Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
March-2018 Volume 41 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2018 Volume 41 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Structural and functional failure of fibrillin‑1 in human diseases (Review)

  • Authors:
    • Sandra Schrenk
    • Carola Cenzi
    • Thomas Bertalot
    • Maria Teresa Conconi
    • Rosa Di Liddo
  • View Affiliations / Copyright

    Affiliations: Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, I‑35131 Padova, Italy
  • Pages: 1213-1223
    |
    Published online on: December 22, 2017
       https://doi.org/10.3892/ijmm.2017.3343
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Fibrillins (FBNs) are key relay molecules that form the backbone of microfibrils in elastic and non‑elastic tissues. Interacting with other components of the extracellular matrix (ECM), these ubiquitous glycoproteins exert pivotal roles in tissue development, homeostasis and repair. In addition to mechanical support, FBN networks also exhibit regulatory activities on growth factor signalling, ECM formation, cell behaviour and the immune response. Consequently, mutations affecting the structure, assembly and stability of FBN microfibrils have been associated with impaired biomechanical tissue properties, altered cell‑matrix interactions, uncontrolled growth factor or cytokine activation, and the development of fibrillinopathies and associated severe complications in multiple organs. Beyond a panoramic overview of structural cues of the FBN network, the present review will also describe the pathological implications of FBN disorders in the development of inflammatory and fibrotic conditions.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Biery NJ, Eldadah ZA, Moore CS, Stetten G, Spencer F and Dietz HC: Revised genomic organization of FBN1 and significance for regulated gene expression. Genomics. 56:70–77. 1999. View Article : Google Scholar : PubMed/NCBI

2 

Kainulainen K, Pulkkinen L, Savolainen A, Kaitila I and Peltonen L: Location on chromosome 15 of the gene defect causing Marfan syndrome. N Engl J Med. 323:935–939. 1990. View Article : Google Scholar : PubMed/NCBI

3 

Robertson I, Jensen S and Handford P: TB domain proteins: Evolutionary insights into the multifaceted roles of fibrillins and LTBPs. Biochem J. 433:263–276. 2011. View Article : Google Scholar

4 

Corson GM, Chalberg SC, Dietz HC, Charbonneau NL and Sakai LY: Fibrillin binds calcium and is coded by cDNAs that reveal a multidomain structure and alternatively spliced exons at the 5′end. Genomics. 17:476–484. 1993. View Article : Google Scholar : PubMed/NCBI

5 

Maslen CL, Corson GM, Maddox BK, Glanville RW and Sakai LY: Partial sequence of a candidate gene for the Marfan syndrome. Nature. 352:334–337. 1991. View Article : Google Scholar : PubMed/NCBI

6 

Handford PA, Mayhew M and Brownlee GG: Calcium binding to fibrillin? Nature. 353:3951991. View Article : Google Scholar : PubMed/NCBI

7 

Werner JM, Knott V, Handford PA, Campbell ID and Downing AK: Backbone dynamics of a cbEGF domain pair in the presence of calcium. J Mol Biol. 296:1065–1078. 2000. View Article : Google Scholar : PubMed/NCBI

8 

Downing AK, Knott V, Werner JM, Cardy CM, Campbell ID and Handford PA: Solution structure of a pair of calcium-binding epidermal growth factor-like domains: Implications for the Marfan syndrome and other genetic disorders. Cell. 85:597–605. 1996. View Article : Google Scholar : PubMed/NCBI

9 

Smallridge RS, Whiteman P, Werner JM, Campbell ID, Handford PA and Downing AK: Solution structure and dynamics of a calcium binding epidermal growth factor-like domain pair from the neonatal region of human fibrillin-1. J Biol Chem. 278:12199–12206. 2003. View Article : Google Scholar : PubMed/NCBI

10 

Reinhardt DP, Mechling DE, Boswell BA, Keene DR, Sakai LY and Bächinger HP: Calcium determines the shape of fibrillin. J Biol Chem. 272:7368–7373. 1997. View Article : Google Scholar : PubMed/NCBI

11 

Reinhardt DP, Ono RN and Sakai LY: Calcium stabilizes fibrillin-1 against proteolytic degradation. J Biol Chem. 272:1231–1236. 1997. View Article : Google Scholar : PubMed/NCBI

12 

Lin G, Tiedemann K, Vollbrandt T, Peters H, Batge B, Brinckmann J and Reinhardt DP: Homo- and heterotypic fibrillin-1 and -2 interactions constitute the basis for the assembly of microfibrils. J Biol Chem. 277:50795–50804. 2002. View Article : Google Scholar : PubMed/NCBI

13 

Marson A, Rock MJ, Cain SA, Freeman LJ, Morgan A, Mellody K, Shuttleworth CA, Baldock C and Kielty CM: Homotypic fibrillin-1 interactions in microfibril assembly. J Biol Chem. 280:5013–5021. 2005. View Article : Google Scholar

14 

Reinhardt DP, Sasaki T, Dzamba BJ, Keene DR, Chu ML, Göhring W, Timpl R and Sakai LY: Fibrillin-1 and fibulin-2 interact and are colocalized in some tissues. J Biol Chem. 271:19489–19496. 1996. View Article : Google Scholar : PubMed/NCBI

15 

Jensen SA, Reinhardt DP, Gibson MA and Weiss AS: Protein interaction studies of MAGP-1 with tropoelastin and fibrillin-1. J Biol Chem. 276:39661–39666. 2001. View Article : Google Scholar : PubMed/NCBI

16 

Isogai Z, Ono RN, Ushiro S, Keene DR, Chen Y, Mazzieri R, Charbonneau NL, Reinhardt DP, Rifkin DB and Sakai LY: Latent transforming growth factor beta-binding protein 1 interacts with fibrillin and is a microfibril-associated protein. J Biol Chem. 278:2750–2757. 2003. View Article : Google Scholar

17 

Rock MJ, Cain SA, Freeman LJ, Morgan A, Mellody K, Marson A, Shuttleworth CA, Weiss AS and Kielty CM: Molecular basis of elastic fiber formation. Critical interactions and a tropoelastin-fibrillin-1 cross-link. J Biol Chem. 279:23748–23758. 2004. View Article : Google Scholar : PubMed/NCBI

18 

Robertson IB, Horiguchi M, Zilberberg L, Dabovic B, Hadjiolova K and Rifkin DB: Latent TGF-β-binding proteins. Matrix Biol. 47:44–53. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Jovanovic J, Takagi J, Choulier L, Abrescia NG, Stuart DI, van der Merwe PA, Mardon HJ and Handford PA: alphaVbeta6 is a novel receptor for human fibrillin-1. Comparative studies of molecular determinants underlying integrin-rgd affinity and specificity. J Biol Chem. 282:6743–6751. 2007. View Article : Google Scholar

20 

Jensen SA, Iqbal S, Lowe ED, Redfield C and Handford PA: Structure and interdomain interactions of a hybrid domain: A disulphide-rich module of the fibrillin/LTBP superfamily of matrix proteins. Structure. 17:759–768. 2009. View Article : Google Scholar : PubMed/NCBI

21 

Lönnqvist L, Reinhardt D, Sakai L and Peltonen L: Evidence for furin-type activity-mediated C-terminal processing of profibrillin-1 and interference in the processing by certain mutations. Hum Mol Genet. 7:2039–2044. 1998. View Article : Google Scholar : PubMed/NCBI

