You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Biery NJ, Eldadah ZA, Moore CS, Stetten G, Spencer F and Dietz HC: Revised genomic organization of FBN1 and significance for regulated gene expression. Genomics. 56:70–77. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Kainulainen K, Pulkkinen L, Savolainen A, Kaitila I and Peltonen L: Location on chromosome 15 of the gene defect causing Marfan syndrome. N Engl J Med. 323:935–939. 1990. View Article : Google Scholar : PubMed/NCBI | |
|
Robertson I, Jensen S and Handford P: TB domain proteins: Evolutionary insights into the multifaceted roles of fibrillins and LTBPs. Biochem J. 433:263–276. 2011. View Article : Google Scholar | |
|
Corson GM, Chalberg SC, Dietz HC, Charbonneau NL and Sakai LY: Fibrillin binds calcium and is coded by cDNAs that reveal a multidomain structure and alternatively spliced exons at the 5′end. Genomics. 17:476–484. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Maslen CL, Corson GM, Maddox BK, Glanville RW and Sakai LY: Partial sequence of a candidate gene for the Marfan syndrome. Nature. 352:334–337. 1991. View Article : Google Scholar : PubMed/NCBI | |
|
Handford PA, Mayhew M and Brownlee GG: Calcium binding to fibrillin? Nature. 353:3951991. View Article : Google Scholar : PubMed/NCBI | |
|
Werner JM, Knott V, Handford PA, Campbell ID and Downing AK: Backbone dynamics of a cbEGF domain pair in the presence of calcium. J Mol Biol. 296:1065–1078. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Downing AK, Knott V, Werner JM, Cardy CM, Campbell ID and Handford PA: Solution structure of a pair of calcium-binding epidermal growth factor-like domains: Implications for the Marfan syndrome and other genetic disorders. Cell. 85:597–605. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Smallridge RS, Whiteman P, Werner JM, Campbell ID, Handford PA and Downing AK: Solution structure and dynamics of a calcium binding epidermal growth factor-like domain pair from the neonatal region of human fibrillin-1. J Biol Chem. 278:12199–12206. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Reinhardt DP, Mechling DE, Boswell BA, Keene DR, Sakai LY and Bächinger HP: Calcium determines the shape of fibrillin. J Biol Chem. 272:7368–7373. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Reinhardt DP, Ono RN and Sakai LY: Calcium stabilizes fibrillin-1 against proteolytic degradation. J Biol Chem. 272:1231–1236. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Lin G, Tiedemann K, Vollbrandt T, Peters H, Batge B, Brinckmann J and Reinhardt DP: Homo- and heterotypic fibrillin-1 and -2 interactions constitute the basis for the assembly of microfibrils. J Biol Chem. 277:50795–50804. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Marson A, Rock MJ, Cain SA, Freeman LJ, Morgan A, Mellody K, Shuttleworth CA, Baldock C and Kielty CM: Homotypic fibrillin-1 interactions in microfibril assembly. J Biol Chem. 280:5013–5021. 2005. View Article : Google Scholar | |
|
Reinhardt DP, Sasaki T, Dzamba BJ, Keene DR, Chu ML, Göhring W, Timpl R and Sakai LY: Fibrillin-1 and fibulin-2 interact and are colocalized in some tissues. J Biol Chem. 271:19489–19496. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Jensen SA, Reinhardt DP, Gibson MA and Weiss AS: Protein interaction studies of MAGP-1 with tropoelastin and fibrillin-1. J Biol Chem. 276:39661–39666. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Isogai Z, Ono RN, Ushiro S, Keene DR, Chen Y, Mazzieri R, Charbonneau NL, Reinhardt DP, Rifkin DB and Sakai LY: Latent transforming growth factor beta-binding protein 1 interacts with fibrillin and is a microfibril-associated protein. J Biol Chem. 278:2750–2757. 2003. View Article : Google Scholar | |
|
Rock MJ, Cain SA, Freeman LJ, Morgan A, Mellody K, Marson A, Shuttleworth CA, Weiss AS and Kielty CM: Molecular basis of elastic fiber formation. Critical interactions and a tropoelastin-fibrillin-1 cross-link. J Biol Chem. 279:23748–23758. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Robertson IB, Horiguchi M, Zilberberg L, Dabovic B, Hadjiolova K and Rifkin DB: Latent TGF-β-binding proteins. Matrix Biol. 47:44–53. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Jovanovic J, Takagi J, Choulier L, Abrescia NG, Stuart DI, van der Merwe PA, Mardon HJ and Handford PA: alphaVbeta6 is a novel receptor for human fibrillin-1. Comparative studies of molecular determinants underlying integrin-rgd affinity and specificity. J Biol Chem. 282:6743–6751. 2007. View Article : Google Scholar | |
|
Jensen SA, Iqbal S, Lowe ED, Redfield C and Handford PA: Structure and interdomain interactions of a hybrid domain: A disulphide-rich module of the fibrillin/LTBP superfamily of matrix proteins. Structure. 17:759–768. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Lönnqvist L, Reinhardt D, Sakai L and Peltonen L: Evidence for furin-type activity-mediated C-terminal processing of profibrillin-1 and interference in the processing by certain mutations. Hum Mol Genet. 7:2039–2044. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Raghunath M, Putnam EA, Ritty T, Hamstra D, Park ES, Tschödrich-Rotter M, Peters R, Rehemtulla A and Milewicz DM: Carboxy-terminal conversion of profibrillin to fibrillin at a basic site by PACE/furin-like activity required for incorporation in the matrix. J Cell Sci. 112:1093–1100. 1999.PubMed/NCBI | |
|
