Rochette L and Sack MN: Identification of a novel role for sphingolipid signaling in TNF alpha and ischemic preconditioning mediated cardioprotection. J Mol Cell Cardiol. 34:509–518. 2002. View Article : Google Scholar : PubMed/NCBI

23 

Alvarez SE, Milstien S and Spiegel S: Autocrine and paracrine roles of sphingosine-1-phosphate. Trends Endocrinol Metab. 18:300–307. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Fyrst H and Saba JD: An update on sphingosine-1-phosphate and other sphingolipid mediators. Nat Chem Biol. 6:489–497. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Strub GM, Maceyka M, Hait NC, Milstien S and Spiegel S: Extracellular and intracellular actions of sphingosine-1-phosphate. Adv Exp Med Biol. 688:141–155. 2010. View Article : Google Scholar : PubMed/NCBI

26 

Spiegel S and Milstien S: Functions of a new family of sphin-gosine-1-phosphate receptors. Biochim Biophys Acta. 1484:107–116. 2000. View Article : Google Scholar : PubMed/NCBI

27 

Wendler CC and Rivkees SA: Sphingosine-1-phosphate inhibits cell migration and endothelial to mesenchymal cell transformation during cardiac development. Dev Biol. 291:264–277. 2006. View Article : Google Scholar : PubMed/NCBI

28 

Seto E and Yoshida M: Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 6:a0187132014. View Article : Google Scholar : PubMed/NCBI

29 

Sekiguchi K, Yokoyama T, Kurabayashi M, Okajima F and Nagai R: Sphingosylphosphorylcholine induces a hypertrophic growth response through the mitogen-activated protein kinase signaling cascade in rat neonatal cardiac myocytes. Circ Res. 85:1000–1008. 1999. View Article : Google Scholar : PubMed/NCBI

30 

Robert P, Tsui P, Laville MP, Livi GP, Sarau HM, Bril A and Berrebi-Bertrand I: EDG1 receptor stimulation leads to cardiac hypertrophy in rat neonatal myocytes. J Mol Cell Cardiol. 33:1589–1606. 2001. View Article : Google Scholar : PubMed/NCBI

31 

Wei L: Lysophospholipid signaling in cardiac myocyte hypertrophy. J Mol Cell Cardiol. 36:465–468. 2004. View Article : Google Scholar : PubMed/NCBI

32 

Nguyen-Tran DH, Hait NC, Sperber H, Qi J, Fischer K, Ieronimakis N, Pantoja M, Hays A, Allegood J, Reyes M, et al: Molecular mechanism of sphingosine-1-phosphate action in Duchenne muscular dystrophy. Dis Model Mech. 7:41–54. 2014. View Article : Google Scholar :

33 

Nagahashi M, Takabe K, Liu R, Peng K, Wang X, Wang Y, Hait NC, Wang X, Allegood JC, Yamada A, et al: Conjugated bile acid-activated S1P receptor 2 is a key regulator of sphingosine kinase 2 and hepatic gene expression. Hepatology. 61:1216–1226. 2015. View Article : Google Scholar :

34 

Pearson R, Fleetwood J, Eaton S, Crossley M and Bao S: Krüppel-like transcription factors: A functional family. Int J Biochem Cell Biol. 40:1996–2001. 2008. View Article : Google Scholar

35 

Yoshida T, Yamashita M, Horimai C and Hayashi M: Kruppel-like factor 4 protein regulates isoproterenol-induced cardiac hypertrophy by modulating myocardin expression and activity. J Biol Chem. 289:26107–26118. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Liao X, Haldar SM, Lu Y, Jeyaraj D, Paruchuri K, Nahori M, Cui Y, Kaestner KH and Jain MK: Krüppel-like factor 4 regulates pressure-induced cardiac hypertrophy. J Mol Cell Cardiol. 49:334–338. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yan H, Yi S, Zhuang H, Wu L, Wang DW and Jiang J: Sphingosine-1-phosphate ameliorates the cardiac hypertrophic response through inhibiting the activity of histone deacetylase-2. Int J Mol Med 41: 1704-1714, 2018.
APA
Yan, H., Yi, S., Zhuang, H., Wu, L., Wang, D.W., & Jiang, J. (2018). Sphingosine-1-phosphate ameliorates the cardiac hypertrophic response through inhibiting the activity of histone deacetylase-2. International Journal of Molecular Medicine, 41, 1704-1714. https://doi.org/10.3892/ijmm.2017.3325
MLA
Yan, H., Yi, S., Zhuang, H., Wu, L., Wang, D. W., Jiang, J."Sphingosine-1-phosphate ameliorates the cardiac hypertrophic response through inhibiting the activity of histone deacetylase-2". International Journal of Molecular Medicine 41.3 (2018): 1704-1714.
Chicago
Yan, H., Yi, S., Zhuang, H., Wu, L., Wang, D. W., Jiang, J."Sphingosine-1-phosphate ameliorates the cardiac hypertrophic response through inhibiting the activity of histone deacetylase-2". International Journal of Molecular Medicine 41, no. 3 (2018): 1704-1714. https://doi.org/10.3892/ijmm.2017.3325
Copy and paste a formatted citation
x
Spandidos Publications style
Yan H, Yi S, Zhuang H, Wu L, Wang DW and Jiang J: Sphingosine-1-phosphate ameliorates the cardiac hypertrophic response through inhibiting the activity of histone deacetylase-2. Int J Mol Med 41: 1704-1714, 2018.
APA
Yan, H., Yi, S., Zhuang, H., Wu, L., Wang, D.W., & Jiang, J. (2018). Sphingosine-1-phosphate ameliorates the cardiac hypertrophic response through inhibiting the activity of histone deacetylase-2. International Journal of Molecular Medicine, 41, 1704-1714. https://doi.org/10.3892/ijmm.2017.3325
MLA
Yan, H., Yi, S., Zhuang, H., Wu, L., Wang, D. W., Jiang, J."Sphingosine-1-phosphate ameliorates the cardiac hypertrophic response through inhibiting the activity of histone deacetylase-2". International Journal of Molecular Medicine 41.3 (2018): 1704-1714.
Chicago
Yan, H., Yi, S., Zhuang, H., Wu, L., Wang, D. W., Jiang, J."Sphingosine-1-phosphate ameliorates the cardiac hypertrophic response through inhibiting the activity of histone deacetylase-2". International Journal of Molecular Medicine 41, no. 3 (2018): 1704-1714. https://doi.org/10.3892/ijmm.2017.3325
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team