22 

Raghunath M, Putnam EA, Ritty T, Hamstra D, Park ES, Tschödrich-Rotter M, Peters R, Rehemtulla A and Milewicz DM: Carboxy-terminal conversion of profibrillin to fibrillin at a basic site by PACE/furin-like activity required for incorporation in the matrix. J Cell Sci. 112:1093–1100. 1999.PubMed/NCBI

23 

Trask TM, Ritty TM, Broekelmann T, Tisdale C and Mecham RP: N-terminal domains of fibrillin 1 and fibrillin 2 direct the formation of homodimers: A possible first step in microfibril assembly. Biochem J. 340:693–701. 1999. View Article : Google Scholar : PubMed/NCBI

24 

Zhang H, Apfelroth SD, Hu W, Davis EC, Sanguineti C, Bonadio J, Mecham RP and Ramirez F: Structure and expression of fibrillin-2, a novel microfibrillar component preferentially located in elastic matrices. J Cell Biol. 124:855–863. 1994. View Article : Google Scholar : PubMed/NCBI

25 

Wallis DD, Putnam EA, Cretoiu JS, Carmical SG, Cao SN, Thomas G and Milewicz DM: Profibrillin-1 maturation by human dermal fibroblasts: Proteolytic processing and molecular chaperones. J Cell Biochem. 90:641–652. 2003. View Article : Google Scholar : PubMed/NCBI

26 

Reinhardt DP, Keene DR, Corson GM, Pöschl E, Bächinger HP, Gambee JE and Sakai LY: Fibrillin-1: Organization in microfibrils and structural properties. J Mol Biol. 258:104–116. 1996. View Article : Google Scholar : PubMed/NCBI

27 

Baldock C, Siegler V, Bax DV, Cain SA, Mellody KT, Marson A, Haston JL, Berry R, Wang MC, Grossmann JG, et al: Nanostructure of fibrillin-1 reveals compact conformation of EGF arrays and mechanism for extensibility. Proc Natl Acad Sci USA. 103:11922–11927. 2006. View Article : Google Scholar : PubMed/NCBI

28 

Kuo CL, Isogai Z, Keene DR, Hazeki N, Ono RN, Sengle G, Bächinger HP and Sakai LY: Effects of fibrillin-1 degradation on microfibril ultrastructure. J Biol Chem. 282:4007–4020. 2007. View Article : Google Scholar

29 

Qian RQ and Glanville RW: Alignment of fibrillin molecules in elastic microfibrils is defined by transglutaminase-derived cross-links. Biochemistry. 36:15841–15847. 1997. View Article : Google Scholar

30 

Keene DR, Maddox BK, Kuo HJ, Sakai LY and Glanville RW: Extraction of extendable beaded structures and their identification as fibrillin-containing extracellular matrix microfibrils. J Histochem Cytochem. 39:441–449. 1991. View Article : Google Scholar : PubMed/NCBI

31 

Kielty CM and Shuttleworth CA: Fibrillin-containing microfibrils: Structure and function in health and disease. Int J Biochem Cell Biol. 27:747–760. 1995. View Article : Google Scholar : PubMed/NCBI

32 

Kewley MA, Williams G and Steven FS: Studies of elastic tissue formation in the developing bovine ligamentum nuchae. J Pathol. 124:95–101. 1978. View Article : Google Scholar : PubMed/NCBI

33 

Carta L, Pereira L, Arteaga-Solis E, Lee-Arteaga SY, Lenart B, Starcher B, Merkel CA, Sukoyan M, Kerkis A, Hazeki N, et al: Fibrillins 1 and 2 perform partially overlapping functions during aortic development. J Biol Chem. 281:8016–8023. 2006. View Article : Google Scholar : PubMed/NCBI

34 

Yuan X, Werner JM, Lack J, Knott V, Handford PA, Campbell ID and Downing AK: Effects of the N2144S mutation on backbone dynamics of a TB-cbEGF domain pair from human fibrillin-1. J Mol Biol. 316:113–125. 2002. View Article : Google Scholar : PubMed/NCBI

35 

Yadin DA, Robertson IB, McNaught-Davis J, Evans P, Stoddart D, Handford PA, Jensen SA and Redfield C: Structure of the fibrillin-1 N-terminal domains suggests that heparan sulfate regulates the early stages of microfibril assembly. Structure. 21:1743–1756. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Sabatier L, Chen D, Fagotto-Kaufmann C, Hubmacher D, McKee MD, Annis DS, Mosher DF and Reinhardt DP: Fibrillin assembly requires fibronectin. Mol Biol Cell. 20:846–858. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Kinsey R, Williamson MR, Chaudhry S, Mellody KT, McGovern A, Takahashi S, Shuttleworth CA and Kielty CM: Fibrillin-1 microfibril deposition is dependent on fibronectin assembly. J Cell Sci. 121:2696–2704. 2008. View Article : Google Scholar : PubMed/NCBI

38 

Sabatier L, Djokic J, Fagotto-Kaufmann C, Chen M, Annis DS, Mosher DF and Reinhardt DP: Complex contributions of fibronectin to initiation and maturation of microfibrils. Biochem J. 456:283–295. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Baldwin AK, Cain SA, Lennon R, Godwin A, Merry CL and Kielty CM: Epithelial-mesenchymal status influences how cells deposit fibrillin microfibrils. J Cell Sci. 127:158–171. 2014. View Article : Google Scholar :

40 

Gibson MA, Kumaratilake JS and Cleary EG: The protein components of the 12-nanometer microfibrils of elastic and nonelastic tissues. J Biol Chem. 264:4590–4598. 1989.PubMed/NCBI

41 

Trask BC, Trask TM, Broekelmann T and Mecham RP: The microfibrillar proteins MAGP-1 and fibrillin-1 form a ternary complex with the chondroitin sulfate proteoglycan decorin. Mol Biol Cell. 11:1499–1507. 2000. View Article : Google Scholar : PubMed/NCBI

42 

Mecham RP and Gibson MA: The microfibril-associated glycoproteins (MAGPs) and the microfibrillar niche. Matrix Biol. 47:13–33. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Kostka G, Giltay R, Bloch W, Addicks K, Timpl R, Fässler R and Chu ML: Perinatal lethality and endothelial cell abnormalities in several vessel compartments of fibulin-1-deficient mice. Mol Cell Biol. 21:7025–7034. 2001. View Article : Google Scholar : PubMed/NCBI

44 

Freeman LJ, Lomas A, Hodson N, Sherratt MJ, Mellody KT, Weiss AS, Shuttleworth A and Kielty CM: Fibulin-5 interacts with fibrillin-1 molecules and microfibrils. Biochem J. 388:1–5. 2005. View Article : Google Scholar : PubMed/NCBI

45 

Yanagisawa H, Davis EC, Starcher BC, Ouchi T, Yanagisawa M, Richardson JA and Olson EN: Fibulin-5 is an elastin-binding protein essential for elastic fibre development in vivo. Nature. 415:168–171. 2002. View Article : Google Scholar : PubMed/NCBI

46 

Hirai M, Ohbayashi T, Horiguchi M, Okawa K, Hagiwara A, Chien KR, Kita T and Nakamura T: Fibulin-5/DANCE has an elastogenic organizer activity that is abrogated by proteolytic cleavage in vivo. J Cell Biol. 176:1061–1071. 2007. View Article : Google Scholar : PubMed/NCBI