Trask TM, Ritty TM, Broekelmann T, Tisdale C and Mecham RP: N-terminal domains of fibrillin 1 and fibrillin 2 direct the formation of homodimers: A possible first step in microfibril assembly. Biochem J. 340:693–701. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H, Apfelroth SD, Hu W, Davis EC, Sanguineti C, Bonadio J, Mecham RP and Ramirez F: Structure and expression of fibrillin-2, a novel microfibrillar component preferentially located in elastic matrices. J Cell Biol. 124:855–863. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Wallis DD, Putnam EA, Cretoiu JS, Carmical SG, Cao SN, Thomas G and Milewicz DM: Profibrillin-1 maturation by human dermal fibroblasts: Proteolytic processing and molecular chaperones. J Cell Biochem. 90:641–652. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Reinhardt DP, Keene DR, Corson GM, Pöschl E, Bächinger HP, Gambee JE and Sakai LY: Fibrillin-1: Organization in microfibrils and structural properties. J Mol Biol. 258:104–116. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Baldock C, Siegler V, Bax DV, Cain SA, Mellody KT, Marson A, Haston JL, Berry R, Wang MC, Grossmann JG, et al: Nanostructure of fibrillin-1 reveals compact conformation of EGF arrays and mechanism for extensibility. Proc Natl Acad Sci USA. 103:11922–11927. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Kuo CL, Isogai Z, Keene DR, Hazeki N, Ono RN, Sengle G, Bächinger HP and Sakai LY: Effects of fibrillin-1 degradation on microfibril ultrastructure. J Biol Chem. 282:4007–4020. 2007. View Article : Google Scholar | |
|
Qian RQ and Glanville RW: Alignment of fibrillin molecules in elastic microfibrils is defined by transglutaminase-derived cross-links. Biochemistry. 36:15841–15847. 1997. View Article : Google Scholar | |
|
Keene DR, Maddox BK, Kuo HJ, Sakai LY and Glanville RW: Extraction of extendable beaded structures and their identification as fibrillin-containing extracellular matrix microfibrils. J Histochem Cytochem. 39:441–449. 1991. View Article : Google Scholar : PubMed/NCBI | |
|
Kielty CM and Shuttleworth CA: Fibrillin-containing microfibrils: Structure and function in health and disease. Int J Biochem Cell Biol. 27:747–760. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Kewley MA, Williams G and Steven FS: Studies of elastic tissue formation in the developing bovine ligamentum nuchae. J Pathol. 124:95–101. 1978. View Article : Google Scholar : PubMed/NCBI | |
|
Carta L, Pereira L, Arteaga-Solis E, Lee-Arteaga SY, Lenart B, Starcher B, Merkel CA, Sukoyan M, Kerkis A, Hazeki N, et al: Fibrillins 1 and 2 perform partially overlapping functions during aortic development. J Biol Chem. 281:8016–8023. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan X, Werner JM, Lack J, Knott V, Handford PA, Campbell ID and Downing AK: Effects of the N2144S mutation on backbone dynamics of a TB-cbEGF domain pair from human fibrillin-1. J Mol Biol. 316:113–125. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Yadin DA, Robertson IB, McNaught-Davis J, Evans P, Stoddart D, Handford PA, Jensen SA and Redfield C: Structure of the fibrillin-1 N-terminal domains suggests that heparan sulfate regulates the early stages of microfibril assembly. Structure. 21:1743–1756. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Sabatier L, Chen D, Fagotto-Kaufmann C, Hubmacher D, McKee MD, Annis DS, Mosher DF and Reinhardt DP: Fibrillin assembly requires fibronectin. Mol Biol Cell. 20:846–858. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Kinsey R, Williamson MR, Chaudhry S, Mellody KT, McGovern A, Takahashi S, Shuttleworth CA and Kielty CM: Fibrillin-1 microfibril deposition is dependent on fibronectin assembly. J Cell Sci. 121:2696–2704. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Sabatier L, Djokic J, Fagotto-Kaufmann C, Chen M, Annis DS, Mosher DF and Reinhardt DP: Complex contributions of fibronectin to initiation and maturation of microfibrils. Biochem J. 456:283–295. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Baldwin AK, Cain SA, Lennon R, Godwin A, Merry CL and Kielty CM: Epithelial-mesenchymal status influences how cells deposit fibrillin microfibrils. J Cell Sci. 127:158–171. 2014. View Article : Google Scholar : | |
|
Gibson MA, Kumaratilake JS and Cleary EG: The protein components of the 12-nanometer microfibrils of elastic and nonelastic tissues. J Biol Chem. 264:4590–4598. 1989.PubMed/NCBI | |
|
Trask BC, Trask TM, Broekelmann T and Mecham RP: The microfibrillar proteins MAGP-1 and fibrillin-1 form a ternary complex with the chondroitin sulfate proteoglycan decorin. Mol Biol Cell. 11:1499–1507. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Mecham RP and Gibson MA: The microfibril-associated glycoproteins (MAGPs) and the microfibrillar niche. Matrix Biol. 47:13–33. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kostka G, Giltay R, Bloch W, Addicks K, Timpl R, Fässler R and Chu ML: Perinatal lethality and endothelial cell abnormalities in several vessel compartments of fibulin-1-deficient mice. Mol Cell Biol. 21:7025–7034. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Freeman LJ, Lomas A, Hodson N, Sherratt MJ, Mellody KT, Weiss AS, Shuttleworth A and Kielty CM: Fibulin-5 interacts with fibrillin-1 molecules and microfibrils. Biochem J. 388:1–5. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Yanagisawa H, Davis EC, Starcher BC, Ouchi T, Yanagisawa M, Richardson JA and Olson EN: Fibulin-5 is an elastin-binding protein essential for elastic fibre development in vivo. Nature. 415:168–171. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Hirai M, Ohbayashi T, Horiguchi M, Okawa K, Hagiwara A, Chien KR, Kita T and Nakamura T: Fibulin-5/DANCE has an elastogenic organizer activity that is abrogated by proteolytic cleavage in vivo. J Cell Biol. 176:1061–1071. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Gabriel LA, Wang LW, Bader H, Ho JC, Majors AK, Hollyfield JG, Traboulsi EI and Apte SS: ADAMTSL4, a secreted glycoprotein widely distributed in the eye, binds fibrillin-1 microfibrils and accelerates microfibril biogenesis. Invest Ophthalmol Vis Sci. 53:461–469. 2012. View Article : Google Scholar : | |