47 

Gabriel LA, Wang LW, Bader H, Ho JC, Majors AK, Hollyfield JG, Traboulsi EI and Apte SS: ADAMTSL4, a secreted glycoprotein widely distributed in the eye, binds fibrillin-1 microfibrils and accelerates microfibril biogenesis. Invest Ophthalmol Vis Sci. 53:461–469. 2012. View Article : Google Scholar :

48 

Tsutsui K, Manabe R, Yamada T, Nakano I, Oguri Y, Keene DR, Sengle G, Sakai LY and Sekiguchi K: ADAMTSL-6 is a novel extracellular matrix protein that binds to fibrillin-1 and promotes fibrillin-1 fibril formation. J Biol Chem. 285:4870–4882. 2010. View Article : Google Scholar :

49 

Kutz WE, Wang LW, Bader HL, Majors AK, Iwata K, Traboulsi EI, Sakai LY, Keene DR and Apte SS: ADAMTS10 protein interacts with fibrillin-1 and promotes its deposition in extracellular matrix of cultured fibroblasts. J Biol Chem. 286:17156–17167. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Hubmacher D and Apte SS: ADAMTS proteins as modulators of microfibril formation and function. Matrix Biol. 47:34–43. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Iozzo RV: Basement membrane proteoglycans: From cellar to ceiling. Nat Rev Mol Cell Biol. 6:646–656. 2005. View Article : Google Scholar : PubMed/NCBI

52 

Murdoch AD, Liu B, Schwarting R, Tuan RS and Iozzo RV: Widespread expression of perlecan proteoglycan in basement membranes and extracellular matrices of human tissues as detected by a novel monoclonal antibody against domain III and by in situ hybridization. J Histochem Cytochem. 42:239–249. 1994. View Article : Google Scholar : PubMed/NCBI

53 

Reinboth B, Hanssen E, Cleary EG and Gibson MA: Molecular interactions of biglycan and decorin with elastic fiber components: Biglycan forms a ternary complex with tropoelastin and microfibril-associated glycoprotein 1. J Biol Chem. 277:3950–3957. 2002. View Article : Google Scholar

54 

Raghunath M, Superti-Furga A, Godfrey M and Steinmann B: Decreased extracellular deposition of fibrillin and decorin in neonatal Marfan syndrome fibroblasts. Hum Genet. 90:511–515. 1993. View Article : Google Scholar : PubMed/NCBI

55 

Superti-Furga A, Raghunath M and Willems PJ: Deficiencies of fibrillin and decorin in fibroblast cultures of a patient with neonatal Marfan syndrome. J Med Genet. 29:875–878. 1992. View Article : Google Scholar : PubMed/NCBI

56 

Hayes AJ, Lord MS, Smith SM, Smith MM, Whitelock JM, Weiss AS and Melrose J: Colocalization in vivo and association in vitro of perlecan and elastin. Histochem Cell Biol. 136:437–454. 2011. View Article : Google Scholar : PubMed/NCBI

57 

Tiedemann K, Sasaki T, Gustafsson E, Göhring W, Bätge B, Notbohm H, Timpl R, Wedel T, Schlötzer-Schrehardt U and Reinhardt DP: Microfibrils at basement membrane zones interact with perlecan via fibrillin-1. J Biol Chem. 280:11404–11412. 2005. View Article : Google Scholar : PubMed/NCBI

58 

Whitelock JM, Melrose J and Iozzo RV: Diverse cell signaling events modulated by perlecan. Biochemistry. 47:11174–11183. 2008. View Article : Google Scholar : PubMed/NCBI

59 

Kerever A, Mercier F, Nonaka R, de Vega S, Oda Y, Zalc B, Okada Y, Hattori N, Yamada Y and Arikawa-Hirasawa E: Perlecan is required for FGF-2 signaling in the neural stem cell niche. Stem Cell Res. 12:492–505. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Thisse B and Thisse C: Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev Biol. 287:390–402. 2005. View Article : Google Scholar : PubMed/NCBI

61 

Murasawa Y, Watanabe K, Yoneda M, Zako M, Kimata K, Sakai LY and Isogai Z: Homotypic versican G1 domain interactions enhance hyaluronan incorporation into fibrillin microfibrils. J Biol Chem. 288:29170–29181. 2013. View Article : Google Scholar : PubMed/NCBI

62 

Wight TN and Merrilees MJ: Proteoglycans in atherosclerosis and restenosis: Key roles for versican. Circ Res. 94:1158–1167. 2004. View Article : Google Scholar : PubMed/NCBI

63 

Wu YJ, La Pierre DP, Wu J, Yee AJ and Yang BB: The interaction of versican with its binding partners. Cell Res. 15:483–494. 2005. View Article : Google Scholar : PubMed/NCBI

64 

Zheng PS, Vais D, Lapierre D, Liang YY, Lee V, Yang BL and Yang BB: PG-M/versican binds to P-selectin glycoprotein ligand-1 and mediates leukocyte aggregation. J Cell Sci. 117:5887–5895. 2004. View Article : Google Scholar : PubMed/NCBI

65 

Grässel S, Unsöld C, Schäcke H, Bruckner-Tuderman L and Bruckner P: Collagen XVI is expressed by human dermal fibroblasts and keratinocytes and is associated with the microfibrillar apparatus in the upper papillary dermis. Matrix Biol. 18:309–317. 1999. View Article : Google Scholar : PubMed/NCBI

66 

Hubert T, Grimal S, Ratzinger S, Mechaly I, Grassel S and Fichard-Carroll A: Collagen XVI is a neural component of the developing and regenerating dorsal root ganglia extracellular matrix. Matrix Biol. 26:206–210. 2007. View Article : Google Scholar

67 

Ono RN, Sengle G, Charbonneau NL, Carlberg V, Bächinger HP, Sasaki T, Lee-Arteaga S, Zilberberg L, Rifkin DB, Ramirez F, et al: Latent transforming growth factor beta-binding proteins and fibulins compete for fibrillin-1 and exhibit exquisite specificities in binding sites. J Biol Chem. 284:16872–16881. 2009. View Article : Google Scholar : PubMed/NCBI

68 

Dallas SL, Sivakumar P, Jones CJ, Chen Q, Peters DM, Mosher DF, Humphries MJ and Kielty CM: Fibronectin regulates latent transforming growth factor-beta (TGF beta) by controlling matrix assembly of latent TGF-beta binding protein-1. J Biol Chem. 280:18871–18880. 2005. View Article : Google Scholar : PubMed/NCBI

69 

Fontana L, Chen Y, Prijatelj P, Sakai T, Fässler R, Sakai LY and Rifkin DB: Fibronectin is required for integrin alphavbeta6-mediated activation of latent TGF-beta complexes containing LTBP-1. FASEB J. 19:1798–1808. 2005. View Article : Google Scholar : PubMed/NCBI

70 

Kantola AK, Keski-Oja J and Koli K: Fibronectin and heparin binding domains of latent TGF-beta binding protein (LTBP)-4 mediate matrix targeting and cell adhesion. Exp Cell Res. 314:2488–2500. 2008. View Article : Google Scholar : PubMed/NCBI