|
Tsutsui K, Manabe R, Yamada T, Nakano I, Oguri Y, Keene DR, Sengle G, Sakai LY and Sekiguchi K: ADAMTSL-6 is a novel extracellular matrix protein that binds to fibrillin-1 and promotes fibrillin-1 fibril formation. J Biol Chem. 285:4870–4882. 2010. View Article : Google Scholar : | |
|
Kutz WE, Wang LW, Bader HL, Majors AK, Iwata K, Traboulsi EI, Sakai LY, Keene DR and Apte SS: ADAMTS10 protein interacts with fibrillin-1 and promotes its deposition in extracellular matrix of cultured fibroblasts. J Biol Chem. 286:17156–17167. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hubmacher D and Apte SS: ADAMTS proteins as modulators of microfibril formation and function. Matrix Biol. 47:34–43. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Iozzo RV: Basement membrane proteoglycans: From cellar to ceiling. Nat Rev Mol Cell Biol. 6:646–656. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Murdoch AD, Liu B, Schwarting R, Tuan RS and Iozzo RV: Widespread expression of perlecan proteoglycan in basement membranes and extracellular matrices of human tissues as detected by a novel monoclonal antibody against domain III and by in situ hybridization. J Histochem Cytochem. 42:239–249. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Reinboth B, Hanssen E, Cleary EG and Gibson MA: Molecular interactions of biglycan and decorin with elastic fiber components: Biglycan forms a ternary complex with tropoelastin and microfibril-associated glycoprotein 1. J Biol Chem. 277:3950–3957. 2002. View Article : Google Scholar | |
|
Raghunath M, Superti-Furga A, Godfrey M and Steinmann B: Decreased extracellular deposition of fibrillin and decorin in neonatal Marfan syndrome fibroblasts. Hum Genet. 90:511–515. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Superti-Furga A, Raghunath M and Willems PJ: Deficiencies of fibrillin and decorin in fibroblast cultures of a patient with neonatal Marfan syndrome. J Med Genet. 29:875–878. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Hayes AJ, Lord MS, Smith SM, Smith MM, Whitelock JM, Weiss AS and Melrose J: Colocalization in vivo and association in vitro of perlecan and elastin. Histochem Cell Biol. 136:437–454. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Tiedemann K, Sasaki T, Gustafsson E, Göhring W, Bätge B, Notbohm H, Timpl R, Wedel T, Schlötzer-Schrehardt U and Reinhardt DP: Microfibrils at basement membrane zones interact with perlecan via fibrillin-1. J Biol Chem. 280:11404–11412. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Whitelock JM, Melrose J and Iozzo RV: Diverse cell signaling events modulated by perlecan. Biochemistry. 47:11174–11183. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Kerever A, Mercier F, Nonaka R, de Vega S, Oda Y, Zalc B, Okada Y, Hattori N, Yamada Y and Arikawa-Hirasawa E: Perlecan is required for FGF-2 signaling in the neural stem cell niche. Stem Cell Res. 12:492–505. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Thisse B and Thisse C: Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev Biol. 287:390–402. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Murasawa Y, Watanabe K, Yoneda M, Zako M, Kimata K, Sakai LY and Isogai Z: Homotypic versican G1 domain interactions enhance hyaluronan incorporation into fibrillin microfibrils. J Biol Chem. 288:29170–29181. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Wight TN and Merrilees MJ: Proteoglycans in atherosclerosis and restenosis: Key roles for versican. Circ Res. 94:1158–1167. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Wu YJ, La Pierre DP, Wu J, Yee AJ and Yang BB: The interaction of versican with its binding partners. Cell Res. 15:483–494. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng PS, Vais D, Lapierre D, Liang YY, Lee V, Yang BL and Yang BB: PG-M/versican binds to P-selectin glycoprotein ligand-1 and mediates leukocyte aggregation. J Cell Sci. 117:5887–5895. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Grässel S, Unsöld C, Schäcke H, Bruckner-Tuderman L and Bruckner P: Collagen XVI is expressed by human dermal fibroblasts and keratinocytes and is associated with the microfibrillar apparatus in the upper papillary dermis. Matrix Biol. 18:309–317. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Hubert T, Grimal S, Ratzinger S, Mechaly I, Grassel S and Fichard-Carroll A: Collagen XVI is a neural component of the developing and regenerating dorsal root ganglia extracellular matrix. Matrix Biol. 26:206–210. 2007. View Article : Google Scholar | |
|
Ono RN, Sengle G, Charbonneau NL, Carlberg V, Bächinger HP, Sasaki T, Lee-Arteaga S, Zilberberg L, Rifkin DB, Ramirez F, et al: Latent transforming growth factor beta-binding proteins and fibulins compete for fibrillin-1 and exhibit exquisite specificities in binding sites. J Biol Chem. 284:16872–16881. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Dallas SL, Sivakumar P, Jones CJ, Chen Q, Peters DM, Mosher DF, Humphries MJ and Kielty CM: Fibronectin regulates latent transforming growth factor-beta (TGF beta) by controlling matrix assembly of latent TGF-beta binding protein-1. J Biol Chem. 280:18871–18880. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Fontana L, Chen Y, Prijatelj P, Sakai T, Fässler R, Sakai LY and Rifkin DB: Fibronectin is required for integrin alphavbeta6-mediated activation of latent TGF-beta complexes containing LTBP-1. FASEB J. 19:1798–1808. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Kantola AK, Keski-Oja J and Koli K: Fibronectin and heparin binding domains of latent TGF-beta binding protein (LTBP)-4 mediate matrix targeting and cell adhesion. Exp Cell Res. 314:2488–2500. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Saharinen J, Hyytiäinen M, Taipale J and Keski-Oja J: Latent transforming growth factor-beta binding proteins (LTBPs)-structural extracellular matrix proteins for targeting TGF-beta action. Cytokine Growth Factor Rev. 10:99–117. 1999. View Article : Google Scholar | |