71 

Saharinen J, Hyytiäinen M, Taipale J and Keski-Oja J: Latent transforming growth factor-beta binding proteins (LTBPs)-structural extracellular matrix proteins for targeting TGF-beta action. Cytokine Growth Factor Rev. 10:99–117. 1999. View Article : Google Scholar

72 

Gregory KE, Ono RN, Charbonneau NL, Kuo CL, Keene DR, Bachinger HP and Sakai LY: The prodomain of BMP-7 targets the BMP-7 complex to the extracellular matrix. J Biol Chem. 280:27970–27980. 2005. View Article : Google Scholar : PubMed/NCBI

73 

Sengle G, Charbonneau NL, Ono RN, Sasaki T, Alvarez J, Keene DR, Bächinger HP and Sakai LY: Targeting of bone morphogenetic protein growth factor complexes to fibrillin. J Biol Chem. 283:13874–13888. 2008. View Article : Google Scholar : PubMed/NCBI

74 

Sengle G, Tsutsui K, Keene DR, Tufa SF, Carlson EJ, Charbonneau NL, Ono RN, Sasaki T, Wirtz MK, Samples JR, et al: Microenvironmental regulation by fibrillin-1. PLoS Genet. 8:e10024252012. View Article : Google Scholar : PubMed/NCBI

75 

Wohl AP, Troilo H, Collins RF, Baldock C and Sengle G: Extracellular regulation of bone morphogenetic protein activity by the microfibril component fibrillin-1. J Biol Chem. 291:12732–12746. 2016. View Article : Google Scholar : PubMed/NCBI

76 

Charbonneau NL, Ono RN, Corson GM, Keene DR and Sakai LY: Fine tuning of growth factor signals depends on fibrillin microfibril networks. Birth Defects Res Part C Embryo Today. 72:37–50. 2004. View Article : Google Scholar

77 

Massagué J and Chen YG: Controlling TGF-beta signaling. Genes Dev. 14:627–644. 2000.PubMed/NCBI

78 

Lawrence DA, Pircher R, Krycève-Martinerie C and Jullien P: Normal embryo fibroblasts release transforming growth factors in a latent form. J Cell Physiol. 121:184–188. 1984. View Article : Google Scholar : PubMed/NCBI

79 

Shi M, Zhu J, Wang R, Chen X, Mi L, Walz T and Springer TA: Latent TGF-β structure and activation. Nature. 474:343–349. 2011. View Article : Google Scholar : PubMed/NCBI

80 

Zeyer KA and Reinhardt DP: Fibrillin-containing microfibrils are key signal relay stations for cell function. J Cell Commun Signal. 9:309–325. 2015. View Article : Google Scholar : PubMed/NCBI

81 

Dubois CM, Laprise MH, Blanchette F, Gentry LE and Leduc R: Processing of transforming growth factor beta 1 precursor by human furin convertase. J Biol Chem. 270:10618–10624. 1995. View Article : Google Scholar : PubMed/NCBI

82 

Nunes I, Munger J, Harpel JG, Nagano Y, Shapiro R, Gleizes PE and Rifkin DB: Structure and activation of the large latent transforming growth factor-Beta complex. J Am Optom Assoc. 69:643–648. 1998.PubMed/NCBI

83 

Annes JP, Munger JS and Rifkin DB: Making sense of latent TGFbeta activation. J Cell Sci. 116:217–224. 2003. View Article : Google Scholar

84 

Hinz B: It has to be the αv: Myofibroblast integrins activate latent TGF-β1. Nat Med. 19:1567–1568. 2013. View Article : Google Scholar : PubMed/NCBI

85 

Sato Y and Rifkin DB: Inhibition of endothelial cell movement by pericytes and smooth muscle cells: Activation of a latent transforming growth factor-beta 1-like molecule by plasmin during co-culture. J Cell Biol. 109:309–315. 1989. View Article : Google Scholar : PubMed/NCBI

86 

Yu Q and Stamenkovic I: Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev. 14:163–176. 2000.PubMed/NCBI

87 

Jenkins G: The role of proteases in transforming growth factor-beta activation. Int J Biochem Cell Biol. 40:1068–1078. 2008. View Article : Google Scholar : PubMed/NCBI

88 

Lyons RM, Gentry LE, Purchio AF and Moses HL: Mechanism of activation of latent recombinant transforming growth factor beta 1 by plasmin. J Cell Biol. 110:1361–1367. 1990. View Article : Google Scholar : PubMed/NCBI

89 

Schultz-Cherry S and Murphy-Ullrich JE: Thrombospondin causes activation of latent transforming growth factor-beta secreted by endothelial cells by a novel mechanism. J Cell Biol. 122:923–932. 1993. View Article : Google Scholar : PubMed/NCBI

90 

Barcellos-Hoff MH, Derynck R, Tsang ML and Weatherbee JA: Transforming growth factor-beta activation in irradiated murine mammary gland. J Clin Invest. 93:892–899. 1994. View Article : Google Scholar : PubMed/NCBI

91 

Schmierer B and Hill CS: TGFbeta-SMAD signal transduction: Molecular specificity and functional flexibility. Nat Rev Mol Cell Biol. 8:970–982. 2007. View Article : Google Scholar : PubMed/NCBI

92 

Chen X and Xu L: Mechanism and regulation of nucleocytoplasmic trafficking of smad. Cell Biosci. 1:402011. View Article : Google Scholar : PubMed/NCBI

93 

Tang LY and Zhang YE: Non-degradative ubiquitination in Smad-dependent TGF-β signaling. Cell Biosci. 1:432011. View Article : Google Scholar

94 

Feng XH and Derynck R: Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol. 21:659–693. 2005. View Article : Google Scholar : PubMed/NCBI

95 

Massagué J, Seoane J and Wotton D: Smad transcription factors. Genes Dev. 19:2783–2810. 2005. View Article : Google Scholar : PubMed/NCBI

96 

Verrecchia F, Chu ML and Mauviel A: Identification of novel TGF-beta/Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J Biol Chem. 276:17058–17062. 2001. View Article : Google Scholar : PubMed/NCBI

97 

Sengle G, Ono RN, Sasaki T and Sakai LY: Prodomains of transforming growth factor beta (TGFbeta) superfamily members specify different functions: Biglycan forms a ternary complex with tropoelastin and microfibril-associated glycoprotein 1. J Biol Chem. 286:5087–5099. 2011. View Article : Google Scholar

98 

Pereira L, D'Alessio M, Ramirez F, Lynch JR, Sykes B, Pangilinan T and Bonadio J: Genomic organization of the sequence coding for fibrillin, the defective gene product in Marfan syndrome. Hum Mol Genet. 2:17621993. View Article : Google Scholar : PubMed/NCBI

99 

Bax DV, Bernard SE, Lomas A, Morgan A, Humphries J, Shuttleworth CA, Humphries MJ and Kielty CM: Cell adhesion to fibrillin-1 molecules and microfibrils is mediated by alpha 5 beta 1 and alpha v beta 3 integrins. J Biol Chem. 278:34605–34616. 2003. View Article : Google Scholar : PubMed/NCBI

100 

Marek I, Volkert G, Hilgers KF, Bieritz B, Rascher W, Reinhardt DP and Hartner A: Fibrillin-1 and alpha8 integrin are co-expressed in the glomerulus and interact to convey adhesion of mesangial cells. Cell Adh Migr. 8:389–395. 2014. View Article : Google Scholar : PubMed/NCBI

101 

Lee SS, Knott V, Jovanović J, Harlos K, Grimes JM, Choulier L, Mardon HJ, Stuart DI and Handford PA: Structure of the integrin binding fragment from fibrillin-1 gives new insights into microfibril organization. Structure. 12:717–729. 2004. View Article : Google Scholar : PubMed/NCBI

102 

Bouzeghrane F, Reinhardt DP, Reudelhuber TL and Thibault G: Enhanced expression of fibrillin-1, a constituent of the myocardial extracellular matrix in fibrosis. Am J Physiol Heart Circ Physiol. 289:H982–H991. 2005. View Article : Google Scholar : PubMed/NCBI

103 

Bax DV, Mahalingam Y, Cain S, Mellody K, Freeman L, Younger K, Shuttleworth CA, Humphries MJ, Couchman JR and Kielty CM: Cell adhesion to fibrillin-1: Identification of an Arg-Gly-Asp-dependent synergy region and a heparin-binding site that regulates focal adhesion formation. J Cell Sci. 120:1383–1392. 2007. View Article : Google Scholar : PubMed/NCBI

104 

Tiedemann K, Bätge B, Müller PK and Reinhardt DP: Interactions of fibrillin-1 with heparin/heparan sulfate, implications for microfibrillar assembly. J Biol Chem. 276:36035–36042. 2001. View Article : Google Scholar : PubMed/NCBI

105 

Cain SA, Baldwin AK, Mahalingam Y, Raynal B, Jowitt TA, Shuttleworth CA, Couchman JR and Kielty CM: Heparan sulfate regulates fibrillin-1 N- and C-terminal interactions. J Biol Chem. 283:27017–27027. 2008. View Article : Google Scholar : PubMed/NCBI

106 

Alexopoulou AN, Multhaupt HA and Couchman JR: Syndecans in wound healing, inflammation and vascular biology. Int J Biochem Cell Biol. 39:505–528. 2007. View Article : Google Scholar

107 

Loeys BL, Gerber EE, Riegert-Johnson D, Iqbal S, Whiteman P, McConnell V, Chillakuri CR, Macaya D, Coucke PJ, De Paepe A, et al: Mutations in fibrillin-1 cause congenital scleroderma: Stiff skin syndrome. Sci Transl Med. 2:23ra202010. View Article : Google Scholar : PubMed/NCBI

108 

Zou Y, Akazawa H, Qin Y, Sano M, Takano H, Minamino T, Makita N, Iwanaga K, Zhu W, Kudoh S, et al: Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol. 6:499–506. 2004. View Article : Google Scholar : PubMed/NCBI

109 

Cook JR, Carta L, Bénard L, Chemaly ER, Chiu E, Rao SK, Hampton TG, Yurchenco P; GenTAC Registry Consortium; Costa KD, et al: Abnormal muscle mechanosignaling triggers cardiomyopathy in mice with Marfan syndrome. J Clin Invest. 124:1329–1339. 2014.PubMed/NCBI

110 

Weber E, Rossi A, Solito R, Sacchi G, Agliano' M and Gerli R: Focal adhesion molecules expression and fibrillin deposition by lymphatic and blood vessel endothelial cells in culture. Microvasc Res. 64:47–55. 2002. View Article : Google Scholar : PubMed/NCBI

111 

Dietz HC, Cutting CR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, Puffenberger EG, Hamosh A, Nanthakumar EJ, Curristin SM, et al: Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 352:337–339. 1991. View Article : Google Scholar : PubMed/NCBI

112 

Collod-Béroud G, Le Bourdelles S, Ades L, Ala-Kokko L, Booms P, Boxer M, Child A, Comeglio P, De Paepe A, Hyland JC, et al: Update of the UMD-FBN1 mutation database and creation of an FBN1 polymorphism database. Hum Mutat. 22:199–208. 2003. View Article : Google Scholar : PubMed/NCBI

113 

Ramirez F and Dietz HC: Marfan syndrome: From molecular pathogenesis to clinical treatment. Curr Opin Genet Dev. 17:252–258. 2007. View Article : Google Scholar : PubMed/NCBI

114 

Sakai LY, Keene DR, Renard M and De Backer J: FBN1: The disease-causing gene for Marfan syndrome and other genetic disorders. Gene. 591:279–291. 2016. View Article : Google Scholar : PubMed/NCBI

115 

Faivre L, Collod-Beroud G, Loeys BL, Child A, Binquet C, Gautier E, Callewaert B, Arbustini E, Mayer K, Arslan-Kirchner M, et al: Effect of mutation type and location on clinical outcome in 1,013 probands with marfan syndrome or related phenotypes and fbn1 mutations: An international study. Am J Hum Genet. 81:454–466. 2007. View Article : Google Scholar : PubMed/NCBI

116 

Booms P, Cisler J, Mathews KR, Godfrey M, Tiecke F, Kaufmann UC, Vetter U, Hagemeier C and Robinson PN: Novel exon skipping mutation in the fibrillin-1 gene: Two 'hot spots' for the neonatal Marfan syndrome. Clin Genet. 55:110–117. 1999. View Article : Google Scholar : PubMed/NCBI

117 

Morse RP, Rockenmacher S, Pyeritz RE, Sanders SP, Bieber FR, Lin A, MacLeod P, Hall B and Graham JM Jr: Diagnosis and management of infantile marfan syndrome. Pediatrics. 86:888–895. 1990.PubMed/NCBI

118 

Loeys BL, Dietz HC, Braverman AC, Callewaert BL, De Backer J, Devereux RB, Hilhorst-Hofstee Y, Jondeau G, Faivre L, Milewicz DM, et al: The revised Ghent nosology for the Marfan syndrome. J Med Genet. 47:476–485. 2010. View Article : Google Scholar : PubMed/NCBI

119 

Dietz HC and Pyeritz RE: Mutations in the human gene for fibrillin-1 (FBN1) in the Marfan syndrome and related disorders. Hum Mol Genet. 4(Spec No): 1799–1809. 1995. View Article : Google Scholar : PubMed/NCBI

120 

Francke U, Berg MA, Tynan K, Brenn T, Liu W, Aoyama T, Gasner C, Miller DC and Furthmayr H: A Gly1127Ser mutation in an EGF-like domain of the fibrillin-1 gene is a risk factor for ascending aortic aneurysm and dissection. Am J Hum Genet. 56:1287–1296. 1995.PubMed/NCBI

121 

Yamawaki T, Nagaoka K, Morishige K, Sadamatsu K, Tashiro H, Yasunaga H, Morisaki H and Morisaki T: Familial thoracic aortic aneurysm and dissection associated with Marfan-related gene mutations: Case report of a family with two gene mutations. Intern Med. 48:555–558. 2009. View Article : Google Scholar : PubMed/NCBI

122 

Sood S, Eldadah ZA, Krause WL, McIntosh I and Dietz HC: Mutation in fibrillin-1 and the Marfanoid-craniosynostosis (Shprintzen-Goldberg) syndrome. Nat Genet. 12:209–211. 1996. View Article : Google Scholar : PubMed/NCBI