|
Gregory KE, Ono RN, Charbonneau NL, Kuo CL, Keene DR, Bachinger HP and Sakai LY: The prodomain of BMP-7 targets the BMP-7 complex to the extracellular matrix. J Biol Chem. 280:27970–27980. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Sengle G, Charbonneau NL, Ono RN, Sasaki T, Alvarez J, Keene DR, Bächinger HP and Sakai LY: Targeting of bone morphogenetic protein growth factor complexes to fibrillin. J Biol Chem. 283:13874–13888. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Sengle G, Tsutsui K, Keene DR, Tufa SF, Carlson EJ, Charbonneau NL, Ono RN, Sasaki T, Wirtz MK, Samples JR, et al: Microenvironmental regulation by fibrillin-1. PLoS Genet. 8:e10024252012. View Article : Google Scholar : PubMed/NCBI | |
|
Wohl AP, Troilo H, Collins RF, Baldock C and Sengle G: Extracellular regulation of bone morphogenetic protein activity by the microfibril component fibrillin-1. J Biol Chem. 291:12732–12746. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Charbonneau NL, Ono RN, Corson GM, Keene DR and Sakai LY: Fine tuning of growth factor signals depends on fibrillin microfibril networks. Birth Defects Res Part C Embryo Today. 72:37–50. 2004. View Article : Google Scholar | |
|
Massagué J and Chen YG: Controlling TGF-beta signaling. Genes Dev. 14:627–644. 2000.PubMed/NCBI | |
|
Lawrence DA, Pircher R, Krycève-Martinerie C and Jullien P: Normal embryo fibroblasts release transforming growth factors in a latent form. J Cell Physiol. 121:184–188. 1984. View Article : Google Scholar : PubMed/NCBI | |
|
Shi M, Zhu J, Wang R, Chen X, Mi L, Walz T and Springer TA: Latent TGF-β structure and activation. Nature. 474:343–349. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zeyer KA and Reinhardt DP: Fibrillin-containing microfibrils are key signal relay stations for cell function. J Cell Commun Signal. 9:309–325. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Dubois CM, Laprise MH, Blanchette F, Gentry LE and Leduc R: Processing of transforming growth factor beta 1 precursor by human furin convertase. J Biol Chem. 270:10618–10624. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Nunes I, Munger J, Harpel JG, Nagano Y, Shapiro R, Gleizes PE and Rifkin DB: Structure and activation of the large latent transforming growth factor-Beta complex. J Am Optom Assoc. 69:643–648. 1998.PubMed/NCBI | |
|
Annes JP, Munger JS and Rifkin DB: Making sense of latent TGFbeta activation. J Cell Sci. 116:217–224. 2003. View Article : Google Scholar | |
|
Hinz B: It has to be the αv: Myofibroblast integrins activate latent TGF-β1. Nat Med. 19:1567–1568. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Sato Y and Rifkin DB: Inhibition of endothelial cell movement by pericytes and smooth muscle cells: Activation of a latent transforming growth factor-beta 1-like molecule by plasmin during co-culture. J Cell Biol. 109:309–315. 1989. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Q and Stamenkovic I: Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev. 14:163–176. 2000.PubMed/NCBI | |
|
Jenkins G: The role of proteases in transforming growth factor-beta activation. Int J Biochem Cell Biol. 40:1068–1078. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Lyons RM, Gentry LE, Purchio AF and Moses HL: Mechanism of activation of latent recombinant transforming growth factor beta 1 by plasmin. J Cell Biol. 110:1361–1367. 1990. View Article : Google Scholar : PubMed/NCBI | |
|
Schultz-Cherry S and Murphy-Ullrich JE: Thrombospondin causes activation of latent transforming growth factor-beta secreted by endothelial cells by a novel mechanism. J Cell Biol. 122:923–932. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Barcellos-Hoff MH, Derynck R, Tsang ML and Weatherbee JA: Transforming growth factor-beta activation in irradiated murine mammary gland. J Clin Invest. 93:892–899. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Schmierer B and Hill CS: TGFbeta-SMAD signal transduction: Molecular specificity and functional flexibility. Nat Rev Mol Cell Biol. 8:970–982. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X and Xu L: Mechanism and regulation of nucleocytoplasmic trafficking of smad. Cell Biosci. 1:402011. View Article : Google Scholar : PubMed/NCBI | |
|
Tang LY and Zhang YE: Non-degradative ubiquitination in Smad-dependent TGF-β signaling. Cell Biosci. 1:432011. View Article : Google Scholar | |
|
Feng XH and Derynck R: Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol. 21:659–693. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Massagué J, Seoane J and Wotton D: Smad transcription factors. Genes Dev. 19:2783–2810. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Verrecchia F, Chu ML and Mauviel A: Identification of novel TGF-beta/Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J Biol Chem. 276:17058–17062. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Sengle G, Ono RN, Sasaki T and Sakai LY: Prodomains of transforming growth factor beta (TGFbeta) superfamily members specify different functions: Biglycan forms a ternary complex with tropoelastin and microfibril-associated glycoprotein 1. J Biol Chem. 286:5087–5099. 2011. View Article : Google Scholar | |