123 

Kainulainen K, Karttunen L, Puhakka L, Sakai L and Peltonen L: Mutations in the fibrillin gene responsible for dominant ectopia lentis and neonatal Marfan syndrome. Nat Genet. 6:64–69. 1994. View Article : Google Scholar : PubMed/NCBI

124 

Le Goff C, Mahaut C, Wang LW, Allali S, Abhyankar A, Jensen S, Zylberberg L, Collod-Beroud G, Bonnet D, Alanay Y, et al: Mutations in the TGFβ Binding-protein-like domain 5 of FBN1 are responsible for acromicric and geleophysic dysplasias. Am J Hum Genet. 89:7–14. 2011. View Article : Google Scholar : PubMed/NCBI

125 

Faivre L, Dollfus H, Lyonnet S, Alembik Y, Mégarbané A, Samples J, Gorlin RJ, Alswaid A, Feingold J, Le Merrer M, et al: Clinical homogeneity and genetic heterogeneity in Weill-Marchesani syndrome. Am J Med Genet A. 123A:204–207. 2003. View Article : Google Scholar : PubMed/NCBI

126 

Cecchi A, Ogawa N, Martinez HR, Carlson A, Fan Y, Penny DJ, Guo DC, Eisenberg S, Safi H, Estrera A, et al: Missense mutations in FBN1 exons 41 and 42 cause Weill-Marchesani syndrome with thoracic aortic disease and Marfan syndrome. Am J Med Genet Part A. 161A:2305–2310. 2013. View Article : Google Scholar : PubMed/NCBI

127 

Faivre L, Gorlin RJ, Wirtz MK, Godfrey M, Dagoneau N, Samples JR, Le Merrer M, Collod-Beroud G, Boileau C, Munnich A and Cormier-Daire V: In frame fibrillin-1 gene deletion in autosomal dominant Weill-Marchesani syndrome. J Med Genet. 40:34–36. 2003. View Article : Google Scholar : PubMed/NCBI

128 

Dagoneau N, Benoist-Lasselin C, Huber C, Faivre L, Mégarbané A, Alswaid A, Dollfus H, Alembik Y, Munnich A, Legeai-Mallet L and Cormier-Daire V: ADAMTS10 mutations in autosomal recessive Weill-Marchesani syndrome. Am J Hum Genet. 75:801–806. 2004. View Article : Google Scholar : PubMed/NCBI

129 

Gerber EE, Gallo EM, Fontana SC, Davis EC, Wigley FM, Huso DL and Dietz HC: Integrin-modulating therapy prevents fibrosis and autoimmunity in mouse models of scleroderma. Nature. 503:126–130. 2013. View Article : Google Scholar : PubMed/NCBI

130 

Hollister DW, Godfrey M, Sakai LY and Pyeritz RE: Immunohistologic abnormalities of the Microfibrillar-fiber system in the marfan syndrome. N Engl J Med. 323:152–159. 1990. View Article : Google Scholar : PubMed/NCBI

131 

Eldadah ZA, Brenn T, Furthmayr H and Dietz HC: Expression of a mutant human fibrillin allele upon a normal human or murine genetic background recapitulates a Marfan cellular phenotype. J Clin Invest. 95:874–880. 1995. View Article : Google Scholar : PubMed/NCBI

132 

Godfrey M, Raghunath M, Cisler J, Bevins CL, DePaepe A, Di Rocco M, Gregoritch J, Imaizumi K, Kaplan P, Kuroki Y, et al: Abnormal morphology of fibrillin microfibrils in fibroblast cultures from patients with neonatal Marfan syndrome. Am J Pathol. 146:1414–1421. 1995.PubMed/NCBI

133 

Charbonneau NL, Carlson EJ, Tufa S, Sengle G, Manalo EC, Carlberg VM, Ramirez F, Keene DR and Sakai LY: In vivo studies of mutant Fibrillin-1 microfibrils. J Biol Chem. 285:24943–24955. 2010. View Article : Google Scholar : PubMed/NCBI

134 

Aoyama T, Tynan K, Dietz HC, Francke U and Furthmayr H: Missense mutations impair intracellular processing of fibrillin and microfibril assembly in Marfan syndrome. Hum Mol Genet. 2:2135–2140. 1993. View Article : Google Scholar : PubMed/NCBI

135 

Judge DP, Biery NJ, Keene DR, Geubtner J, Myers L, Huso DL, Sakai LY and Dietz HC: Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. J Clin Invest. 114:172–181. 2004. View Article : Google Scholar : PubMed/NCBI

136 

Arbustini E, Grasso M, Ansaldi S, Malattia C, Pilotto A, Porcu E, Disabella E, Marziliano N, Pisani A, Lanzarini L, et al: Identification of sixty-two novel and twelve known FBN1 mutations in eighty-one unrelated probands with Marfan syndrome and other fibrillinopathies. Hum Mutat. 26:4942005. View Article : Google Scholar : PubMed/NCBI

137 

Reinhardt DP, Ono RN, Notbohm H, Müller PK, Bächinger HP and Sakai LY: Mutations in calcium-binding epidermal growth factor modules render fibrillin-1 susceptible to proteolysis. A potential disease-causing mechanism in Marfan syndrome. J Biol Chem. 275:12339–12345. 2000. View Article : Google Scholar : PubMed/NCBI

138 

Booms P, Tiecke F, Rosenberg T, Hagemeier C and Robinson PN: Differential effect of FBN1 mutations on in vitro proteolysis of recombinant fibrillin-1 fragments. Hum Genet. 107:216–224. 2000. View Article : Google Scholar : PubMed/NCBI

139 

Hindson VJ, Ashworth JL, Rock MJ, Cunliffe S, Shuttleworth CA and Kielty CM: Fibrillin degradation by matrix metalloproteinases: Identification of amino- and carboxy-terminal cleavage sites. FEBS Lett. 452:195–198. 1999. View Article : Google Scholar : PubMed/NCBI

140 

Ikonomidis JS, Jones JA, Barbour JR, Stroud RE, Clark LL, Kaplan BS, Zeeshan A, Bavaria JE, Gorman JH III, Spinale FG and Gorman RC: Expression of matrix metalloproteinases and endogenous inhibitors within ascending aortic aneurysms of patients with Marfan syndrome. Circulation. 114(Suppl 1): I365–I370. 2006. View Article : Google Scholar : PubMed/NCBI

141 

Segura AM, Luna RE, Horiba K, Stetler-Stevenson WG, McAllister HA Jr, Willerson JT and Ferrans VJ: Immunohistochemistry of matrix metalloproteinases and their inhibitors in thoracic aortic aneurysms and aortic valves of patients with Marfan's syndrome. Circulation. 98(Suppl 19): II331–II338. 1998.PubMed/NCBI

142 

Fleischer KJ, Nousari HC, Anhalt GJ, Stone CD and Laschinger JC: Immunohistochemical abnormalities of fibrillin in cardiovascular tissues in Marfan's syndrome. Ann Thorac Surg. 63:1012–1017. 1997. View Article : Google Scholar : PubMed/NCBI

143 

Granata A, Serrano F, Bernard WG, McNamara M, Low L, Sastry P and Sinha S: An iPSC-derived vascular model of Marfan syndrome identifies key mediators of smooth muscle cell death. Nat Genet. 49:97–109. 2017. View Article : Google Scholar

144 

Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, Ramirez F, Sakai LY and Dietz HC: Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet. 33:407–411. 2003. View Article : Google Scholar : PubMed/NCBI

145 

Ng CM, Cheng A, Myers LA, Martinez-Murillo F, Jie C, Bedja D, Gabrielson KL, Hausladen JM, Mecham RP, Judge DP and Dietz HC: TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J Clin Invest. 114:1586–1592. 2004. View Article : Google Scholar : PubMed/NCBI

146 

Franken R, den Hartog AW, de Waard V, Engele L, Radonic T, Lutter R, Timmermans J, Scholte AJ, van den Berg MP, Zwinderman AH, et al: Circulating transforming growth factor-β as a prognostic biomarker in Marfan syndrome. Int J Cardiol. 168:2441–2446. 2013. View Article : Google Scholar : PubMed/NCBI

147 

Pattanaik D, Brown M and Postlethwaite AE: Vascular involvement in systemic sclerosis (scleroderma). J Inflamm Res. 4:105–125. 2011.PubMed/NCBI

148 

Siracusa LD, McGrath R, Ma Q, Moskow JJ, Manne J, Christner PJ, Buchberg AM and Jimenez SA: A tandem duplication within the fibrillin 1 gene is associated with the mouse tight skin mutation. Genome Res. 6:300–313. 1996. View Article : Google Scholar : PubMed/NCBI

149 

Lemaire R, Bayle J and Lafyatis R: Fibrillin in Marfan syndrome and tight skin mice provides new insights into transforming growth factor-beta regulation and systemic sclerosis. Curr Opin Rheumatol. 18:582–587. 2006. View Article : Google Scholar : PubMed/NCBI

150 

Gayraud B, Keene DR, Sakai LY and Ramirez F: New insights into the assembly of extracellular microfibrils from the analysis of the fibrillin 1 mutation in the tight skin mouse. J Cell Biol. 150:667–680. 2000. View Article : Google Scholar : PubMed/NCBI

151 

Kielty CM, Raghunath M, Siracusa LD, Sherratt MJ, Peters R, Shuttleworth CA and Jimenez SA: The tight skin mouse: Demonstration of mutant fibrillin-1 production and assembly into abnormal microfibrils. J Cell Biol. 140:1159–1166. 1998. View Article : Google Scholar : PubMed/NCBI

152 

Saito S, Nishimura H, Brumeanu TD, Casares S, Stan AC, Honjo T and Bona CA: Characterization of mutated protein encoded by partially duplicated fibrillin-1 gene in tight skin (TSK) mice. Mol Immunol. 36:169–176. 1999. View Article : Google Scholar : PubMed/NCBI

153 

Gardi C, Martorana PA, de Santi MM, van Even P and Lungarella G: A biochemical and morphological investigation of the early development of genetic emphysema in tight-skin mice. Exp Mol Pathol. 50:398–410. 1989. View Article : Google Scholar : PubMed/NCBI

154 

Tan FK, Arnett FC, Antohi S, Saito S, Mirarchi A, Spiera H, Sasaki T, Shoichi O, Takeuchi K, Pandey JP, et al: Autoantibodies to the extracellular matrix microfibrillar protein, fibrillin-1, in patients with scleroderma and other connective tissue diseases. J Immunol. 163:1066–1072. 1999.PubMed/NCBI

155 

Siracusa LD, McGrath R, Fisher JK and Jimenez SA: The mouse tight skin (Tsk) phenotype is not dependent on the presence of mature T and B lymphocytes. Mamm Genome. 9:907–909. 1998. View Article : Google Scholar : PubMed/NCBI

156 

Dodig TD, Mack KT, Cassarino DF and Clark SH: Development of the tight-skin phenotype in immune-deficient mice. Arthritis Rheum. 44:723–727. 2001. View Article : Google Scholar : PubMed/NCBI

157 

Kissin EY, Lemaire R, Korn JH and Lafyatis R: Transforming growth factor beta induces fibroblast fibrillin-1 matrix formation. Arthritis Rheum. 46:3000–3009. 2002. View Article : Google Scholar : PubMed/NCBI

158 

Podolsky DK: Inflammatory bowel disease. N Engl J Med. 347:417–429. 2002. View Article : Google Scholar : PubMed/NCBI

159 

Shimshoni E, Yablecovitch D, Baram L, Dotan I and Sagi I: ECM remodelling in IBD: Innocent bystander or partner in crime? The emerging role of extracellular molecular events in sustaining intestinal inflammation. Gut. 64:367–372. 2015. View Article : Google Scholar :

160 

Stumpf M, Cao W, Klinge U, Klosterhalfen B, Junge K, Krones CJ and Schumpelick V: Reduced expression of collagen type I and increased expression of matrix metalloproteinases 1 in patients with Crohn's disease. J Invest Surg. 18:33–38. 2005. View Article : Google Scholar : PubMed/NCBI

161 

Stumpf M, Cao W, Klinge U, Klosterhalfen B, Kasperk R and Schumpelick V: Increased distribution of collagen type III and reduced expression of matrix metalloproteinase 1 in patients with diverticular disease. Int J Colorectal Dis. 16:271–275. 2001. View Article : Google Scholar : PubMed/NCBI

162 

Stallmach A, Schuppan D, Riese HH, Matthes H and Riecken EO: Increased collagen type III synthesis by fibroblasts isolated from strictures of patients with Crohn's disease. Gastroenterology. 102:1920–1929. 1992. View Article : Google Scholar : PubMed/NCBI

163 

Graham MF, Diegelmann RF, Elson CO, Lindblad WJ, Gotschalk N, Gay S and Gay R: Collagen content and types in the intestinal strictures of Crohn's disease. Gastroenterology. 94:257–265. 1988. View Article : Google Scholar : PubMed/NCBI

164 

Ratzinger S, Eble JA, Pasoldt A, Opolka A, Rogler G, Grifka J and Grässel S: Collagen XVI induces formation of focal contacts on intestinal myofibroblasts isolated from the normal and inflamed intestinal tract. Matrix Biol. 29:177–193. 2010. View Article : Google Scholar

165 

Koutroubakis IE, Petinaki E, Dimoulios P, Vardas E, Roussomoustakaki M, Maniatis AN and Kouroumalis EA: Serum laminin and collagen IV in inflammatory bowel disease. J Clin Pathol. 56:817–820. 2003. View Article : Google Scholar : PubMed/NCBI

166 

Spenlé C, Lefebvre O, Lacroute J, Méchine-Neuville A, Barreau F, Blottière HM, Duclos B, Arnold C, Hussenet T, Hemmerlé J, et al: The laminin response in inflammatory bowel disease: Protection or malignancy? PLoS One. 9:e1113362014. View Article : Google Scholar : PubMed/NCBI

167 

de la Motte CA: Hyaluronan in intestinal homeostasis and inflammation: Implications for fibrosis. Am J Physiol Gastrointest Liver Physiol. 301:G945–G949. 2011. View Article : Google Scholar : PubMed/NCBI

168 

Sallam H, McNearney TA and Chen JD: Systematic review: Pathophysiology and management of gastrointestinal dysmotility in systemic sclerosis (scleroderma). Aliment Pharmacol Ther. 23:691–712. 2006. View Article : Google Scholar : PubMed/NCBI