|
Pereira L, D'Alessio M, Ramirez F, Lynch JR, Sykes B, Pangilinan T and Bonadio J: Genomic organization of the sequence coding for fibrillin, the defective gene product in Marfan syndrome. Hum Mol Genet. 2:17621993. View Article : Google Scholar : PubMed/NCBI | |
|
Bax DV, Bernard SE, Lomas A, Morgan A, Humphries J, Shuttleworth CA, Humphries MJ and Kielty CM: Cell adhesion to fibrillin-1 molecules and microfibrils is mediated by alpha 5 beta 1 and alpha v beta 3 integrins. J Biol Chem. 278:34605–34616. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Marek I, Volkert G, Hilgers KF, Bieritz B, Rascher W, Reinhardt DP and Hartner A: Fibrillin-1 and alpha8 integrin are co-expressed in the glomerulus and interact to convey adhesion of mesangial cells. Cell Adh Migr. 8:389–395. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lee SS, Knott V, Jovanović J, Harlos K, Grimes JM, Choulier L, Mardon HJ, Stuart DI and Handford PA: Structure of the integrin binding fragment from fibrillin-1 gives new insights into microfibril organization. Structure. 12:717–729. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Bouzeghrane F, Reinhardt DP, Reudelhuber TL and Thibault G: Enhanced expression of fibrillin-1, a constituent of the myocardial extracellular matrix in fibrosis. Am J Physiol Heart Circ Physiol. 289:H982–H991. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Bax DV, Mahalingam Y, Cain S, Mellody K, Freeman L, Younger K, Shuttleworth CA, Humphries MJ, Couchman JR and Kielty CM: Cell adhesion to fibrillin-1: Identification of an Arg-Gly-Asp-dependent synergy region and a heparin-binding site that regulates focal adhesion formation. J Cell Sci. 120:1383–1392. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Tiedemann K, Bätge B, Müller PK and Reinhardt DP: Interactions of fibrillin-1 with heparin/heparan sulfate, implications for microfibrillar assembly. J Biol Chem. 276:36035–36042. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Cain SA, Baldwin AK, Mahalingam Y, Raynal B, Jowitt TA, Shuttleworth CA, Couchman JR and Kielty CM: Heparan sulfate regulates fibrillin-1 N- and C-terminal interactions. J Biol Chem. 283:27017–27027. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Alexopoulou AN, Multhaupt HA and Couchman JR: Syndecans in wound healing, inflammation and vascular biology. Int J Biochem Cell Biol. 39:505–528. 2007. View Article : Google Scholar | |
|
Loeys BL, Gerber EE, Riegert-Johnson D, Iqbal S, Whiteman P, McConnell V, Chillakuri CR, Macaya D, Coucke PJ, De Paepe A, et al: Mutations in fibrillin-1 cause congenital scleroderma: Stiff skin syndrome. Sci Transl Med. 2:23ra202010. View Article : Google Scholar : PubMed/NCBI | |
|
Zou Y, Akazawa H, Qin Y, Sano M, Takano H, Minamino T, Makita N, Iwanaga K, Zhu W, Kudoh S, et al: Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol. 6:499–506. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Cook JR, Carta L, Bénard L, Chemaly ER, Chiu E, Rao SK, Hampton TG, Yurchenco P; GenTAC Registry Consortium; Costa KD, et al: Abnormal muscle mechanosignaling triggers cardiomyopathy in mice with Marfan syndrome. J Clin Invest. 124:1329–1339. 2014.PubMed/NCBI | |
|
Weber E, Rossi A, Solito R, Sacchi G, Agliano' M and Gerli R: Focal adhesion molecules expression and fibrillin deposition by lymphatic and blood vessel endothelial cells in culture. Microvasc Res. 64:47–55. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Dietz HC, Cutting CR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, Puffenberger EG, Hamosh A, Nanthakumar EJ, Curristin SM, et al: Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 352:337–339. 1991. View Article : Google Scholar : PubMed/NCBI | |
|
Collod-Béroud G, Le Bourdelles S, Ades L, Ala-Kokko L, Booms P, Boxer M, Child A, Comeglio P, De Paepe A, Hyland JC, et al: Update of the UMD-FBN1 mutation database and creation of an FBN1 polymorphism database. Hum Mutat. 22:199–208. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Ramirez F and Dietz HC: Marfan syndrome: From molecular pathogenesis to clinical treatment. Curr Opin Genet Dev. 17:252–258. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Sakai LY, Keene DR, Renard M and De Backer J: FBN1: The disease-causing gene for Marfan syndrome and other genetic disorders. Gene. 591:279–291. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Faivre L, Collod-Beroud G, Loeys BL, Child A, Binquet C, Gautier E, Callewaert B, Arbustini E, Mayer K, Arslan-Kirchner M, et al: Effect of mutation type and location on clinical outcome in 1,013 probands with marfan syndrome or related phenotypes and fbn1 mutations: An international study. Am J Hum Genet. 81:454–466. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Booms P, Cisler J, Mathews KR, Godfrey M, Tiecke F, Kaufmann UC, Vetter U, Hagemeier C and Robinson PN: Novel exon skipping mutation in the fibrillin-1 gene: Two 'hot spots' for the neonatal Marfan syndrome. Clin Genet. 55:110–117. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Morse RP, Rockenmacher S, Pyeritz RE, Sanders SP, Bieber FR, Lin A, MacLeod P, Hall B and Graham JM Jr: Diagnosis and management of infantile marfan syndrome. Pediatrics. 86:888–895. 1990.PubMed/NCBI | |
|
Loeys BL, Dietz HC, Braverman AC, Callewaert BL, De Backer J, Devereux RB, Hilhorst-Hofstee Y, Jondeau G, Faivre L, Milewicz DM, et al: The revised Ghent nosology for the Marfan syndrome. J Med Genet. 47:476–485. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Dietz HC and Pyeritz RE: Mutations in the human gene for fibrillin-1 (FBN1) in the Marfan syndrome and related disorders. Hum Mol Genet. 4(Spec No): 1799–1809. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Francke U, Berg MA, Tynan K, Brenn T, Liu W, Aoyama T, Gasner C, Miller DC and Furthmayr H: A Gly1127Ser mutation in an EGF-like domain of the fibrillin-1 gene is a risk factor for ascending aortic aneurysm and dissection. Am J Hum Genet. 56:1287–1296. 1995.PubMed/NCBI | |
|
Yamawaki T, Nagaoka K, Morishige K, Sadamatsu K, Tashiro H, Yasunaga H, Morisaki H and Morisaki T: Familial thoracic aortic aneurysm and dissection associated with Marfan-related gene mutations: Case report of a family with two gene mutations. Intern Med. 48:555–558. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Sood S, Eldadah ZA, Krause WL, McIntosh I and Dietz HC: Mutation in fibrillin-1 and the Marfanoid-craniosynostosis (Shprintzen-Goldberg) syndrome. Nat Genet. 12:209–211. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Kainulainen K, Karttunen L, Puhakka L, Sakai L and Peltonen L: Mutations in the fibrillin gene responsible for dominant ectopia lentis and neonatal Marfan syndrome. Nat Genet. 6:64–69. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Le Goff C, Mahaut C, Wang LW, Allali S, Abhyankar A, Jensen S, Zylberberg L, Collod-Beroud G, Bonnet D, Alanay Y, et al: Mutations in the TGFβ Binding-protein-like domain 5 of FBN1 are responsible for acromicric and geleophysic dysplasias. Am J Hum Genet. 89:7–14. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Faivre L, Dollfus H, Lyonnet S, Alembik Y, Mégarbané A, Samples J, Gorlin RJ, Alswaid A, Feingold J, Le Merrer M, et al: Clinical homogeneity and genetic heterogeneity in Weill-Marchesani syndrome. Am J Med Genet A. 123A:204–207. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Cecchi A, Ogawa N, Martinez HR, Carlson A, Fan Y, Penny DJ, Guo DC, Eisenberg S, Safi H, Estrera A, et al: Missense mutations in FBN1 exons 41 and 42 cause Weill-Marchesani syndrome with thoracic aortic disease and Marfan syndrome. Am J Med Genet Part A. 161A:2305–2310. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Faivre L, Gorlin RJ, Wirtz MK, Godfrey M, Dagoneau N, Samples JR, Le Merrer M, Collod-Beroud G, Boileau C, Munnich A and Cormier-Daire V: In frame fibrillin-1 gene deletion in autosomal dominant Weill-Marchesani syndrome. J Med Genet. 40:34–36. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Dagoneau N, Benoist-Lasselin C, Huber C, Faivre L, Mégarbané A, Alswaid A, Dollfus H, Alembik Y, Munnich A, Legeai-Mallet L and Cormier-Daire V: ADAMTS10 mutations in autosomal recessive Weill-Marchesani syndrome. Am J Hum Genet. 75:801–806. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Gerber EE, Gallo EM, Fontana SC, Davis EC, Wigley FM, Huso DL and Dietz HC: Integrin-modulating therapy prevents fibrosis and autoimmunity in mouse models of scleroderma. Nature. 503:126–130. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Hollister DW, Godfrey M, Sakai LY and Pyeritz RE: Immunohistologic abnormalities of the Microfibrillar-fiber system in the marfan syndrome. N Engl J Med. 323:152–159. 1990. View Article : Google Scholar : PubMed/NCBI | |
|
Eldadah ZA, Brenn T, Furthmayr H and Dietz HC: Expression of a mutant human fibrillin allele upon a normal human or murine genetic background recapitulates a Marfan cellular phenotype. J Clin Invest. 95:874–880. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Godfrey M, Raghunath M, Cisler J, Bevins CL, DePaepe A, Di Rocco M, Gregoritch J, Imaizumi K, Kaplan P, Kuroki Y, et al: Abnormal morphology of fibrillin microfibrils in fibroblast cultures from patients with neonatal Marfan syndrome. Am J Pathol. 146:1414–1421. 1995.PubMed/NCBI | |
|
Charbonneau NL, Carlson EJ, Tufa S, Sengle G, Manalo EC, Carlberg VM, Ramirez F, Keene DR and Sakai LY: In vivo studies of mutant Fibrillin-1 microfibrils. J Biol Chem. 285:24943–24955. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Aoyama T, Tynan K, Dietz HC, Francke U and Furthmayr H: Missense mutations impair intracellular processing of fibrillin and microfibril assembly in Marfan syndrome. Hum Mol Genet. 2:2135–2140. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Judge DP, Biery NJ, Keene DR, Geubtner J, Myers L, Huso DL, Sakai LY and Dietz HC: Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. J Clin Invest. 114:172–181. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Arbustini E, Grasso M, Ansaldi S, Malattia C, Pilotto A, Porcu E, Disabella E, Marziliano N, Pisani A, Lanzarini L, et al: Identification of sixty-two novel and twelve known FBN1 mutations in eighty-one unrelated probands with Marfan syndrome and other fibrillinopathies. Hum Mutat. 26:4942005. View Article : Google Scholar : PubMed/NCBI | |
|
Reinhardt DP, Ono RN, Notbohm H, Müller PK, Bächinger HP and Sakai LY: Mutations in calcium-binding epidermal growth factor modules render fibrillin-1 susceptible to proteolysis. A potential disease-causing mechanism in Marfan syndrome. J Biol Chem. 275:12339–12345. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Booms P, Tiecke F, Rosenberg T, Hagemeier C and Robinson PN: Differential effect of FBN1 mutations on in vitro proteolysis of recombinant fibrillin-1 fragments. Hum Genet. 107:216–224. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Hindson VJ, Ashworth JL, Rock MJ, Cunliffe S, Shuttleworth CA and Kielty CM: Fibrillin degradation by matrix metalloproteinases: Identification of amino- and carboxy-terminal cleavage sites. FEBS Lett. 452:195–198. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Ikonomidis JS, Jones JA, Barbour JR, Stroud RE, Clark LL, Kaplan BS, Zeeshan A, Bavaria JE, Gorman JH III, Spinale FG and Gorman RC: Expression of matrix metalloproteinases and endogenous inhibitors within ascending aortic aneurysms of patients with Marfan syndrome. Circulation. 114(Suppl 1): I365–I370. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Segura AM, Luna RE, Horiba K, Stetler-Stevenson WG, McAllister HA Jr, Willerson JT and Ferrans VJ: Immunohistochemistry of matrix metalloproteinases and their inhibitors in thoracic aortic aneurysms and aortic valves of patients with Marfan's syndrome. Circulation. 98(Suppl 19): II331–II338. 1998.PubMed/NCBI | |