169 

Sjogren RW: Gastrointestinal motility disorders in scleroderma. Arthritis Rheum. 37:1265–1282. 1994. View Article : Google Scholar : PubMed/NCBI

170 

Marie I, Ducrotté P, Denis P, Hellot MF and Levesque H: Outcome of small-bowel motor impairment in systemic sclerosis-a prospective manometric 5-yr follow-up. Rheumatology (Oxford). 46:150–153. 2007. View Article : Google Scholar

171 

Greydanus MP and Camilleri M: Abnormal postcibal antral and small bowel motility due to neuropathy or myopathy in systemic sclerosis. Gastroenterology. 96:110–115. 1989. View Article : Google Scholar : PubMed/NCBI

172 

Iovino P, Valentini G, Ciacci C, De Luca A, Tremolaterra F, Sabbatini F, Tirri E and Mazzacca G: Proximal stomach function in systemic sclerosis: Relationship with autonomic nerve function. Dig Dis Sci. 46:723–730. 2001. View Article : Google Scholar : PubMed/NCBI

173 

Ibba-Manneschi L, Del Rosso A, Pacini S, Tani A, Bechi P and Matucci Cerinic M: Ultrastructural study of the muscle coat of the gastric wall in a case of systemic sclerosis. Ann Rheum Dis. 61:754–756. 2002. View Article : Google Scholar : PubMed/NCBI

174 

Manetti M, Neumann E, Milia AF, Tarner IH, Bechi P, Matucci-Cerinic M, Ibba-Manneschi L and Müller-Ladner U: Severe fibrosis and increased expression of fibrogenic cytokines in the gastric wall of systemic sclerosis patients. Arthritis Rheum. 56:3442–3447. 2007. View Article : Google Scholar : PubMed/NCBI

175 

Pedersen J, Gao C, Egekvist H, Bjerring P, Arendt-Nielsen L, Gregersen H and Drewes AM: Pain and biomechanical responses to distention of the duodenum in patients with systemic sclerosis. Gastroenterology. 124:1230–1239. 2003. View Article : Google Scholar : PubMed/NCBI

176 

Latella G, Di Gregorio J, Flati V, Rieder F and Lawrance IC: Mechanisms of initiation and progression of intestinal fibrosis in IBD. Scand J Gastroenterol. 50:53–65. 2015. View Article : Google Scholar

177 

LeRoy EC, Trojanowska MI and Smith EA: Cytokines and human fibrosis. Eur Cytokine Netw. 1:215–219. 1990.PubMed/NCBI

178 

Babyatsky MW, Rossiter G and Podolsky DK: Expression of transforming growth factors alpha and beta in colonic mucosa in inflammatory bowel disease. Gastroenterology. 110:975–984. 1996. View Article : Google Scholar : PubMed/NCBI

179 

Kulkarni AB and Karlsson S: Transforming growth factor-beta 1 knockout mice. A mutation in one cytokine gene causes a dramatic inflammatory disease. Am J Pathol. 143:3–9. 1993.PubMed/NCBI

180 

Gorelik L and Flavell RA: Transforming growth factor-beta in T-cell biology. Nat Rev Immunol. 2:46–53. 2002. View Article : Google Scholar : PubMed/NCBI

181 

Meijer MJ, Mieremet-Ooms MA, van der Zon AM, van Duijn W, van Hogezand RA, Sier CF, Hommes DW, Lamers CB and Verspaget HW: Increased mucosal matrix metalloproteinase-1, -2, -3 and -9 activity in patients with inflammatory bowel disease and the relation with Crohn's disease phenotype. Dig Liver Dis. 39:733–739. 2007. View Article : Google Scholar : PubMed/NCBI

182 

Lakatos G, Hritz I, Varga MZ, Juhász M, Miheller P, Cierny G, Tulassay Z and Herszényi L: The impact of matrix metalloproteinases and their tissue inhibitors in inflammatory bowel diseases. Dig Dis. 30:289–295. 2012. View Article : Google Scholar : PubMed/NCBI

183 

Rath T, Roderfeld M, Graf J, Wagner S, Vehr AK, Dietrich C, Geier A and Roeb E: Enhanced expression of MMP-7 and MMP-13 in inflammatory bowel disease: A precancerous potential? Inflamm Bowel Dis. 12:1025–1035. 2006. View Article : Google Scholar : PubMed/NCBI

184 

Booms P, Pregla R, Ney A, Barthel F, Reinhardt DP, Pletschacher A, Mundlos S and Robinson PN: RGD-containing fibrillin-1 fragments upregulate matrix metallopro-teinase expression in cell culture: A potential factor in the pathogenesis of the Marfan syndrome. Hum Genet. 116:51–61. 2005. View Article : Google Scholar

185 

Booms P, Ney A, Barthel F, Moroy G, Counsell D, Gille C, Guo G, Pregla R, Mundlos S, Alix AJ and Robinson PN: A fibrillin-1-fragment containing the elastin-binding-protein GxxPG consensus sequence upregulates matrix metallopro-teinase-1: Biochemical and computational analysis. J Mol Cell Cardiol. 40:234–246. 2006. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Schrenk S, Cenzi C, Bertalot T, Conconi MT and Di Liddo R: Structural and functional failure of fibrillin‑1 in human diseases (Review). Int J Mol Med 41: 1213-1223, 2018.
APA
Schrenk, S., Cenzi, C., Bertalot, T., Conconi, M.T., & Di Liddo, R. (2018). Structural and functional failure of fibrillin‑1 in human diseases (Review). International Journal of Molecular Medicine, 41, 1213-1223. https://doi.org/10.3892/ijmm.2017.3343
MLA
Schrenk, S., Cenzi, C., Bertalot, T., Conconi, M. T., Di Liddo, R."Structural and functional failure of fibrillin‑1 in human diseases (Review)". International Journal of Molecular Medicine 41.3 (2018): 1213-1223.
Chicago
Schrenk, S., Cenzi, C., Bertalot, T., Conconi, M. T., Di Liddo, R."Structural and functional failure of fibrillin‑1 in human diseases (Review)". International Journal of Molecular Medicine 41, no. 3 (2018): 1213-1223. https://doi.org/10.3892/ijmm.2017.3343
Copy and paste a formatted citation
x
Spandidos Publications style
Schrenk S, Cenzi C, Bertalot T, Conconi MT and Di Liddo R: Structural and functional failure of fibrillin‑1 in human diseases (Review). Int J Mol Med 41: 1213-1223, 2018.
APA
Schrenk, S., Cenzi, C., Bertalot, T., Conconi, M.T., & Di Liddo, R. (2018). Structural and functional failure of fibrillin‑1 in human diseases (Review). International Journal of Molecular Medicine, 41, 1213-1223. https://doi.org/10.3892/ijmm.2017.3343
MLA
Schrenk, S., Cenzi, C., Bertalot, T., Conconi, M. T., Di Liddo, R."Structural and functional failure of fibrillin‑1 in human diseases (Review)". International Journal of Molecular Medicine 41.3 (2018): 1213-1223.
Chicago
Schrenk, S., Cenzi, C., Bertalot, T., Conconi, M. T., Di Liddo, R."Structural and functional failure of fibrillin‑1 in human diseases (Review)". International Journal of Molecular Medicine 41, no. 3 (2018): 1213-1223. https://doi.org/10.3892/ijmm.2017.3343
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team