|
Fleischer KJ, Nousari HC, Anhalt GJ, Stone CD and Laschinger JC: Immunohistochemical abnormalities of fibrillin in cardiovascular tissues in Marfan's syndrome. Ann Thorac Surg. 63:1012–1017. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Granata A, Serrano F, Bernard WG, McNamara M, Low L, Sastry P and Sinha S: An iPSC-derived vascular model of Marfan syndrome identifies key mediators of smooth muscle cell death. Nat Genet. 49:97–109. 2017. View Article : Google Scholar | |
|
Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, Ramirez F, Sakai LY and Dietz HC: Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet. 33:407–411. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Ng CM, Cheng A, Myers LA, Martinez-Murillo F, Jie C, Bedja D, Gabrielson KL, Hausladen JM, Mecham RP, Judge DP and Dietz HC: TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J Clin Invest. 114:1586–1592. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Franken R, den Hartog AW, de Waard V, Engele L, Radonic T, Lutter R, Timmermans J, Scholte AJ, van den Berg MP, Zwinderman AH, et al: Circulating transforming growth factor-β as a prognostic biomarker in Marfan syndrome. Int J Cardiol. 168:2441–2446. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Pattanaik D, Brown M and Postlethwaite AE: Vascular involvement in systemic sclerosis (scleroderma). J Inflamm Res. 4:105–125. 2011.PubMed/NCBI | |
|
Siracusa LD, McGrath R, Ma Q, Moskow JJ, Manne J, Christner PJ, Buchberg AM and Jimenez SA: A tandem duplication within the fibrillin 1 gene is associated with the mouse tight skin mutation. Genome Res. 6:300–313. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Lemaire R, Bayle J and Lafyatis R: Fibrillin in Marfan syndrome and tight skin mice provides new insights into transforming growth factor-beta regulation and systemic sclerosis. Curr Opin Rheumatol. 18:582–587. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Gayraud B, Keene DR, Sakai LY and Ramirez F: New insights into the assembly of extracellular microfibrils from the analysis of the fibrillin 1 mutation in the tight skin mouse. J Cell Biol. 150:667–680. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Kielty CM, Raghunath M, Siracusa LD, Sherratt MJ, Peters R, Shuttleworth CA and Jimenez SA: The tight skin mouse: Demonstration of mutant fibrillin-1 production and assembly into abnormal microfibrils. J Cell Biol. 140:1159–1166. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Saito S, Nishimura H, Brumeanu TD, Casares S, Stan AC, Honjo T and Bona CA: Characterization of mutated protein encoded by partially duplicated fibrillin-1 gene in tight skin (TSK) mice. Mol Immunol. 36:169–176. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Gardi C, Martorana PA, de Santi MM, van Even P and Lungarella G: A biochemical and morphological investigation of the early development of genetic emphysema in tight-skin mice. Exp Mol Pathol. 50:398–410. 1989. View Article : Google Scholar : PubMed/NCBI | |
|
Tan FK, Arnett FC, Antohi S, Saito S, Mirarchi A, Spiera H, Sasaki T, Shoichi O, Takeuchi K, Pandey JP, et al: Autoantibodies to the extracellular matrix microfibrillar protein, fibrillin-1, in patients with scleroderma and other connective tissue diseases. J Immunol. 163:1066–1072. 1999.PubMed/NCBI | |
|
Siracusa LD, McGrath R, Fisher JK and Jimenez SA: The mouse tight skin (Tsk) phenotype is not dependent on the presence of mature T and B lymphocytes. Mamm Genome. 9:907–909. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Dodig TD, Mack KT, Cassarino DF and Clark SH: Development of the tight-skin phenotype in immune-deficient mice. Arthritis Rheum. 44:723–727. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Kissin EY, Lemaire R, Korn JH and Lafyatis R: Transforming growth factor beta induces fibroblast fibrillin-1 matrix formation. Arthritis Rheum. 46:3000–3009. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Podolsky DK: Inflammatory bowel disease. N Engl J Med. 347:417–429. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Shimshoni E, Yablecovitch D, Baram L, Dotan I and Sagi I: ECM remodelling in IBD: Innocent bystander or partner in crime? The emerging role of extracellular molecular events in sustaining intestinal inflammation. Gut. 64:367–372. 2015. View Article : Google Scholar : | |
|
Stumpf M, Cao W, Klinge U, Klosterhalfen B, Junge K, Krones CJ and Schumpelick V: Reduced expression of collagen type I and increased expression of matrix metalloproteinases 1 in patients with Crohn's disease. J Invest Surg. 18:33–38. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Stumpf M, Cao W, Klinge U, Klosterhalfen B, Kasperk R and Schumpelick V: Increased distribution of collagen type III and reduced expression of matrix metalloproteinase 1 in patients with diverticular disease. Int J Colorectal Dis. 16:271–275. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Stallmach A, Schuppan D, Riese HH, Matthes H and Riecken EO: Increased collagen type III synthesis by fibroblasts isolated from strictures of patients with Crohn's disease. Gastroenterology. 102:1920–1929. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Graham MF, Diegelmann RF, Elson CO, Lindblad WJ, Gotschalk N, Gay S and Gay R: Collagen content and types in the intestinal strictures of Crohn's disease. Gastroenterology. 94:257–265. 1988. View Article : Google Scholar : PubMed/NCBI | |
|
Ratzinger S, Eble JA, Pasoldt A, Opolka A, Rogler G, Grifka J and Grässel S: Collagen XVI induces formation of focal contacts on intestinal myofibroblasts isolated from the normal and inflamed intestinal tract. Matrix Biol. 29:177–193. 2010. View Article : Google Scholar | |
|
Koutroubakis IE, Petinaki E, Dimoulios P, Vardas E, Roussomoustakaki M, Maniatis AN and Kouroumalis EA: Serum laminin and collagen IV in inflammatory bowel disease. J Clin Pathol. 56:817–820. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Spenlé C, Lefebvre O, Lacroute J, Méchine-Neuville A, Barreau F, Blottière HM, Duclos B, Arnold C, Hussenet T, Hemmerlé J, et al: The laminin response in inflammatory bowel disease: Protection or malignancy? PLoS One. 9:e1113362014. View Article : Google Scholar : PubMed/NCBI | |
|
de la Motte CA: Hyaluronan in intestinal homeostasis and inflammation: Implications for fibrosis. Am J Physiol Gastrointest Liver Physiol. 301:G945–G949. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Sallam H, McNearney TA and Chen JD: Systematic review: Pathophysiology and management of gastrointestinal dysmotility in systemic sclerosis (scleroderma). Aliment Pharmacol Ther. 23:691–712. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Sjogren RW: Gastrointestinal motility disorders in scleroderma. Arthritis Rheum. 37:1265–1282. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Marie I, Ducrotté P, Denis P, Hellot MF and Levesque H: Outcome of small-bowel motor impairment in systemic sclerosis-a prospective manometric 5-yr follow-up. Rheumatology (Oxford). 46:150–153. 2007. View Article : Google Scholar | |
|
Greydanus MP and Camilleri M: Abnormal postcibal antral and small bowel motility due to neuropathy or myopathy in systemic sclerosis. Gastroenterology. 96:110–115. 1989. View Article : Google Scholar : PubMed/NCBI | |
|
Iovino P, Valentini G, Ciacci C, De Luca A, Tremolaterra F, Sabbatini F, Tirri E and Mazzacca G: Proximal stomach function in systemic sclerosis: Relationship with autonomic nerve function. Dig Dis Sci. 46:723–730. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Ibba-Manneschi L, Del Rosso A, Pacini S, Tani A, Bechi P and Matucci Cerinic M: Ultrastructural study of the muscle coat of the gastric wall in a case of systemic sclerosis. Ann Rheum Dis. 61:754–756. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Manetti M, Neumann E, Milia AF, Tarner IH, Bechi P, Matucci-Cerinic M, Ibba-Manneschi L and Müller-Ladner U: Severe fibrosis and increased expression of fibrogenic cytokines in the gastric wall of systemic sclerosis patients. Arthritis Rheum. 56:3442–3447. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Pedersen J, Gao C, Egekvist H, Bjerring P, Arendt-Nielsen L, Gregersen H and Drewes AM: Pain and biomechanical responses to distention of the duodenum in patients with systemic sclerosis. Gastroenterology. 124:1230–1239. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Latella G, Di Gregorio J, Flati V, Rieder F and Lawrance IC: Mechanisms of initiation and progression of intestinal fibrosis in IBD. Scand J Gastroenterol. 50:53–65. 2015. View Article : Google Scholar | |
|
LeRoy EC, Trojanowska MI and Smith EA: Cytokines and human fibrosis. Eur Cytokine Netw. 1:215–219. 1990.PubMed/NCBI | |
|
Babyatsky MW, Rossiter G and Podolsky DK: Expression of transforming growth factors alpha and beta in colonic mucosa in inflammatory bowel disease. Gastroenterology. 110:975–984. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Kulkarni AB and Karlsson S: Transforming growth factor-beta 1 knockout mice. A mutation in one cytokine gene causes a dramatic inflammatory disease. Am J Pathol. 143:3–9. 1993.PubMed/NCBI | |
|
Gorelik L and Flavell RA: Transforming growth factor-beta in T-cell biology. Nat Rev Immunol. 2:46–53. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Meijer MJ, Mieremet-Ooms MA, van der Zon AM, van Duijn W, van Hogezand RA, Sier CF, Hommes DW, Lamers CB and Verspaget HW: Increased mucosal matrix metalloproteinase-1, -2, -3 and -9 activity in patients with inflammatory bowel disease and the relation with Crohn's disease phenotype. Dig Liver Dis. 39:733–739. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Lakatos G, Hritz I, Varga MZ, Juhász M, Miheller P, Cierny G, Tulassay Z and Herszényi L: The impact of matrix metalloproteinases and their tissue inhibitors in inflammatory bowel diseases. Dig Dis. 30:289–295. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Rath T, Roderfeld M, Graf J, Wagner S, Vehr AK, Dietrich C, Geier A and Roeb E: Enhanced expression of MMP-7 and MMP-13 in inflammatory bowel disease: A precancerous potential? Inflamm Bowel Dis. 12:1025–1035. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Booms P, Pregla R, Ney A, Barthel F, Reinhardt DP, Pletschacher A, Mundlos S and Robinson PN: RGD-containing fibrillin-1 fragments upregulate matrix metallopro-teinase expression in cell culture: A potential factor in the pathogenesis of the Marfan syndrome. Hum Genet. 116:51–61. 2005. View Article : Google Scholar | |
|
Booms P, Ney A, Barthel F, Moroy G, Counsell D, Gille C, Guo G, Pregla R, Mundlos S, Alix AJ and Robinson PN: A fibrillin-1-fragment containing the elastin-binding-protein GxxPG consensus sequence upregulates matrix metallopro-teinase-1: Biochemical and computational analysis. J Mol Cell Cardiol. 40:234–246. 2006. View Article : Google Scholar : PubMed/NCBI |